
Discovering Cloud Operation History

through Log Analysis

Mitsunari Kobayashi Yosuke Himura Yoshiko Yasuda

 Research & Development Group, Hitachi, Ltd.

Abstract—Management costs in private clouds will be

promisingly reduced by reviewing ‘operation history,’ which is

defined as a holistic view of past operation executions. Opera-

tion history provides insights into breakdown of operations:

the breakdown clarifies cost-dominant operations to be im-

proved and repetitive ones to be automated. Towards obtain-

ing the operation history, a conventional approach relying on

manual investigation is time-consuming, and another relying

on agent-based monitoring is not often acceptable in sensitive

mission-critical enterprise clouds. Different from these ap-

proaches, our idea is to discover the operation history by au-

tomatically analyzing ‘system logs’ that are easily accessible

even in sensitive clouds. Since system logs contain only low-

level debugging messages about programmatic events without

direct contexts about operations, the challenge is to recover

high-level operational contexts from low-level system logs. To

address this challenge, we develop a method that first abstracts

system logs using a pre-defined event sequence model, and then

maps the abstracted events to high-level individual opera-

tions—this mapping between different contextual levels is

achieved by using complementary cross-cloud reference data.

Evaluation of an implementation revealed that this method

reduces the time taken to discover the history by 99.9% com-

pared to a conventional approach while achieving up to 95%

correctness.

Keywords—private cloud; cloud management; operation; au-

tomation; business process management

1. INTRODUCTION

Private clouds, which enable datacenter IT resources
(e.g., servers, networks, storage devices) to be used in a
virtualized manner, have been adopted by many enterprises.
One motivating advantage of private clouds is that IT sys-
tems, which have traditionally been built over separated sets
of physical devices, can be consolidated into a smaller num-
ber of physical devices that are shared yet logically separat-
ed by virtualization. Such consolidation reduces device
costs [1].

On the other hand, the adoption of private clouds in-
creases management costs. This is because the use of private
clouds requires an additional management layer (a virtual-
ization layer), that includes such operations as deploying
new virtual machines (VMs) and setting up virtual networks.
In many cases, these operations are done manually (e.g., by
using GUI-based cloud management tools, such as
VMware®

1
 vSphere Web Client and OpenStack®

2
 Horizon)

by operators. These manual operations consume a large

1VMware is a registered trademark of VMware, Inc.
2OpenStack is trademark of the OpenStack Foundation.

amount of management time, which could be reduced by,
for instance, automating them.

The time needed for these operations could be reduced
by making use of ‘operation history,’ which we define as a
holistic view of past operation executions. The operation
history provides information about when and what types of
operations were performed over which IT resources. Its use
would provide insights into the time spent on the additional
management operations for the virtualized resources. For
example, automation of the operations taking the most time
and of the ones repeatedly executed could be prioritized.

However, conventional approaches to obtaining opera-
tion history are time-consuming or not widely applicable. A
representative conventional approach relies on manual in-
vestigation of handwritten operational records as well as
visually observing the behavior of operators while they per-
form operations; this approach is thus time-consuming. An-
other approach is to automatically monitor terminal devices
where the operators perform various operations for cloud
management by using additionally installed agent software
(e.g., VMware®

1
 Onyx); however, the installation of addi-

tional tools in sensitive environments (e.g., mission-critical
enterprise clouds) is not generally acceptable.

Given these problems in obtaining the operation history,
we took a different approach: analyze log data that are ma-
chine-readable as well as natively accumulated in a private
cloud by default. In a preliminary study, we found that there
are two types of logs: system logs and configuration change
records. The former contain arbitrary types of low-level
debugging messages recorded by programmatic events exe-
cuted in clouds without direct operational contexts (i.e., not
interpretable) although they are easily and immediately re-
trievable. The latter contain information about the context of
operation executions and corresponding low-level pro-
grammatic events, which were triggered by the operation in
the clouds, in the form of structured database records (i.e.,
interpretable), so they are useful for obtaining operation
history. However, since the configuration change records
are usually stored in production databases on sensitive mis-
sion-critical enterprise clouds, retrieving a number of rec-
ords may not be necessarily or promptly acceptable due to
concerns such as overloading the databases. Given these
findings, we focused on using system logs to discover oper-
ation history; the challenge is thus to recover high-level
operational contexts from low-level debugging messages.

To meet this challenge, we developed a method for dis-
covering operation history from system logs. It first extracts
information possibly related to past operations and then

978-3-901882-89-0 @2017 IFIP 959

maps it to the high-level operational context. This recovery
of operational contexts is realized through cross-cloud com-
plementary analysis—the system logs in a mission-critical
enterprise clouds (the operation history of which is to be
obtained) are analyzed using cross-cloud reference data con-
taining the relationships between low-level events and high-
level operational contexts. These reference data are con-
structed through pre-investigation over data sources (e.g.,
configuration change records) obtained from another cloud
that is not mission-critical (e.g., an existing experimental
cloud). The originalities of this contribution include the
basic approach of discovering operation history from system
logs and the method we developed.

2. FEATURES OF SYSTEM LOGS AND CHALLENGES

As mentioned above, our approach is to automatically
discover operational history through system log analysis. In
this section, we describe the features of system logs (Sec.
2.1), introduce our data model for the operation history (Sec.
2.2), and discuss the technical challenges (Sec. 2.3).

2.1. Features of system logs

System logs are generally the data accumulated for the
text messages generated in a computer system. They are
characterized by two features: unformatted text messages
and low-level event records.

Feature 1: Unformatted text messages
The data in a system log is typically recorded as unfor-

matted text messages, as shown in Fig. 1. These messages
are usually written in natural language plain text, which
does not have a data schema or parameters with a direct
meaning.

Feature 2: Low-level event records

The text messages are recorded in accordance with the

execution of low-level events by arbitrary programmatic

behavior; the corresponding high-level operational contexts

are not recorded. Once an operation is performed by an op-

erator, the cloud management software breaks down the

operation into a sequence of low-level programmatic events,

as shown in Fig. 2. These events are recorded without the

corresponding high-level operational contexts or the interre-

lations among events triggered by the same original opera-

tion.

2.2. Data model for operation history

We formally define the operation history as
 , with ,
where opType is the type of operation (e.g., CreateVM),
time is the time the operation was performed, is the ID of
the resources over which the operation was conducted (e.g.,
VM ID), and is a set of arbitrary parameters (e.g., config-
uration settings such as disk size).

This data model can also be used for visualization pur-
poses, as shown in Fig. 3(a). The individual operations are
aligned by resource ID and sorted by time. The detailed
attributes of the individual operations can be further visual-
ized through key-value representation, as shown in Fig. 3(b).
Such visualization provides a holistic view of operations
(e.g., time-consuming operations and/or repetitive opera-
tions) as well as a drill-down view of individual operations.

2.3. Technical challenges

Discovering the operation history from system logs pos-
es two technical challenges corresponding to the two fea-
tures of system logs.

Challenge 1: Analyzing unformatted system logs
The first challenge is dealing with the unformatted na-

ture of system logs since unformatted texts are not well suit-
ed for recovering information about various types of opera-
tions and events. We therefore first need to extract the se-
mantics of the operation-related meanings in the text mes-
sages and then abstract them as common representations
that are suitable for recovering the operation history.

Challenge 2: Recovery of operational context
The other challenge is to recover information about in-

dividual operations, especially operation types, from low-
level events, in which the corresponding high-level opera-
tional context were not directly recorded. This lack of con-
text is the main problem characterizing the present work.
We have to compensate for this contextual gap between the
high-level context of operation types and the low-level
events.

Fig. 3 Operation history and operation data model

TimeResources

(b) Operation data model

O7O4
O6

O1
O2

VM-01

VM-03

VM-02

(a) Operation history

An operation

opType:CreateVM
(Type of operation)

time: 3/10 13:15
r: VM-03
p: (DiskSize 8GB,...)

O8O3 O5

Oi = {opType, time, r, p }{ O1, O2, O3,…,On }

Fig. 2 Breakdown of an operation into multiple events

~ ~ ~

CreateDir VmID:81
2015-12-10T08:01:11

CreateDisk beginVmName:Ap
2015-12-10T08:01:11

CreateFile

~ ~ ~

CreateDir

CreatDisk

ParametersEvents
Operator

・Events in cloud

System logOperation

・An operation by operator

Cloud

Create VM System
log

CreatFile

perform

RecordOp type: CreateVM
Time: 3/10 13:15
Parameters:
・VmName: Ap01
・DiskSize: 8GB

Mgmt
software

Fig. 1 Example contents of system log

ection for cloud cloudManager, pid=4695, version=5.1.0, build=1123961, option=Release
2016-02-13T11:38:38.778Z [7FA1C84C3700 info 'vpxdvpxdVmomi' opID=SWI-84fd8e7d]
[ClientAdapterBase::InvokeOnSoap] Invoke done (host.test.domain.com,
vpxapi.VpxaService.fetchQuickStats)
2016-02-13T11:38:39.929Z [7FA1C84C3700 info 'vpxdvpxdVmomi' opID=SWI-84fd8e7d]
[ClientAdapterBase::InvokeOnSoap] Invoke done (host.test.domain.com,
vpxapi.VpxaService.fetchQuickStats)
2016-02-13T11:38:39.930Z [7FA1C84C3700 info 'vpxdvpxdVmomi' opID=SWI-84fd8e7d]
[ClientAdapterBase::InvokeOnSoap] Invoke done (host.test.domain.com,
vpxapi.VpxaService.fetchQuickStats)
2016-02-13T11:39:18.737Z [7FA1C8135700 info 'commonvpxLro' opID=6cf9d0c7]
[VpxLRO] -- BEGIN task-internal-2624719 -- -- vim.event.EventManager.GetLatestEvent -
- 8c7701a9-f96b-c382-21ec-f69750749c55(52142d9e-2201-e9d6-1bb2-3013ddb81002)
2016-02-13T11:39:18.738Z [7FA1C8135700 info 'commonvpxLro' opID=6cf9d0c7]
[VpxLRO] -- FINISH task-internal-2624719 -- -- vim.event.EventManager.GetLatestEvent
2016-02-13T11:39:29.256Z [7FA1C88EA700 info 'commonvpxLro‘
2016-02-13T11:39:18.738Z [7FA1C8135700 info 'commonvpxLro' opID=6cf9d0c7]

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper960

3. DEVELOPED METHOD

The method we developed for discovering operation his-
tory from system logs addresses the two challenges de-
scribed in the previous section. In this section we first over-
view the developed method (Sec. 3.1) and then describe its
two functions (Secs. 3.2 and 3.3).

3.1. Overview

From a high-level viewpoint, operation history is dis-
covered from the system log generated in a sensitive mis-
sion-critical enterprise cloud, the operation history of which
is to be investigated. As shown in Fig. 4, system logs are
processed using two functions: “log abstraction” (to meet
Challenge 1) and “event mapping” (to meet Challenge 2).
The log abstraction function is used to abstract the unfor-
matted system log into machine-readable representations of
the event sequence. The event mapping function is used to
reversibly map the individual sub-sequences of the abstract-
ed event sequence to the corresponding operations by using
cross-cloud reference data. These reference data are con-
structed with this function by using different data sources
(e.g., configuration change records

3
) in another less-

sensitive cloud (e.g., experimental cloud) the internal soft-
ware stack of which is similar (and compatible) to that of
the sensitive target cloud. This cross-cloud reference data
helps to compensate for the lack of context of event-
operation relationships. This cross-cloud complementary
analysis should be feasible as long as both cloud environ-
ments use the same management software.

3.2. Log abstraction function

This function transforms unformatted text messages in a

system log into a machine-readable event sequence. Alt-

hough the text-pattern matching (mentioned later) in this

function can basically be accomplished by applying corre-

sponding part of existing work such as Ref.[2] and is not the

core of the present work’s originality, we here define a data

model tailored for the challenges and describe a practical

example of the abstraction process in order to make this

paper self-contained.

3
The present work uses configuration change records as a representative

data source under the assumption that such a data source exists. Another

referential data source may be obtained with a black-box-like method that

examines individual output from intentionally executing all types of opera-
tions in an experimental cloud. Since such an active-probing approach

would not be widely acceptable in production environments, the spirit of

cross-cloud analysis approach used in the present work will also apply.
This method is free from that assumption but requires human labor.

1) Definition of event sequence data model
Since a system log can be regarded as an accumulation

of text messages about programmatic events, as mentioned
above, we define the data model as a sequential set of events
 , with . In this model, ET is
the event type (e.g., “CreateDisk”), time is the event execu-
tion time, and is a list of parameters related to the event
(found in text massages).

This function abstracts system logs by parsing each text
message line and extracting parameters for the data model
by using conventional text-pattern matching with a pre-
defined collection of regular expressions. For example, sup-
pose that a line of text in the system log is ‘2016-11-
30T01:10:33 BEGIN CreateDisk vm-id vm-01,’ and there is
corresponding regular expression ‘(*1) BEGIN (*2) vm-id
(*3).’ The line with the matching parameters is abstracted as
E={time=(*1),ET=(*2), =[vmId=(*3)]]}. The represents
 . Pro-
cessing of the entire system log results in the corresponding
data model representation: .

3.3. Event mapping function

This function discovers individual operations from the
abstracted event sequence. Since there are no direct relation-
ships between the operations and events in the system log,
we first need to consider how the relationships can be re-
covered.

1) Design consideration
 Cross-cloud analysis using cross-cloud reference data
obtained from a different cloud. As mentioned in Sec. 1,
cloud environments accumulate data sources (e.g., configu-
ration change records) containing information about past
operations and their relationships to events, but these data in
the target cloud (e.g., a mission-critical enterprise cloud) are
not always easily accessible. Our basic idea for overcoming
this problem is to utilize the information from another cloud
(e.g., an experimental cloud) that is not mission critical as
cross-cloud reference data for analyzing the system log of
the target cloud.

 Model of cross-cloud reference data. We formally
define each referential context regarding operation type and
sequence of event types:

where opType is the operation type,
 is the sequence of event types, and represents a
specific event type (e.g.,).

Fig. 4 Overview of proposed method

Function
Event mapping

Sec. 3.3

Function
Log abstraction

Sec. 3.2System logs

Operation history
TimeResources

VM-01

VM-03

VM-02

Cloud with environment

similar to that of
the target cloud

Enterprise

cloud
(Target)

Collecting

E1 E2 En(, ,..,)

Formatted

events

S Φ

Operation Type: PowerOnVm

Cross-cloud
reference data

Archiving

Data sources for
cross-cloud reference data

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper 961

An example of configuration change records is shown in
Fig. 5(a). Each row has “Event sequence” and “Operation
type,” which can be regarded as the context between events
and operations. Since some contexts with an identical opera-
tion type can have a variation in the event sequences, and
observed records represent only individual cases (not a gen-
eral case), these sequences are aggregated into the canonical
form of a directed graph :

where S is the start of the event sequence, is an event
type observed in the aggregated event sequence, and is
the end of the sequence. The collection of compos-

es the cross-cloud reference data.

2) Pseudocode and example of event mapping
In this section, we describe how the event mapping pro-

cedure is performed using cross-cloud reference data and an
example case.

Pseudocode. As shown in the following pseudocode
(Fig. 6), the input data is the abstracted event sequence
and cross-cloud reference data, which is a list of

instances, and the output data is operation history. At the
beginning of the procedure, the abstracted events in are
grouped by parameter (e.g., resource ID) in (line 1), and
the groups are iteratively processed (lines 2–16). Events in a
grouped event sequence () are iteratively mapped to the
corresponding operations by performing pattern matching
between the sub-sequences in and all direct graph

instances in the cross-cloud reference data (lines 3–16). In
the pattern matching process, each event type sequence
() in is compared to the event patterns defined on
 (lines 4–12). If a matching pattern is detected, the

sub-sequence is regarded as the set of events triggered by
the same operation. The matched sub-sequence is extracted
from and stored as an operation after merging values in
the of the events and mapping the operation type

(lines 11–16).

Example case. In the example case shown in Fig. 7, the
abstracted events are already grouped by parameter (such as
by “VM-03”), and one of the grouped event sequences is

shown as . Pattern matching is performed between the
sub-sequences in and . In this example,
matching sub-sequences and are detected,
so the detected sub-sequences are mapped to the operation
type “PowerOnVm” and stored as operations in the data
model shown in Fig. 3(b).

Pseudocode: Event mapping procedure

Input: Event sequence: ,
where

Cross-cloud reference data: { }

Output: Operation history:
1 group events in by resource ID in of
2 for each grouped event sequence :
3 for each

4 get event type seq.

 of

5 current =
 , current Vertex in

6 while current Vertex
7 if current exists in next Vertex in

8 current next , current Vertex next
9 else if next Vertex
10 current Vertex
11 else
12 break
13 if current Vertex
14 extract from and merge of in
15 map opType of onto

16 store with opType as an operation

Fig. 6 Pseudocode for event mapping procedure

4. EVALUATION

We evaluated an implementation of our method in terms
of processing time (Sec. 4.1) and feasibility of correctly
discovering past operations by using cross-cloud reference
data (Sec. 4.2).

4.1. Processing time

Motivation. As stated in Sec. 1, the conventional ap-
proach to obtaining operation history relies on time-
consuming manual investigation; this approach can take
several days and much human labor. Hence, it is important
to evaluate the reduction in human labor to evaluate the ef-
fectiveness of developed method

Evaluation method. We estimated the processing times
of the conventional and developed methods as follows.

- Conventional. We considered a practical case in which
the aim is to improve VM deployment operations in a
private cloud consisting of hundreds of VMs in a multi-
tenant manner. Conventionally, the investigation proce-
dure is composed of such phases as interviewing opera-
tors and checking paper-based operational documents.
We estimated the time taken for each phase by inter-
viewing the investigators involved in the sample case.

- Developed. The processing time of the developed meth-
od is mostly determined by the computation (rather than
I/O) time. We evaluated this time for about 10 GB of
system logs, with tens of millions lines in total, by using
an ordinary personal computer with a 2.50-GHz two-
core CPU, 4 GB of memory, and a 64-bit OS.

Fig. 5 Configuration change records and cross-cloud reference data

No. Time
Event

sequence

Operation

type
~

1 Y/M/D
H:m:S

ExecPoweron

⇒VMPowerOn
PowerOnVM ~

2 Y/M/D
H:m:S

ExecPoweron PowerOnVM ~

3 Y/M/D
H:m:S

CreateFile Create File ~

4 Y/M/D
H:m:S

VMPowerOn PowerOnVM ~

5 Y/M/D
H:m:S

CreateDir

⇒CreateDisk
Create VM ~

6 Y/M/D
H:m:S

ExecPoweron

⇒VMPowerOn
PowerOnVM ~

7 Y/M/D
H:m:S

DeleteDisk

⇒DeleteDir
DeleteVM ~

ETa

ETb

Context i = { opType, ET }

Context 1 = {PowerOnVm, }ETa ETb

S Φ

(a) Configuration change records (b) Constructing cross-cloud reference data

GPowerOnVm = ({S, ,, ,Φ},

EdgesPowerOnVm)

ETa ETb

Context 2 = {PowerOnVm, }ETa

Context 4 = {PowerOnVm, }ETb

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper962

Results. As shown in Table 1 it took more than seven

days with the conventional method and about 15 minutes

with the developed method, a reduction of 99.9%.

4.2. Feasibility of correctly discovering operations

Motivation. The cross-cloud complementary analysis is
based on the assumption that the event sequences for indi-
vidual operations are not much different between clouds, in
addition to the assumption that these clouds use the same
management software. Hence, it is important to evaluate the
correctness of the recovered contexts in the event mapping
function in order to validate this assumption, which is the
core of the developed method.

Evaluation method. We evaluated the correctness by
comparing (i) operations recorded in the configuration
change records as a supervisory dataset and (ii) operations
recovered from system logs, in a cross-validation manner
between two experimental clouds (A and B). We first per-
formed reverse-mapping of the system log from Cloud A
with the cross-cloud reference data from Cloud B and then
compared the mapping results to the configuration change
records from Cloud A. We then did the same procedure
starting from Cloud B. The clouds used almost the same
versions of cloud management software from VMware®.

Results. As shown in Table 2, the system logs from each
cloud contained more than 2000 operations each (Row 1).
The numbers of mapping errors are shown in Rows 2 and 3.
There were two types of mapping error: unmapped opera-
tions and incorrectly mapped operations. Row 5 shows the

overall accuracy, i.e., the fraction of operations mapped
accurately—more than 70% of the operations were correctly
discovered.

Row 2 further breaks down the number of unmapped
operations by cause.

- Row 2-1 shows the number of operations unmapped due
to the corresponding operation type not being included
in the cross-cloud reference data. In a practical sense,
those types of operations were executed in Cloud A and
not in Cloud B, resulting in the lack of corresponding
reference information. Examples of such unmapped
types of operations included taking a snapshot of the
VM image and disconnecting a virtualized host server.
The number of such unmapped operations was less than
100 out of 1263 for both clouds.

- Row 2-2 shows the number of unmapped operations due
to unrecorded variations in event sequences for certain
operation types. This variability caused difficulty in
building always applicable referential information for
those operation types. For example, as shown in Fig. 7,
which shows data for Cloud A, the operation type
“PowerOnVM” triggered three event sequence patterns:
 , , and). However, the sequence
 was not detected in Cloud B; on the other
hand, we found that the operation type “PowerOnVM”
in Cloud B triggered only or). Such differ-
ences in event triggering would result in unmapped op-
erations. In the case of Cloud A, there were 1204 opera-
tions unmapped due to such differences.

For the incorrectly mapped cases, additional investiga-
tion revealed that there were situations in which different
types of operations (e.g., “remove disk image” and “remove
a configuration file”) triggered the same programmatic
event (e.g., remove a file). This is reasonable because the
cloud management software executes the same operational
program for different operations. Precise reverse-mapping
of those types of operations is not an easy task.

5. DISCUSSION

Practical uses. The evaluation revealed that the mapping
correctness ranged from 70% to 95%. Although this level of
correctness is not 100%, it is sufficient for detecting repeat-
edly executed and time-consuming operations and for iden-
tifying specific operations to be improved. The level of cor-
rectness could be increased by manual investigation with
less overhead than for the conventional method.

Limitations. One limitation of our approach is the limited
coverage of the cross-cloud reference data (Sec. 3.3). Since
operation types are mapped to events in accordance with the

Table 1 Time taken to discover operation history

Table 2 Mapping accuracy on cross-validation evaluations

Phased procedure Conventional Developed method

1 Interview operators 4.0 days -

2 Check operation manuals 1.0 days -

3
Investigate paper-based

operation records
5.0 days -

4 Analyze system log - 15 min

Sum 10.0 days 15 min

Percent reduction - 99.894%

Evaluation

Analyzing target cloud’s system log

with reference data from another cloud

Target: Cloud A

Ref. Cloud B

Target: Cloud B

Ref. Cloud A

1 (i) no. of operations in the system log 4212 2317

2 no. of unmapped operation 1263 110

2-1: Lack of operation type in reference data 59 42

2-2: lack of event sequence in reference data 1204 68

3 no. of incorrectly mapped operations 0 12

4 (ii) no. of correctly mapped operations 2949 2205

5 % of correctly discovered operations

in the system log
70.01 95.16

Fig. 7 Detecting event subsets and mapping operation types according to the reference data

ETa ETc ETa ETb

Grouped event sequence E’

Time series

Mapping opType of

GPowerOnVm

onto sub-sequences

Time

Power
OnVM

Power
OnVM

Detected event sub-sequences Operation types are mapped

ETa

Time

ETa

ETb

S Φ

ETa

ETb

S Φ

ETc ETa ETb ETcE’:

ETa

ETb

S Φ

GPowerOnVm

Pattern matching

between GPowerOnVm and

sub-sequence of E’

Reference data

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper 963

cross-cloud reference data, the level of mapping correctness
greatly depends on the information richness of the source of
the cross-cloud reference data. The level can thus be im-
proved by increasing the volume of the data source, and this
is not much difficult because it can be achieved by merely
concatenating other data sources from various cloud envi-
ronments that adapt similar cloud management software.

Towards improving mapping correctness. As men-
tioned above and shown in Table 2, the cross-cloud refer-
ence data affects level of mapping correctness (i.e., the no.
of unmapped cases and the no. of incorrectly mapped cases).
Possible future work includes combining data sources for
the cross-cloud reference data generated from more than one
environment (to reduce the number of unmapped cases).

6. RELATED WORK

Unstructured log analysis. Analysis on unstructured
log data has been performed by many researchers. Most
aimed at detecting anomalies in a system. Reidemeister et
al., for example, analyzed log data for classifying recurrent
faults in software in order to facilitate fault diagnosis [3].
Other researchers have tried to proactively capture abnormal
behaviors by detecting specific patterns appearing in log
data generated in a virtualized IT infrastructure [4], server
[5], network [6], or distributed system [7]. Although their
approaches and ours are similar in that useful information is
extracted from system logs (e.g., using pattern matching
with pre-defined log pattern templates), we do not share the
goal with them. Whereas their goals are to detect abnormal
events or event patterns by classifying the extracted infor-
mation, our goal is to recover operational contexts hidden in
the extracted events in system logs.

Various researchers have worked on log abstraction, and
several tools have been developed that can be complemen-
tarily used with our developed method. For example, a text
mining approach automatically generates regular expres-
sions for log abstraction [2]. This corresponds to the collec-
tion of pre-defined regular expressions in the developed
method (pre-processing phase). Furthermore, conventional
log management tools, such as Logstash®

4
, perform pattern

matching with pre-defined regular expressions (in addition
to basic functionalities such as log collection and storage).
These tools can be applied in pre-processing phase in the
developed method.

 Business process discovery. A number of researchers
have focused on discovering business process workflows.
This has been done, for example, by analyzing logs of indi-
vidual approval events stored in a well-structured relational
database of business applications [8][9]. Whereas these pri-
or efforts and ours share a similar spirit of recovering pro-
cesses from log data, the differences are derived from the
goals (i.e., approval workflow and operational history in
ours) and the data analyzed in their approaches (i.e., event
logs of business applications vs. cloud system logs). The
difference in the data used motivated us to develop an origi-
nal method for analyzing unstructured system logs contain-
ing low-level events to recover contexts of operational pro-

4Logstash is a registered trademark of Elasticsearch BV.

cesses. At the view of discovering cloud operations, Yanase
et al. developed a method for extracting operations de-
scribed in document data of manual books by using natural
language processing [10]. However, the extracted operations
do not contain information about past operation executions
and thus will not give insights into improving cloud man-
agement such as automating repeatedly performed opera-
tions as operation history does.

7. CONCLUDING REMARKS

We have tackled the challenge of efficiently obtaining
operation history. Our basic idea is to automatically discov-
er operation history by analyzing system logs, which indi-
rectly involve information about past operation executions.
We developed a method for extracting useful information
about past operations hidden in unstructured system logs,
which record low-level programmatic events. The system
logs are first abstracted using a pre-defined event sequence
model, and then the low-level abstracted events are mapped
to high-level individual operations—this mapping between
different contextual levels is achieved by using complemen-
tary cross-cloud reference data. Evaluation of an implemen-
tation revealed that our approach reduced the time taken to
obtain operation history by 99.9% compared to a conven-
tional approach while achieving up to 95% correctness. Fu-
ture work includes increasing mapping correctness by ex-
tending the amount of cross-cloud reference data.

REFERENCES

[1] B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster,

"Virtual Infrastracture Management in Private and Hybrid

Clouds," IEEE Internet Computing, 2009.

[2] S. Kobayashi, K. Fukuda and H. Esaki, "Towards an NLP-based

log template generation algorithm for system log analysis," ACM,

CFI, 2014.

[3] T. Reidemeister, M. Jiang and P. A. Ward, "Mining Unstructured

Log Files for Reccurent Fault Diagnosis," IFIP/IEEE, IM, 2011.

[4] M. A. Marvasti, A. V. Poghosyan, A. N. Harutyunyan and N. M.

Grigoryan, "Pattern detection in unstructured data: An experience

for a virtualized IT infrastructure," IFIP/IEEE, IM, 2013.

[5] R. Vaarandi, "A Breadth-First Algorithm for Mining Frequent

Patterns from Event Logs," Springer, Intelligence in

Communication Systems, 2004.

[6] A. N. Harutyunyan, A. V. Poghosyan, N. M. Grigoryan and M. A.

Marvasti, "Abnormality Analysis of Streamed Log Data," IEEE,

Network Operations, 2014.

[7] Q. Fu, J.-G. Lou, Y. Wang and J. Li, "Execution Anomaly

Detection in Distributed Systems through Unstructured Log

Analysis," IEEE, ICDM, 2009.

[8] R. Agrawal, D. Gunopulos and F. Leymann, "Mining Process

Models from Workflow Logs," EDBT, Advances in Database

Technology, 1998.

[9] T. A. Weijiters and W. M. van der Aalst, "Process Mining

Discovering Workflow Models from Event-Based Data," BNAIC,

2001.

[10] T. Yanase, M. Asaoka, S. Onodera and I. Namba, "Assessment

Method of Operational Procedure for Runbook Automation,"

IFIP/IEEE, IM, 2015.

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Analytics for Network and Service Management (AnNet 2017) - Full Paper964

