
A framework to facilitate management of services in
cloud based 5G environments

Nikos Koutsouris, Apostolos Voulkidis and Kostas Tsagkaris

WINGS ICT SOLUTIONS
336 Syggrou Avenue, 17673 Athens, Greece

{nkouts,avoulkidis,ktsagk}@wings-ict-solutions.eu

Abstract—The main target of 5G network technologies is to
offer radically increased user capacity and quality of service,
while saving energy and reducing investment and operating costs.
A key technology in this pursue is the cloudification of the
virtualized network functions, which can eventually create an
environment where services for network operators and
application / content providers are chained, configured, deployed
and orchestrated as in a common plane. The ARCADIA
framework provides the necessary functionalities for facilitating
the development and management of component services that
can fully exploit the underlying programmable 5G
infrastructure. ARCADIA supports policy definition even at the
developer level, as well as unified monitoring and dynamic
reconfiguration of service parameters.

Keywords—Highly distributed applications, micro-service,
cloud, unikernel, virtualization, devops, reconfiguration, SDN,
NFV, annotations.

I. INTRODUCTION

The future 5G network environments will comprise a
plethora of interconnected objects, from sensors and devices
with multiple radio interfaces to vehicles and smart home
equipment. The 5G infrastructure will be able to support
service provision to a huge number of users, the great majority
of which will be non-human users. This requires a significant
change in the deployment, coordination and management of
networks and relevant processes. Network Operators have
started to prepare for a transition to a new era, where networks
are software defined and network functions are virtualized, so
as to be able to satisfy the radically increased traffic demand
while ensuring QoS and QoE levels, and minimizing capital
and operational costs.

The exploitation of Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) technologies adds
flexibility and at the same time complexity to the 5G networks,
which can be compensated by the use of a suitable framework
for the management and orchestration of the virtual functions,
virtual appliances, software nodes and every other softwarized
network resource. The ARCADIA framework, which is
developed in the ARCADIA project [1] and is funded by the
H2020 EU programme, is a novel software development
paradigm that enables the chaining, configuration, deployment
and orchestration of software components in a smart and
dynamic way. The proposed framework addresses the
challenge of managing and orchestrating virtualized 5G
functions. ARCADIA is driven by the Service Oriented

Architecture concepts [5] and its main novelty resides in the
introduction and implementation of the Smart Controller,
whose functionalities can ensure the trustworthy chaining and
configuration of components, based on an extensible context
model that describes requirements and available options.

More information on the role and the modules of the Smart
Controller is provided in section IV D. Beforehand, sections II
and III highlight in brief the main concepts and technologies
behind ARCADIA, while sections IV A, B and C introduce the
basic parts of the ARCADIA framework. Finally there are
some conclusions on how the work should evolve in the mid
and the long term. It has to be noted that this paper presents the
current work in progress in the context of the ARCADIA
project and all the described concepts will be elaborated and
validated in a set of selected use cases before the first official
release of the ARCADIA framework.

II. VIRTUALIZATION AND CLOUDIFICATION

Virtualization enables the optimized utilization of
resources, as more applications and services can be packed
onto the infrastructure. On the other hand, cloud computing
offers through a broad network access, a pool of resources that
can be assigned dynamically and on demand, while their usage
can be monitored, controlled and optimized. To fully exploit
the merits deriving from a virtualised cloud environment, it is
required to go further than just porting applications and
services from running on bare metal to running on Virtual
Machines (VMs) Technologies such as containers and
unikernels allow better resource and service management by
further exploiting the concept of autonomous applications and
micro-services. Unikernels are highly optimised, specialised
machine images constructed by only using the minimum
required set of operating system libraries to run an application.
Their small footprint is an important feature for a cloud
application as it reduces the cost of the deployment by using
only minimal resources and increases the security of the
application by shrinking the attack surface. Moreover, the lack
of unnecessary operating system libraries allows unikernels to
boot extremely fast making them ideal for mission critical and
highly available applications.

The softwarization of the network functions should not be
done on a monolithic basis, e.g. by just creating one virtualized
building block for all the functions of a network element. More
recent software design paradigms, used currently for cloud
applications, such as the micro-service architecture, have to be
exploited, so that the resulting network applications can be

978-3-901882-89-0 @2017 IFIP 1135

scaled up or down in a matter of seconds without extreme
differences in cost. In this case, every VNF can be seen as a
micro-service, and the various network operations are carried
out by the corresponding network applications that are built by
chaining the necessary VNFs. Modular applications consisting
of several stateless micro-services are perfect for scaling
operations and cost-effective deployment due to their
autonomous nature. Stateless micro-services are by design
horizontally scalable since by using load balancers, more
instances of said services can be deployed without the need of
heavy reconfiguration. Such load balancers could be either
actual bare metal machines or even deployed Virtual Functions
(VF) controlled by an appropriate orchestrator. In addition, by
separating data from functionality services are more agile and
fault tolerant which is an important requirement for highly
distributed and highly available network applications.

III. MANAGEMENT AND ORCHESTRATION

SDN and NFV-based networks and services will be
actually large software systems, with thousands software
modules distributed at tenths or even hundreds of different
hardware machines. The various network functionalities will be
actually network applications, namely pure software. Network
operation based on VNFs implemented as micro-services that
are communicating and interacting in a cloud environment is a
complex task that is getting harder and harder. The related
network applications should be Reconfigurable-by-Design,
infrastructure independent and at the same time, resilient to
failures and easily scalable.

To overcome all the aforementioned difficulties, solutions
and tools originating from the world of software design and
development should be adopted. Moreover, management tools
that are trying to simplify the deployment and scaling process
by automating different aspects of the work-flow should be
embraced. Service modeling tools, like Juju [4], enable
developers and IT professionals to automate mundane tasks
and reduce workloads, by undertaking a big part of the
deployment process on a private or public cloud. Developers
can use such tools to create the blueprint of their application
called “service graph”, where they can define how micro-
services are interacting with each other and have an overview
of their application data-flow. Moreover, DevOps
environments are getting more and more difficult to manage
due to the increasing amount of fragmentation between
infrastructure providers.

Deploying a complex, micro-service based, network
application on top of different hardware infrastructure leads to
service modeling issues, different network requirements and
configurations as well as different policies. New development
paradigms are trying to tackle such issues by leveraging the
power of SDN and NFV. Network orchestration should be
performed in an automatic way, based on policies defined
throughout the network application life-cycle. It is important to
support policy creation at all levels, starting from the
developer, continuing to the provider of a service and the
provider of the infrastructure, and reaching the final user of an
application.

IV. THE ARCADIA FRAMEWORK

The ARCADIA framework is a Novel Reconfigurable-By-
Design Highly Distributed Applications (HDA) Development
Paradigm. It takes care of multi-infrastructure deployment,
high availability requirements and automatic real-time
reconfiguration of applications. To tackle such tasks,
ARCADIA applications are based on a micro-service model
and are governed by a sophisticated policy manager. In other
words, each ARCADIA application consists of several
autonomous components, which can communicate with each
other based on a service graph defined by the developer and
policy rules defined throughout their life-cycle. Each
component can be stored in a public or private registry on the
ARCADIA platform and it can be re-used by other
applications. As a framework for software development,
ARCADIA can satisfy the needs of the transition to the 5G
networks and can support the implementation of the new 5G
network architectures. Particular focus is given to the
management of networks and services through the introduction
of the Smart Controller, a module that has the most significant
role in the framework, as it is responsible for orchestrating the
numerous modules that have to cooperate, such as the
unikernel generator, the deployment manager, the policy
manager etc.

Fig. 1. The ARCADIA framework

Network Operators or more specifically, VNF developers, will
create and push the necessary 5G network functions as
components to the ARCADIA registry, where they can publish
them with public or private access. They can use all publicly
available components to create a service graph for their
network application through an innovative web-based user
interface. The deployment module will ensure the smooth
interaction with the underlying Software Defined Network on
top of different infrastructure according to the policies defined
by the developers and the operator.

A. The ARCADIA components

Following the micro-services design pattern, an application
should be a combination of smaller, independent and
autonomous modules called components. In addition, most
modern applications need to be agile and reactive to changes in
load or other aspects that affect the performance of the whole
application. To achieve that, components should be stateless by
design and highly tested in unusual scenarios like for example

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Management of 5G Networks - Short Paper1136

a sudden spike in connected clients. By discarding state, a
management tool like ARCADIA's Smart Controller can
horizontally scale out (or in) only the affected part of the
application by starting (or stopping) component instances and
configuring required load balancers in front of them based on
defined policies and thus reducing operation costs and
resources wasting while maintaining quality of experience for
the end users. Moreover, to fully exploit the virtualized
environment, ARCADIA components can either be fully-
featured virtual machines or unikernels, which are a special
type of virtual machines that contain only the minimum
required operation system libraries to run the component.
Native and/or Docker-powered containers will be available in
the next iterations of the framework.

ARCADIA components must follow and implement some
features that will allow them to take part in the ARCADIA
ecosystem. Every component based on the framework must be
orchestrable and governable, or in other words, able for
providing a way of reconfiguring it without having to re-
instantiate it. Another important feature is the ability to be
monitored by providing specific and meaningful metrics to the
framework such as connected clients or cpu usage. Finally,
components must be able to provide a way to communicate
with other components by exposing chainable binding
interfaces. Managing such features is a complicating task due
to the different requirements and varied interfaces each
component has. To tackle these issues, ARCADIA wraps
components with a thin interfacing layer, based on a context
model and supported by JAVA annotations, that is responsible
for exposing component interfaces and metrics and providing
real time configuration options to the Smart Controller.

To create a component, developers can transform their
legacy applications by using specific JAVA annotations during
development. JAVA annotations are used to provide meta-data
to a java application, without affecting the execution of the
application itself, although they can be used for that as well.
They are pre-defined words preceded by the “@” symbol and
they can be written in many different parts of the code
depending on their configuration, for example whether they
annotate methods, classes, fields, etc. Annotations are used
during three stages of the application life-cycle determined by
their defined retention policy; before compilation, during build
time or on runtime. Most of the natively supported annotations
are discarded during compilation stage, however, ARCADIA
annotations are configured to stay past that stage and during
runtime. Using the Reflection API, provided by JAVA, other
applications such as ARCADIA Smart Controller can read
those annotations and give instructions to the application.

Validation of the correct usage of the annotations and
exposed interfaces is done in two steps; the first one is before
the final component submission by using the provided
ARCADIA plugin for the Eclipse Che which is an open source
web-based IDE. The second validation is executed by the smart
controller before generating the actual VM or unikernel that is
saved in the component repository. Each component is bundled
with a separate process called Agent that is the main
communication tunnel between the component and the Smart
Controller, which sends commands for orchestration.

B. Service Graphs

In order to coordinate how different components are
communicating with each other, developers or service
providers must define the high level blueprint of the
application called service graph. There are two kinds of service
graphs in ARCADIA; one that defines component
communication and dependencies before deployment called
“static service graph” and a second that represents not only the
actual deployed components but also the administrative
components that are required and managed by the framework
like virtual routers and load balancers called “grounded service
graph”. In order to compose static service graphs, ARCADIA
offers an innovative web-based drag and drop graph editor
where service developers can choose which components their
application requires and connect them based on their respective
exposed interfaces. The editor does not allow connections
between components that they can't have meaningful
communication according to their interfaces. After the creation
of the service graph, it is validated in order to follow
ARCADIA paradigm and if the validation is successful it is
saved in a graph repository available to be used by other users
based on its permissions. On the other hand, grounded service
graphs are generated and managed by the smart controller
based on the static graphs. They are dynamic and they reflect
the real-time topology of the application, for example in case of
a horizontal scaling out based on defined policies, the new
instances of the scaled component will be shown in the
grounded graph. Moreover, service developers can define
service graph-wide (or application-wide) metrics that will be
helpful for having end-to-end policies and reconfiguration.

C. Policies

ARCADIA offers a robust policy editor and enforcer based
on "If This Then That" philosophy where service or
infrastructure providers can add per component and per
application policies. In addition to the metrics advertised by
components and service graphs, policy editor has also access to
the infrastructure metrics provided by the interfacing layer, like
for example cpu usage and memory capacity. In addition, an
extended context model will allow developers to use policies
through annotations in the source code of their component. The
policy manager needs to validate all the defined rules and
check for conflicts and that is a very complicated task
especially considering the multiple infrastructure nature of the
framework and the different policies infrastructure providers
may have. Policies are taken into consideration by the
optimization module of the Smart controller which offers both
pro-active optimization, realized before deployment, and re-
active optimization, which is executed during runtime and
throughout the application life-cycle.

D. The role of the Smart Controller

The Smart Controller is the most sophisticated module of
the framework. It contains many sub-modules that are
important for different periods of the applications life-cycle
starting from the development to monitoring and
reconfiguration. During development, Smart Controller, in
cooperation with other tools provided by the framework, is
responsible for validating the usage of annotation and reporting

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Management of 5G Networks - Short Paper 1137

any logical and syntactic errors. After that, the component is
pushed to the ARCADIA registry where the Smart Controller
performs another series of validations and prepares it for
bundling with an agent and unikernel generation. Moreover,
before deploying the component, Smart Controller is searching
and deploying any required dependencies. Smart Controller is
infrastructure agnostic and can deploy components on different
infrastructure providers according to the defined policies. In
addition, by monitoring the components during runtime, Smart
Controller is responsible for scaling and reconfiguring the
application in real time with complex optimization algorithms.

E. Deployment

ARCADIA is a development paradigm that embraces
Highly Distributed Cloud Applications and one of the most
important requirement of such applications is the ability to
deploy and orchestrate them across multiple infrastructure
providers or domains and sites owned by one network operator.
Currently, ARCADIA only supports infrastructures managed
by OpenStack and other implementations based on the
OpenStack API, however, adapters for Amazon Web Services
API and Google Compute Engine API will be provided upon
the ending of the project. To allow deployment and
orchestration over different data centers and network domains,
ARCADIA leverages the power of SDN and NFV.
OpenOverlayRouters instances are deployed as components on
the different domains and allow for better control over both
management and data plane of the application. In addition, by
natively using virtual networks the framework is able to
facilitate Service Function chaining and Virtualized Functions
for 5G compatible applications.

When the virtual network has been setup, the deployment
continues with instantiating the individual components that are
part of the service graph. Deployment of micro-service based
applications is not straightforward as it requires careful
orchestration flow in order to avoid racing condition problems
and missing dependencies. To do so, virtual machines or
unikernels are injected with the ARCADIA agent which is
responsible for communicating with the Smart Controller and
its specific modules and for enforcing the required deployment
orchestration protocol. Each component is pushed
asynchronously to the different infrastructure selected for the
execution, according to the defined policies. When all the
components have been instantiated Execution manager which
is a module of the Smart Controller responsible for managing
the service graph takes over and realizes the deployment plan.
During that phase, components are instantiating and appear in a
"deployed" state waiting for dependencies resolution and any
required endpoint chaining. Finally, a synchronous message is
sent by the Execution manager to change the state to "Started".
Meanwhile, the ARCADIA agent keeps listening for messages
from the modules of the Smart Controller through the
application life-cycle. In addition, Execution manager is
responsible for advertising the monitoring streams and metrics
and provide details about the status of the components to the
Smart Controller. In case of a required change of the service
graph either due to policies or component failure, the execution
manager will request a new deployment plan and push it to the
components through the ARCADIA agents. Component to

execution manager communication is asynchronous through a
pub/sub system while Execution manager to component is
always synchronous.

Fig. 2. The ARCADIA ecosystem deployed

F. Real time reconfiguration and monitoring

As we defined in the previous sections, ARCADIA
components must be orchestrable and reconfigurable by design
though the thin interfacing layer provided by the framework.
The Smart Controller can scale specific components according
on internal metrics (cpu usage, memory usage) or metrics
published explicitly by components (total-connected-users,
latency etc.) based on thresholds defined as policies by the
developer or the infrastructure provider. Scaling is performed
by redirecting the virtualized network flow through virtual load
balancers in front of “scaled” components. Moreover,
components can provide endpoints for reconfiguration through
ARCADIA annotations. Throughout the application lifecycle,
smart controller can change those exposed parameters
according to optimization algorithms and defined policies.

CONCLUSIONS

In the remaining duration of the project, the developed
functionalities of the Smart Controller will be tested and
evaluated. In addition they will be enriched with knowledge
building capabilities so as to further improve their
performance. The Policy Management and Service Chaining
parts will also be finalized and a fully functional release is
planned to be made available for download by the end of 2017.

REFERENCES
[1] The ARCADIA Horizon 2020 Project, http://arcadia-framework.eu/

[2] ARCADIA Project deliverables D2.3 - Description of the ARCADIA
Framework and D2.2 – Definition of the ARCADIA Context Model,

http://www.arcadia-framework.eu/wp/documentation/deliverables/

[3] Eclipse Che Next-Generation IDE, http://www.eclipse.org/che/

[4] Juju Orchestrator by Canonical Ltd, https://jujucharms.com/about

[5] M.P. Papazoglou, Service-oriented computing: concepts, characteristics
and directions, in proc. of the 4th Intl Conf. on Web Information
Systems Engineering (WISE), 2003

IFIP/IEEE IM 2017 Workshop: 2nd International Workshop on Management of 5G Networks - Short Paper1138

