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Abstract—Management costs in private clouds will be 

promisingly reduced by reviewing ‘operation history,’ which is 

defined as a holistic view of past operation executions. Opera-

tion history provides insights into breakdown of operations: 

the breakdown clarifies cost-dominant operations to be im-

proved and repetitive ones to be automated. Towards obtain-

ing the operation history, a conventional approach relying on 

manual investigation is time-consuming, and another relying 

on agent-based monitoring is not often acceptable in sensitive 

mission-critical enterprise clouds. Different from these ap-

proaches, our idea is to discover the operation history by au-

tomatically analyzing ‘system logs’ that are easily accessible 

even in sensitive clouds. Since system logs contain only low-

level debugging messages about programmatic events without 

direct contexts about operations, the challenge is to recover 

high-level operational contexts from low-level system logs. To 

address this challenge, we develop a method that first abstracts 

system logs using a pre-defined event sequence model, and then 

maps the abstracted events to high-level individual opera-

tions—this mapping between different contextual levels is 

achieved by using complementary cross-cloud reference data. 

Evaluation of an implementation revealed that this method 

reduces the time taken to discover the history by 99.9% com-

pared to a conventional approach while achieving up to 95% 

correctness. 

Keywords—private cloud; cloud management; operation; au-

tomation; business process management 

1.  INTRODUCTION  

Private clouds, which enable datacenter IT resources 
(e.g., servers, networks, storage devices) to be used in a 
virtualized manner, have been adopted by many enterprises. 
One motivating advantage of private clouds is that IT sys-
tems, which have traditionally been built over separated sets 
of physical devices, can be consolidated into a smaller num-
ber of physical devices that are shared yet logically separat-
ed by virtualization. Such consolidation reduces device 
costs [1]. 

On the other hand, the adoption of private clouds in-
creases management costs. This is because the use of private 
clouds requires an additional management layer (a virtual-
ization layer), that includes such operations as deploying 
new virtual machines (VMs) and setting up virtual networks. 
In many cases, these operations are done manually (e.g., by 
using GUI-based cloud management tools, such as 
VMware®

1
 vSphere Web Client and OpenStack®

2
 Horizon) 

by operators. These manual operations consume a large 

                                                           
1VMware is a registered trademark of VMware, Inc. 
2OpenStack is trademark of the OpenStack Foundation. 

amount of management time, which could be reduced by, 
for instance, automating them. 

The time needed for these operations could be reduced 
by making use of ‘operation history,’ which we define as a 
holistic view of past operation executions. The operation 
history provides information about when and what types of 
operations were performed over which IT resources. Its use 
would provide insights into the time spent on the additional 
management operations for the virtualized resources. For 
example, automation of the operations taking the most time 
and of the ones repeatedly executed could be prioritized. 

However, conventional approaches to obtaining opera-
tion history are time-consuming or not widely applicable. A 
representative conventional approach relies on manual in-
vestigation of handwritten operational records as well as 
visually observing the behavior of operators while they per-
form operations; this approach is thus time-consuming. An-
other approach is to automatically monitor terminal devices 
where the operators perform various operations for cloud 
management by using additionally installed agent software 
(e.g., VMware®

1
 Onyx); however, the installation of addi-

tional tools in sensitive environments (e.g., mission-critical 
enterprise clouds) is not generally acceptable. 

Given these problems in obtaining the operation history, 
we took a different approach: analyze log data that are ma-
chine-readable as well as natively accumulated in a private 
cloud by default. In a preliminary study, we found that there 
are two types of logs: system logs and configuration change 
records. The former contain arbitrary types of low-level 
debugging messages recorded by programmatic events exe-
cuted in clouds without direct operational contexts (i.e., not 
interpretable) although they are easily and immediately re-
trievable. The latter contain information about the context of 
operation executions and corresponding low-level pro-
grammatic events, which were triggered by the operation in 
the clouds, in the form of structured database records (i.e., 
interpretable), so they are useful for obtaining operation 
history. However, since the configuration change records 
are usually stored in production databases on sensitive mis-
sion-critical enterprise clouds, retrieving a number of rec-
ords may not be necessarily or promptly acceptable due to 
concerns such as overloading the databases. Given these 
findings, we focused on using system logs to discover oper-
ation history; the challenge is thus to recover high-level 
operational contexts from low-level debugging messages.  

To meet this challenge, we developed a method for dis-
covering operation history from system logs. It first extracts 
information possibly related to past operations and then 
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maps it to the high-level operational context. This recovery 
of operational contexts is realized through cross-cloud com-
plementary analysis—the system logs in a mission-critical 
enterprise clouds (the operation history of which is to be 
obtained) are analyzed using cross-cloud reference data con-
taining the relationships between low-level events and high-
level operational contexts. These reference data are con-
structed through pre-investigation over data sources (e.g., 
configuration change records) obtained from another cloud 
that is not mission-critical (e.g., an existing experimental 
cloud). The originalities of this contribution include the 
basic approach of discovering operation history from system 
logs and the method we developed. 

2. FEATURES OF SYSTEM LOGS AND CHALLENGES 

As mentioned above, our approach is to automatically 
discover operational history through system log analysis. In 
this section, we describe the features of system logs (Sec. 
2.1), introduce our data model for the operation history (Sec. 
2.2), and discuss the technical challenges (Sec. 2.3). 

2.1. Features of system logs  

System logs are generally the data accumulated for the 
text messages generated in a computer system. They are 
characterized by two features: unformatted text messages 
and low-level event records. 

Feature 1: Unformatted text messages 
The data in a system log is typically recorded as unfor-

matted text messages, as shown in Fig. 1. These messages 
are usually written in natural language plain text, which 
does not have a data schema or parameters with a direct 
meaning. 

Feature 2: Low-level event records 

The text messages are recorded in accordance with the 

execution of low-level events by arbitrary programmatic 

behavior; the corresponding high-level operational contexts 

are not recorded. Once an operation is performed by an op-

erator, the cloud management software breaks down the 

operation into a sequence of low-level programmatic events, 

as shown in Fig. 2. These events are recorded without the 

corresponding high-level operational contexts or the interre-

lations among events triggered by the same original opera-

tion.  

 

 

2.2. Data model for operation history 

We formally define the operation history as 
                , with                         , 
where  opType is the type of operation (e.g., CreateVM), 
time is the time the operation was performed,   is the ID of 
the resources over which the operation was conducted (e.g., 
VM ID), and   is a set of arbitrary parameters (e.g., config-
uration settings such as disk size). 

This data model can also be used for visualization pur-
poses, as shown in Fig. 3(a). The individual operations are 
aligned by resource ID and sorted by time. The detailed 
attributes of the individual operations can be further visual-
ized through key-value representation, as shown in Fig. 3(b). 
Such visualization provides a holistic view of operations 
(e.g., time-consuming operations and/or repetitive opera-
tions) as well as a drill-down view of individual operations. 

 

2.3. Technical challenges 

Discovering the operation history from system logs pos-
es two technical challenges corresponding to the two fea-
tures of system logs.  

Challenge 1: Analyzing unformatted system logs 
The first challenge is dealing with the unformatted na-

ture of system logs since unformatted texts are not well suit-
ed for recovering information about various types of opera-
tions and events. We therefore first need to extract the se-
mantics of the operation-related meanings in the text mes-
sages and then abstract them as common representations 
that are suitable for recovering the operation history. 

Challenge 2: Recovery of operational context 
The other challenge is to recover information about in-

dividual operations, especially operation types, from low-
level events, in which the corresponding high-level opera-
tional context were not directly recorded. This lack of con-
text is the main problem characterizing the present work. 
We have to compensate for this contextual gap between the 
high-level context of operation types and the low-level 
events.  

 
Fig. 3 Operation history and operation data model 
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Fig. 2 Breakdown of an operation into multiple events 

~ ~ ~

CreateDir VmID:81
2015-12-10T08:01:11

CreateDisk beginVmName:Ap
2015-12-10T08:01:11

CreateFile

~ ~ ~

CreateDir

CreatDisk

ParametersEvents
Operator

・Events in cloud

System logOperation

・An operation by operator

Cloud

Create VM System
log

CreatFile

perform

RecordOp type: CreateVM
Time: 3/10 13:15
Parameters:
・VmName: Ap01
・DiskSize: 8GB

Mgmt
software

 

 
Fig. 1 Example contents of system log 

ection for cloud cloudManager, pid=4695, version=5.1.0, build=1123961, option=Release
2016-02-13T11:38:38.778Z [7FA1C84C3700 info 'vpxdvpxdVmomi' opID=SWI-84fd8e7d] 
[ClientAdapterBase::InvokeOnSoap] Invoke done (host.test.domain.com, 
vpxapi.VpxaService.fetchQuickStats)
2016-02-13T11:38:39.929Z [7FA1C84C3700 info 'vpxdvpxdVmomi' opID=SWI-84fd8e7d] 
[ClientAdapterBase::InvokeOnSoap] Invoke done (host.test.domain.com, 
vpxapi.VpxaService.fetchQuickStats)
2016-02-13T11:38:39.930Z [7FA1C84C3700 info 'vpxdvpxdVmomi' opID=SWI-84fd8e7d] 
[ClientAdapterBase::InvokeOnSoap] Invoke done (host.test.domain.com, 
vpxapi.VpxaService.fetchQuickStats)
2016-02-13T11:39:18.737Z [7FA1C8135700 info 'commonvpxLro' opID=6cf9d0c7] 
[VpxLRO] -- BEGIN task-internal-2624719 -- -- vim.event.EventManager.GetLatestEvent -
- 8c7701a9-f96b-c382-21ec-f69750749c55(52142d9e-2201-e9d6-1bb2-3013ddb81002)
2016-02-13T11:39:18.738Z [7FA1C8135700 info 'commonvpxLro' opID=6cf9d0c7] 
[VpxLRO] -- FINISH task-internal-2624719 -- -- vim.event.EventManager.GetLatestEvent
2016-02-13T11:39:29.256Z [7FA1C88EA700 info 'commonvpxLro‘
2016-02-13T11:39:18.738Z [7FA1C8135700 info 'commonvpxLro' opID=6cf9d0c7]
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3. DEVELOPED METHOD 

The method we developed for discovering operation his-
tory from system logs addresses the two challenges de-
scribed in the previous section. In this section we first over-
view the developed method (Sec. 3.1) and then describe its 
two functions (Secs. 3.2 and 3.3). 

3.1. Overview 

From a high-level viewpoint, operation history is dis-
covered from the system log generated in a sensitive mis-
sion-critical enterprise cloud, the operation history of which 
is to be investigated. As shown in Fig. 4, system logs are 
processed using two functions: “log abstraction” (to meet 
Challenge 1) and “event mapping” (to meet Challenge 2). 
The log abstraction function is used to abstract the unfor-
matted system log into machine-readable representations of 
the event sequence. The event mapping function is used to 
reversibly map the individual sub-sequences of the abstract-
ed event sequence to the corresponding operations by using 
cross-cloud reference data. These reference data are con-
structed with this function by using different data sources 
(e.g., configuration change records

3
) in another less-

sensitive cloud (e.g., experimental cloud) the internal soft-
ware stack of which is similar (and compatible) to that of 
the sensitive target cloud. This cross-cloud reference data 
helps to compensate for the lack of context of event-
operation relationships. This cross-cloud complementary 
analysis should be feasible as long as both cloud environ-
ments use the same management software. 

3.2. Log abstraction function 

This function transforms unformatted text messages in a 

system log into a machine-readable event sequence. Alt-

hough the text-pattern matching (mentioned later) in this 

function can basically be accomplished by applying corre-

sponding part of existing work such as Ref.[2] and is not the 

core of the present work’s originality, we here define a data 

model tailored for the challenges and describe a practical 

example of the abstraction process in order to make this 

paper self-contained. 

 

                                                           
3
The present work uses configuration change records as a representative 

data source under the assumption that such a data source exists. Another 

referential data source may be obtained with a black-box-like method that 

examines individual output from intentionally executing all types of opera-
tions in an experimental cloud. Since such an active-probing approach 

would not be widely acceptable in production environments, the spirit of 

cross-cloud analysis approach used in the present work will also apply. 
This method is free from that assumption but requires human labor. 

1) Definition of event sequence data model 
Since a system log can be regarded as an accumulation 

of text messages about programmatic events, as mentioned 
above, we define the data model as a sequential set of events 
          , with                   . In this model, ET is 
the event type (e.g., “CreateDisk”), time is the event execu-
tion time, and    is a list of parameters related to the event 
(found in text massages).  

This function abstracts system logs by parsing each text 
message line and extracting parameters for the data model 
by using conventional text-pattern matching with a pre-
defined collection of regular expressions. For example, sup-
pose that a line of text in the system log is ‘2016-11-
30T01:10:33 BEGIN CreateDisk vm-id vm-01,’ and there is 
corresponding regular expression ‘(*1) BEGIN (*2) vm-id 
(*3).’ The line with the matching parameters is abstracted as 
E={time=(*1),ET=(*2),  =[vmId=(*3)]]}. The   represents 
                                          . Pro-
cessing of the entire system log results in the corresponding 
data model representation:                . 

3.3. Event mapping function 

This function discovers individual operations from the 
abstracted event sequence. Since there are no direct relation-
ships between the operations and events in the system log, 
we first need to consider how the relationships can be re-
covered. 

1) Design consideration 
 Cross-cloud analysis using cross-cloud reference data 
obtained from a different cloud. As mentioned in Sec. 1, 
cloud environments accumulate data sources (e.g., configu-
ration change records) containing information about past 
operations and their relationships to events, but these data in 
the target cloud (e.g., a mission-critical enterprise cloud) are 
not always easily accessible. Our basic idea for overcoming 
this problem is to utilize the information from another cloud 
(e.g., an experimental cloud) that is not mission critical as 
cross-cloud reference data for analyzing the system log of 
the target cloud.  

 Model of cross-cloud reference data. We formally 
define each referential context regarding operation type and 
sequence of event types: 

                                
where opType is the operation type,             
     is the sequence of event types, and     represents a 
specific event type (e.g.,             ). 

 
Fig. 4 Overview of proposed method 
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An example of configuration change records is shown in 
Fig. 5(a). Each row has “Event sequence” and “Operation 
type,” which can be regarded as the context between events 
and operations. Since some contexts with an identical opera-
tion type can have a variation in the event sequences, and 
observed records represent only individual cases (not a gen-
eral case), these sequences are aggregated into the canonical 
form of a directed graph        : 

                                     
                                

                                 

 
where S is the start of the event sequence,     is an event 
type observed in the aggregated event sequence, and   is 
the end of the sequence. The collection of         compos-

es the cross-cloud reference data.  

 

2) Pseudocode and example of event mapping  
In this section, we describe how the event mapping pro-

cedure is performed using cross-cloud reference data and an 
example case.  

Pseudocode. As shown in the following pseudocode 
(Fig. 6), the input data is the abstracted event sequence   
and cross-cloud reference data, which is a list of         

instances, and the output data is operation history. At the 
beginning of the procedure, the abstracted events in   are 
grouped by parameter (e.g., resource ID) in   (line 1), and 
the groups are iteratively processed (lines 2–16). Events in a 
grouped event sequence (  ) are iteratively mapped to the 
corresponding operations by performing pattern matching 
between the sub-sequences in   and all direct graph         

instances in the cross-cloud reference data (lines 3–16). In 
the pattern matching process, each event type sequence 
(   ) in    is compared to the event patterns defined on 
        (lines 4–12). If a matching pattern is detected, the 

sub-sequence is regarded as the set of events triggered by 
the same operation. The matched sub-sequence is extracted 
from    and stored as an operation after merging values in 
the   of the events and mapping the         operation type 

(lines 11–16).  

Example case. In the example case shown in Fig. 7, the 
abstracted events are already grouped by parameter (such as 
by “VM-03”), and one of the grouped event sequences is 

shown as   . Pattern matching is performed between the 
sub-sequences in    and           . In this example, 
matching sub-sequences       and          are detected, 
so the detected sub-sequences are mapped to the operation 
type “PowerOnVm” and stored as operations in the data 
model shown in Fig. 3(b). 

Pseudocode: Event mapping procedure 

Input: Event sequence:              ,  
where                

Cross-cloud reference data: {          } 

Output: Operation history:               
1  group events in   by resource ID in   of    
2  for each grouped event sequence   : 
3  for each         

4  get event type seq.         
       

   of    

5  current    =    
 , current Vertex    in         

6  while current Vertex    
7  if current    exists in next Vertex in         

8  current     next    , current Vertex   next     
9  else if next Vertex    
10  current Vertex    
11  else 
12  break 
13  if current Vertex    
14  extract    from   and merge   of   in    
15  map opType of         onto    

16  store    with opType as an operation    

Fig. 6 Pseudocode for event mapping procedure 

4. EVALUATION 

We evaluated an implementation of our method in terms 
of processing time (Sec. 4.1) and feasibility of correctly 
discovering past operations by using cross-cloud reference 
data (Sec. 4.2). 

4.1.  Processing time 

Motivation. As stated in Sec. 1, the conventional ap-
proach to obtaining operation history relies on time-
consuming manual investigation; this approach can take 
several days and much human labor. Hence, it is important 
to evaluate the reduction in human labor to evaluate the ef-
fectiveness of developed method 

Evaluation method. We estimated the processing times 
of the conventional and developed methods as follows. 

- Conventional. We considered a practical case in which 
the aim is to improve VM deployment operations in a 
private cloud consisting of hundreds of VMs in a multi-
tenant manner. Conventionally, the investigation proce-
dure is composed of such phases as interviewing opera-
tors and checking paper-based operational documents. 
We estimated the time taken for each phase by inter-
viewing the investigators involved in the sample case. 

- Developed. The processing time of the developed meth-
od is mostly determined by the computation (rather than 
I/O) time. We evaluated this time for about 10 GB of 
system logs, with tens of millions lines in total, by using 
an ordinary personal computer with a 2.50-GHz two-
core CPU, 4 GB of memory, and a 64-bit OS. 

 
Fig. 5 Configuration change records and cross-cloud reference data 
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Results. As shown in Table 1 it took more than seven 

days with the conventional method and about 15 minutes 

with the developed method, a reduction of 99.9%. 

 

4.2. Feasibility of correctly discovering operations 

Motivation. The cross-cloud complementary analysis is 
based on the assumption that the event sequences for indi-
vidual operations are not much different between clouds, in 
addition to the assumption that these clouds use the same 
management software. Hence, it is important to evaluate the 
correctness of the recovered contexts in the event mapping 
function in order to validate this assumption, which is the 
core of the developed method. 

Evaluation method. We evaluated the correctness by 
comparing (i) operations recorded in the configuration 
change records as a supervisory dataset and (ii) operations 
recovered from system logs, in a cross-validation manner 
between two experimental clouds (A and B). We first per-
formed reverse-mapping of the system log from Cloud A 
with the cross-cloud reference data from Cloud B and then 
compared the mapping results to the configuration change 
records from Cloud A. We then did the same procedure 
starting from Cloud B. The clouds used almost the same 
versions of cloud management software from VMware®. 

Results. As shown in Table 2, the system logs from each 
cloud contained more than 2000 operations each (Row 1). 
The numbers of mapping errors are shown in Rows 2 and 3. 
There were two types of mapping error: unmapped opera-
tions and incorrectly mapped operations. Row 5 shows the 

overall accuracy, i.e., the fraction of operations mapped 
accurately—more than 70% of the operations were correctly 
discovered.  

Row 2 further breaks down the number of unmapped 
operations by cause. 

- Row 2-1 shows the number of operations unmapped due 
to the corresponding operation type not being included 
in the cross-cloud reference data. In a practical sense, 
those types of operations were executed in Cloud A and 
not in Cloud B, resulting in the lack of corresponding 
reference information. Examples of such unmapped 
types of operations included taking a snapshot of the 
VM image and disconnecting a virtualized host server. 
The number of such unmapped operations was less than 
100 out of 1263 for both clouds. 

- Row 2-2 shows the number of unmapped operations due 
to unrecorded variations in event sequences for certain 
operation types. This variability caused difficulty in 
building always applicable referential information for 
those operation types. For example, as shown in Fig. 7, 
which shows data for Cloud A, the operation type 
“PowerOnVM” triggered three event sequence patterns: 
         ,      , and     ). However, the sequence 
          was not detected in Cloud B; on the other 
hand, we found that the operation type “PowerOnVM” 
in Cloud B triggered only      or     ). Such differ-
ences in event triggering would result in unmapped op-
erations. In the case of Cloud A, there were 1204 opera-
tions unmapped due to such differences. 

For the incorrectly mapped cases, additional investiga-
tion revealed that there were situations in which different 
types of operations (e.g., “remove disk image” and “remove 
a configuration file”) triggered the same programmatic 
event (e.g., remove a file). This is reasonable because the 
cloud management software executes the same operational 
program for different operations. Precise reverse-mapping 
of those types of operations is not an easy task. 

5. DISCUSSION 

Practical uses. The evaluation revealed that the mapping 
correctness ranged from 70% to 95%. Although this level of 
correctness is not 100%, it is sufficient for detecting repeat-
edly executed and time-consuming operations and for iden-
tifying specific operations to be improved. The level of cor-
rectness could be increased by manual investigation with 
less overhead than for the conventional method. 

Limitations. One limitation of our approach is the limited 
coverage of the cross-cloud reference data (Sec. 3.3). Since 
operation types are mapped to events in accordance with the 

Table 1 Time taken to discover operation history 

 
Table 2 Mapping accuracy on cross-validation evaluations 

 

Phased procedure Conventional Developed method

1 Interview operators 4.0 days -

2 Check operation manuals 1.0 days -

3
Investigate paper-based

operation records
5.0 days -

4 Analyze system log - 15 min

Sum 10.0 days 15 min 

Percent reduction - 99.894%

Evaluation

Analyzing target cloud’s system log 

with  reference data from another cloud

Target: Cloud A

Ref. Cloud B

Target: Cloud B

Ref. Cloud A

1 ( i ) no. of operations in the system log 4212 2317

2 no. of unmapped operation 1263 110

2-1: Lack of operation type  in reference data 59 42

2-2: lack of event sequence in reference data 1204 68

3 no. of incorrectly mapped  operations 0 12

4 ( ii ) no. of correctly mapped  operations 2949 2205

5 % of correctly discovered operations

in the system log
70.01 95.16

 
Fig. 7 Detecting event subsets and mapping operation types according to the reference data 
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cross-cloud reference data, the level of mapping correctness 
greatly depends on the information richness of the source of 
the cross-cloud reference data. The level can thus be im-
proved by increasing the volume of the data source, and this 
is not much difficult because it can be achieved by merely 
concatenating other data sources from various cloud envi-
ronments that adapt similar cloud management software.  

Towards improving mapping correctness. As men-
tioned above and shown in Table 2, the cross-cloud refer-
ence data affects level of mapping correctness (i.e., the no. 
of unmapped cases and the no. of incorrectly mapped cases). 
Possible future work includes combining data sources for 
the cross-cloud reference data generated from more than one 
environment (to reduce the number of unmapped cases).  

6. RELATED WORK 

Unstructured log analysis. Analysis on unstructured 
log data has been performed by many researchers. Most 
aimed at detecting anomalies in a system. Reidemeister et 
al., for example, analyzed log data for classifying recurrent 
faults in software in order to facilitate fault diagnosis [3]. 
Other researchers have tried to proactively capture abnormal 
behaviors by detecting specific patterns appearing in log 
data generated in a virtualized IT infrastructure [4], server 
[5], network [6], or distributed system [7]. Although their 
approaches and ours are similar in that useful information is 
extracted from system logs (e.g., using pattern matching 
with pre-defined log pattern templates), we do not share the 
goal with them. Whereas their goals are to detect abnormal 
events or event patterns by classifying the extracted infor-
mation, our goal is to recover operational contexts hidden in  
the extracted events in system logs.  

Various researchers have worked on log abstraction, and 
several tools have been developed that can be complemen-
tarily used with our developed method. For example, a text 
mining approach automatically generates regular expres-
sions for log abstraction [2]. This corresponds to the collec-
tion of pre-defined regular expressions in the developed 
method (pre-processing phase). Furthermore, conventional 
log management tools, such as Logstash®

4
, perform pattern 

matching with pre-defined regular expressions (in addition 
to basic functionalities such as log collection and storage). 
These tools can be applied in pre-processing phase in the 
developed method. 

 Business process discovery. A number of researchers 
have focused on discovering business process workflows. 
This has been done, for example, by analyzing logs of indi-
vidual approval events stored in a well-structured relational 
database of business applications [8][9]. Whereas these pri-
or efforts and ours share a similar spirit of recovering pro-
cesses from log data, the differences are derived from the 
goals (i.e., approval workflow and operational history in 
ours) and the data analyzed in their approaches (i.e., event 
logs of business applications vs. cloud system logs). The 
difference in the data used motivated us to develop an origi-
nal method for analyzing unstructured system logs contain-
ing low-level events to recover contexts of operational pro-

                                                           
4Logstash is a registered trademark of Elasticsearch BV. 

cesses. At the view of discovering cloud operations, Yanase 
et al. developed a method for extracting operations de-
scribed in document data of manual books by using natural 
language processing [10]. However, the extracted operations 
do not contain information about past operation executions 
and thus will not give insights into improving cloud man-
agement such as automating repeatedly performed opera-
tions as operation history does.  

7. CONCLUDING REMARKS 

We have tackled the challenge of efficiently obtaining 
operation history. Our basic idea is to automatically discov-
er operation history by analyzing system logs, which indi-
rectly involve information about past operation executions. 
We developed a method for extracting useful information 
about past operations hidden in unstructured system logs, 
which record low-level programmatic events. The system 
logs are first abstracted using a pre-defined event sequence 
model, and then the low-level abstracted events are mapped 
to high-level individual operations—this mapping between 
different contextual levels is achieved by using complemen-
tary cross-cloud reference data. Evaluation of an implemen-
tation revealed that our approach reduced the time taken to 
obtain operation history by 99.9% compared to a conven-
tional approach while achieving up to 95% correctness. Fu-
ture work includes increasing mapping correctness by ex-
tending the amount of cross-cloud reference data. 
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