Enabling L2 Network Programmability in
Multi-Tenant Clouds

Thomas Lin, Byungchul Park, Hadi Bannazadeh, and Alberto Leon-Garcia
Dept. of Electrical and Computer Engineering, University of Toronto
Toronto, ON, M5S 3G4, Canada
{t.1in, byungchul.park, hadi.bannazadeh, alberto.leongarcia} @utoronto.ca

Abstract—With the advent of SDN, efforts on network virtu-
alization have accelerated. Many concepts have been developed
to enable the coexistence of multiple logical network domains on
a shared networking infrastructure while also ensuring isolation
between them. In this context, we envision a multi-tenant cloud
environment that grants users the ability to dynamically alter the
behaviour of the underlying network, thus achieving a truer sense
of Infrastructure as a service. In this paper, we propose a method
for providing users in multi-tenant cloud environments open APIs
for installing custom flows into the network at layer 2 (L2). Our
proposed system ensures tenant isolation while detecting possible
flow-level conflicts that can lead to tenancy violations and to
problems in end-to-end reachability. We prototyped our system
on a nationwide testbed environment, which showed that our
proposed method reduces flow-level conflict detection time over
existing proposals from ms to us scale.

I. INTRODUCTION

Network virtualization allows for the coexistence of mul-
tiple virtual networks on the same physical infrastructure
while providing isolation between virtual networks. This helps
network service providers to create heterogeneous network
architectures for new types of services without having the
limitations inherited from existing network infrastructures. The
concept of network virtualization has existed since the late
1990s. For example, Tempest [1] introduced virtualization
in ATM networks by splitting an ATM switch into multiple
switchlets. While it is possible to realize network virtualization
with existing technologies such as VLAN, MPLS, and overlay
networks, these primitives do not provide a unified abstraction
of the underlying network which is essential for complete
network virtualization. To provide complete network virtu-
alization, network infrastructures should be able to support
arbitrary network topologies and network addressing schemes
while providing a single unifying abstraction to configure the
network [2].

With the advent of Software-Defined Networking (SDN),
efforts on network virtualization have intensified. SDN refers
to a network architecture where the data plane and control
plane are decoupled and the forwarding devices are remotely
managed by a logically centralized controller. The decoupled
control plane may further enable network programmability for
upper layers by providing an abstraction of the underlying net-
work infrastructure to the services and applications that utilize
the network. By taking advantage of SDN’s programmability,
multiple network hypervisors have been proposed [3], [4], [5],
[6] that enable virtualization of SDN networks. Similar to a
hypervisor for hosting virtual machines, a network hypervisor
over SDN infrastructure allows for multiple concurrent control

978-3-901882-89-0 @2017 IFIP

393

Tenant A nant B

(- 4

o

-8
LRl
7 Application Layer
-
‘ ‘Network Controller Control Layer
Data Layer

Fig. 1: Multi-tenancy violation occurs when a tenant’s new flow rule request
may impact another tenant’s network traffic

domains to co-exist with the illusion of ownership over the
entire network.

In this paper, we will discuss how to utilize network virtu-
alization technology in cloud environments to provide users of
multi-tenant clouds SDN capabilities directly at layer 2. The
enablement of programmability at such a low level will allow
Future Internet researchers to directly deploy and test new pro-
tocols on the physical infrastructure itself. Enabling network
programmability in a multi-tenant cloud environment is more
complicated than the scenarios previously discussed in existing
network virtualization literature, as they often assumed a single
network administrative entity for the entire infrastructure. In
an SDN-enabled multi-tenant cloud, multiple users can request
new network flow rules to be created for their applications
or services. Opening direct network programmability to users
can make the infrastructure error prone. Figure 1 illustrates
the problem of multi-tenancy violation, where a new flow rule
inserted by a user of Tenant A redirects the network traffic
from the resources of Tenant B. While the basic approach
for solving this issue is analogous to network virtualization,
other aspects such as authentication and authorization of user
requests need to be considered in order to make it applicable
to cloud environments.

We will also shed a new light on the flow conflict problem,
which is directly linked to security, in SDN-based virtualized
networks. We will present an approach for detecting possible
flow-level conflicts at the controller level in advance before
installing flows into the network. We have validated our pro-
posal by implementing a prototype in the Canadian nationwide
SAVI testbed (a multi-tier SDN-enabled multi-tenant cloud).

394

TABLE I: Example flow table

ID | Ingress Port Eth Src Eth Dst Eth Type | VLAN ID | IP Src | IP Dst | IP Proto. | IP ToS | Src Port | Dst Port || Actions
13 * * FF:FF:FF:FF:FF:FF | 0x0800 * * * * * * * action 1
Fy * 6E:CF:A6:93:40:E1 * 0x0800 * * * * * * * action 2
F3 * 6E:CF:A6:93:40:E1 * 0x0800 * * * TCP * * * action 3
Fy * * * 0x0800 * * * TCP * * 22 action 4

The rest of this paper is organized as follows. Section II
provides background information for describing our goal and
reviewing related work. In section III, we present our method
for detecting tenant and resource violations in SDN-enabled
multi-tenant clouds, as well as describe the flow-level conflict
detection algorithm. Section IV describes our prototype im-
plementation on a nationwide testbed and presents the perfor-
mance evaluation results of the implemented system. Finally,
conclusions and future work are presented in section V.

II. BACKGROUND & RELATED WORK

In this section, we provide background information required
to describe our problem and we review previous works related
to our proposal.

A. OpenFlow and Flow Conflict

OpenFlow [7] is the most widely accepted and deployed
SDN protocol. In the OpenFlow architecture, OpenFlow con-
trollers offer various types of northbound APIs to network
applications or services. In this setting, multiple services can
install flows through the OpenFlow controller and this can
cause flow conflicts to occur. In [8] and [9], a flow conflict
is defined as the situation when an incoming packet matches
with more than one flow entry in the flow table.

In this work, we define a flow conflict as a situation where a
newly installed flow intersects with any existing flow entry in
the flow table. Since wildcard expression for a header field is
possible, a flow entry can be considered as a geometric object
in n-dimensional space, where n is the total number of header
(or match) fields (e.g., n = 12 in OpenFlow v1.0 and n = 39
in v1.3), and the surface is determined by the header values.
If the geometric object for a new flow entry overlaps with any
existing objects, it causes one or more flow conflicts.

Table I shows an example OpenFlow table with four flow
entries, where each flow conflicts with one another. For
example, F; and F> have a common space that may result
in a conflict (e.g. an incoming packet with source MAC
address 6E:CF:A6:93:40:E1 and destination MAC address
FF:FF:FF:FF:FF). Figure 2 illustrates the logical relations
between the four flow entries in Table I with a Venn diagram.

Once a flow conflict occurs, incoming packets may match
multiple flow entries, and consequently, unwanted actions may
be applied to the packet. It is highly possible that this conflict
will create end-to-end reachability problems, security viola-
tions, and open network vulnerabilities. We have tested three
different OpenFlow-enabled switches (Open vSwitch v2.3.1,
Pronto 3920, and HP 5900v), and all of these OpenFlow
switches simply overwrite the existing flow entry if the new
flow has identical header match fields, as well as resets
the counters used for analyzing flow statistics. Inadvertently
resetting flow counters may negatively affect any applications
or services dependent on accurate flow statistics. Therefore,

Fig. 2: A logical view of flow entries in the flow table (Table I)

an efficient flow conflict detection mechanism is required to
maintain the configuration integrity of the network.

B. Network Hypervisors

FlowVisor [3] was the first OpenFlow-based network vir-
tualization hypervisor. FlowVisor allows multiple logical net-
works to share the same OpenFlow networking infrastructure
by essentially acting as a transparent proxy that resides be-
tween controllers and switches, and intercepts the OpenFlow
messages between them. The benefit of this architecture comes
from its transparency, meaning that no modification to con-
trollers or switches are required. FlowVisor can ensure tenant
isolation by examining, re-writing, and policing OpenFlow
messages passing through it.

In order to provide isolation, FlowVisor defines the con-
cept of a FlowSpace which is a logical geometric space of
possible packet headers. Each slice is a set of flows that
spans certain areas of entire FlowSpaces. FlowVisor achieves
isolation by preventing overlap between FlowSpaces from
different slices. After FlowVisor, other network hypervisors
were introduced [3], [4], [5], [6]. OpenVirtex [4] extended
network virtualization to consider not just FlowSpace, but also
address virtualization and control function virtualization. Au-
toSlice [5] focused on the automation of deployment and oper-
ation of SDN slices on top of shared network infrastructures.
While providing additional features, such as different levels
of abstraction and the isolation address spaces, their basic
operations for tenant isolation are quite similar to FlowVisor’s.

This paper focuses on bringing these techniques into multi-
tenant cloud environments in order to provide low-level net-
work programmability directly to cloud users. Current public
cloud services such as Amazon Web Services, Google Cloud
Platform, and Microsoft Azure do not expose SDN network
programming APIs to users. We believe enabling network
programmability in multi-tenant cloud environments is a very
essential step in allowing users to create innovative services
and applications.

III. DESIGN AND METHODOLOGY

The main challenge of our work lies in enforcing the
necessary isolation between tenants when users are granted
programmatic access via APIs to control the network, while
providing users the illusion of a single network infrastructure.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

Start: flow
insertion request

®
Authenticate user Valid N
using IAM user/tenent? 00—
|
Yes
@
Analyze flow rule Valid N
and network info. match/action? 00—
|

Yes

©)

Expand rules

®
Flow-level

conflict
detection

End: insert flow rule End: reject the request

Fig. 3: Flow-chart of overall process for detecting multi-tenancy violations
and flow-level conflicts

In this section, we present our method for detecting tenant and
resource violations, as well as an overview of the flow-level
conflict detection algorithm. The overall process is illustrated
in Fig. 3, and each step will be explained in the rest of this
section.

A. Network Flow Model

We begin by discussing the network flow model exposed
to the users when they request new flow installations. As
OpenFlow has received much attention in the network research
community for the better part of the past decade, we decided
to use a similar model. Our model is a restricted subset of
OpenFlow’s flow model, which is defined by a set of matching
header fields and a set of actions [7], [10].

B. Tenant and Resource Isolation

As one of the key goals of this work is to enforce tenant
isolation, we must first understand how isolation is achieved
within the context of a given cloud infrastructure. This will
vary depending on what level of abstraction is available to
users via the APIs. For our work, we define our management
policies for enforcing tenant isolation based on the assumption
that the APIs will offer users the ability to install flow rules
into the network starting at layer 2 using Ethernet. Given this
assumption, we are able to define a set of basic checks to be
performed when a user requests a new flow rule to be installed
into the network.

1) Authentication and Authorization: All requests to install
or modify network flows must pass through authentication
and authorization prior to being implemented in the physical
network. At minimum, requests should contain the user’s
identification as well as specify the tenant to which the request
is intended. When the cloud’s API controller receives a request
(Fig. 3.a), it first liaises with the cloud’s Identity and Access
Management (IAM) system to verify the user’s identification
credentials, and ensures that the user has the appropriate role
in the tenant to make the requested changes, thus completing
authentication and authorization of the user (Fig. 3.b-c).

2) Authorizing the Flow Request: After the user has been
authenticated and authorized, the API controller must further
parse and process the flow request in order to ensure it does
not violate tenant isolation (Fig. 3.d). Since our basic flow
model is comprised of a match and associated actions, we must
authorize both. This protects against cases where a malicious
user may create flows that match on endpoint addresses not
owned by their tenant, or cases where they create actions with
the potential to divert traffic to destinations in other tenants.
The controller checks the matches and actions (Fig. 3.e) to
ensure adherence to the following policies:

o In the match fields, flow requests must always specify at

least a source or destination MAC address which belongs
to the tenant. If one of the fields is left unspecified as a
wildcard, it will be automatically expanded into multiple
rules that enumerates the L2 addresses owned by the
tenant (Fig. 3.f-g);

o Actions that set either the source or destination MAC
address to one not owned by the tenant shall be denied;

o Actions are free to modify source or destination IP
addresses so long as the resulting flow still includes at
least a source or destination address that is owned by the
tenant.

e Flows can only be installed within a limited range in
priority levels. This protects the basic operations of the
cloud infrastructure by ensuring that users cannot override
vital flow rules, while granting users some flexibility
in creating unique networking applications and services
which utilize the priority field.

C. Flow-level Conflict Detection Algorithm

The final step in authorizing a new flow installation request
is to check if the addition of that new flow would result in
any conflicts with existing flows (Fig. 3.h-i). This final check
prevents flow conflicts within a single tenant, which may occur
when a single user mistakenly installs conflicting flows, or
when multiple users within the same tenant are installing flows
into the network.

1) Description: The conflict detection algorithm we utilize
considers each header field in the match separately. For each
header field in the user’s requested flow, it identifies the set of
existing flows where the same field has a matching value (i.e.
a set of potentially conflicting flows). For example, if there
are 12 header fields to consider, we will obtain 12 sets of
potentially conflicting flows. We consider a conflict to exist if
and only if there is an existing flow that is common throughout
all sets of potentially existing flows. We note that this same
approach was utilized in FlowVisor for storing and searching

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

395

396

the existing FlowSpace entries for matches when a controller
attempts to install a new rule.

This algorithm is divided into two parts: storing flows and
detecting conflicts with existing flows. When a new request
to install a flow is received, it is first checked for conflict.
Only when no conflicts are found is the flow authorized, and
thus a copy of it is inserted into the cache of existing flow
entries. We use the term cache here to refer to the collection
of existing flows, but realistically it can be any type of data
store. The pseudo-code for both inserting a new flow into the
cache, and detecting conflicts upon a new request, are shown
in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Pseudo-code for new flow insertion

procedure InsertFlow
input : flow, flow = {f1, fo, -+, fn}
fi is ith field of OpenFlow
output : flow id (negative value means a flow conflict)
variables: bitarray indicates all flows whose ith field matches
id_generator() generates a unique ID
where ID € Z,
Hash; is a hashing function for ith field

functions:

begin
if DetectConflict(flow) is true then
| return —1
end
else
uid < id_generator()
for 1 <i<ndo
bitarray <— Hash; (f;)
bitarray[uid] < 1
end
return uid
end

R N B W N

-
D=

end

-
w

Algorithm 2: Pseudo-code for flow conflict detection
procedure DetectConflict

input : flow, flow = {f1, fo, -, fu}
fi is ith field of OpenFlow
output : Boolean
variables: bitarray indicates all flows whose ith field matches

functions: Hash; is a hashing function for :th field

begin
initialize bitarray
for 1 <i<ndo
| Dbitarray &= Hash; (f;)
end
if bitarray is all 0’s then
| return false
end
else
| return true
end

/ set all bits to 1

// bitwise AND operation

R A B W N e

—
=l

-
-

end

-
(5]

A functional example of this conflict detection methodology
is illustrated in Fig. 4. Figure 4(a) shows a sample cache
of four existing entries, F} to Fy, with a new flow Fcy
attempting to be added. The binary table in Fig. 4(b) shows the

IP Dst
F, * * * A,

FF:FF:FF:FF:FF:FF *
F, 6E:CF:A6:93:40:E1 W & & * A,
F; 6E:CF:A6:93:40:E1 * TCP * * A
Fa * * TCcp 2 A
F 6E:CF:A6:93:40:E1 00:25:90:88:55:0C TCP 80 * A

new. new

2 We assume that all other fields are wildcards (*)

(a) Insertion of a new flow Fiew

ke 1 0 1 1 1 o
20
o 1 1 1 1 1 1
58 Bitwise AND
Sz 1 1 1 1 1 1
mn o

ke 1 1 1 o 1 o

Eth src Eth dst P
Proto

Dst
Port

(b) Detected Fipeqw conflicts with Fo and F3

Fig. 4: Illustration of conflict detection algorithm

conflict detection algorithm at work: each column represents
one of the header fields, and each row represents one of the
four existing flow entries. For a cell in a given row and column
(i.e. flow and header field), a value of / means that it can
match with the corresponding header field of F).,, and 0
means it cannot match. Thus, the binary table represents all
the potential matches for each field of F},.,,. A horizontal bit-
wise AND operation is performed to obtain the final bit array,
and it can be seen that the second and third entries remain /,
thus indicating F5 and F3 conflicts with Fj,ey.

In regards to memory consumption, we note that this is
directly affected by the size of the bit arrays. The size of
the array essentially represents the maximum number of flows
within a given network. Thus, there is a design trade off to be
considered during implementation if a dynamic structure or a
static structure should be used for the bit arrays, which will
affect the run-time speed and memory consumption.

2) Time Complexity: As seen in Algorithm 1, the two
primary data structures in use are hash tables and bit arrays.
Insertion and lookup in hash tables have a theoretical average
time complexity of O(I). Furthermore, insertion and lookup in
arrays also have a theoretical average time complexity of O(1).
Similarly, for the conflict detection algorithm in Algorithm 2,
we see that the main data structures in use are also hash tables
and bit arrays. Thus, the theoretical average time complexity
for flow insertion and conflict detection are both O(1). Note
that the bit-wise AND operation, as well as the bit array
initialization operation, are both constant time operations so
long as the length of the bit arrays are static. If the size of the
arrays vary over time (e.g. using some type of dynamic data
structure), then these operations cannot be constant time.

IV. PROTOTYPE IMPLEMENTATION

In this section, we will describe our prototype implemen-
tation of this conflict detection method on the SAVI testbed,
a multi-tenant cloud in operation since late 2012. In addition,

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

we show performance evaluation results to provide evidence
that our implementation achieves constant time lookup and
conflict detection.

A. SAVI Testbed

The Smart Applications on Virtualized Infrastructure (SAVI)
project is a Canadian research network whose aim is to
explore future applications and application platforms. Key to
the project was the development of an experimental multi-
tier, multi-tenant testbed for SAVI researchers to deploy and
test novel future architectures, protocols, applications, and
services. The current SAVI testbed architecture is composed
of OpenStack [11] components as well as components built in-
house, and supports a wide range of heterogeneous resources
including traditional virtualized computing infrastructure (i.e.
VMs and storage), as well as unconventional resources (e.g.
GPUs and FPGAs) and network elements (e.g. switches, Wi-
Fi access points, software-defined radios, etc.). In support of
the effort to pursue research on Future Internet protocols, the
SAVI testbed’s network is fully OpenFlow-enabled.

In an early iteration of the SAVI testbed, FlowVisor had
been integrated into the system, which enabled the delegation
of certain slices of the testbed network to external OpenFlow
controllers. However, our operational experience found that
Flow Visor itself was a bottleneck and became a single point of
failure. A later iteration of the testbed attempted to compensate
for these issues by deploying FlowVisor in a distributed
fashion [12]. Ultimately, Flow Visor was retired for two main
reasons: the abandonment of the FlowVisor project by its
maintainers, and the realization that many network researchers
were inexperienced with programming (and thus found it
difficult to work with OpenFlow controllers).

B. System Architecture

In order to continue providing researchers with the ability
to control their tenant’s network on the testbed, a set of
network control RESTful APIs were exposed from the SAVI
testbed’s Software-Defined Infrastructure (SDI) manager [13].
This enabled the creation of web-based network services,
which users have an easier time understanding. As can be
seen in Fig. 5, the SDI manager is the central control and
management component of the SAVI testbed, and serves as our
API controller for receiving network flow installation requests
from the testbed’s users. With its ability to liaise with the other
key components, the SDI manager is well positioned to handle
the incoming flow installation requests from the testbed users.

The network state information is provided by two primary
external sources: OpenStack plugins for network end-point
information, and a topology manager [14] for the connec-
tivity graph. As previously stated, the SAVI testbed is fully
OpenFlow-enabled, thus the network controllers are a set of
Ryu OpenFlow controllers [15]. Finally, OpenStack’s Key-
stone serves as the JAM component and completes the basic
system architecture for conflict detection. Further details about
the overall SAVI network control architecture can be found
in [16].

C. Implementation Details

Within the SDI manager, we are able to check each in-
coming flow installation request for violations of multi-tenant

1

Open APIs N

"

CTT I

Network State
Information

Nova/Neutron ’ ~
- ’ AN
Plugins Pid N
» b
Graph Topology OpenFlow OpenFlow

[\ ELET:(d

Controller 1 Controller n

Fig. 5: Basic system architecture of prototype implementation. The SDI
manager exposes APIs for network flow installation requests. Upon
receiving requests, it 1) Authenticates the requester via the Keystone

Identity and Access Management (IAM) component; 2) Authorizes the

request using information provided by Nova, Neutron, and the Topology

manager; and 3) If the previous two tasks pass, issues flow installation
directives to the appropriate OpenFlow controller(s).

isolation. All the OpenStack components (Nova, Neutron, and
Keystone), our graph topology manager, as well as the Ryu
OpenFlow controllers, have existing RESTful APIs which we
were able to leverage in order to perform the necessary authen-
tication and authorization of each flow request as illustrated
by the flow-chart in Fig. 3.a-g.

For the flow-level conflict detection, our focus during im-
plementation was primarily on optimizing detection speed.
Thus, we implemented the detection algorithm in C++ to avoid
any unnecessary overheads introduced by interpreters, virtual
machines, or just-in-time compilation. This has the benefit of
allowing any future controllers written in C++ to leverage
the library. In choosing the data structure to represent the
bit arrays, we leveraged an optimized bit array library called
BITSCAN [17].

A new class called FlowRecords was designed whose pri-
mary role is to store a record of all the OpenFlow rules in
a given network. In its current implementation, FlowRecords
works with OpenFlow 1.0 fields. When a new rule is to be
inserted, it performs conflict detection against the existing
flows in the network and returns an error if a conflict is
found. Optionally, it can print any conflicting flows detected,
thus making it a viable tool for auditing networks for existing
conflicts.

To improve speed, our bit array sizes are determined at com-
pile time. To reduce memory consumption, our implementation
dynamically allocates bit arrays only when needed. Since the
hash tables in Algorithms 1 and 2 maps header field values to
bit arrays, this means that more diverse flows will require more
bit array allocations. More objectively, memory consumption
is proportional to flow diversity, which we define as the total
number of unique header field values across all flows.

Since the SAVI SDI manager (i.e. the API controller respon-
sible for receiving new flow requests) is written in Python, we
also implemented a Python extension module to interface with
our FlowRecords library. This essentially creates a wrapper
around the FlowRecords library which any existing Python
program can simply import. An advantage of this approach
is that it keeps the core computational tasks in C++ (i.e.
in machine code), thus minimizing the overhead due to the
Python interpreter. We were able to integrate this into the SDI
manager to fulfill the steps in Fig. 3.h-i.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

397

398

N

wu

(=}
)

213.58
191.20

N

(=1

o
L

182.45
169.77 14,5 170.86 175-61 170.31 168.48

=

1%

(=]
L

v
o
L

o

Conflict Detection Time (ps)
o
o

1000 2000 3000 4000 5000 6000 7000 8000 9000
Flows In System

Fig. 6: Conflict detection time vs. number of flows in system
(Bit-array size = 512,000)

D. Performance Evaluation

To benchmark the flow request authentication and autho-
rization stages (Fig. 3.a-g) in the SDI manager, we serially
issued 1000 flow installation requests and observed a mean
time of 59.5 ms per request. If we remove the authentication
stage and limit the benchmarking to the authorization stage
(for detecting multi-tenancy violation), we observe a mean
time of 24.5 ms per request.

We next performed a series of experiments to evaluate
the extent to which our optimized library is able to re-
duce flow-level conflict detection time (Fig. 3.h-i). We opted
to benchmark the FlowRecords implementation through the
Python extension module in order to determine the latency
experienced by Python-based programs. To force conflicts, we
first stored a number of non-conflicting flows into an instance
of FlowRecords, and then replayed those flows by attempting
to insert them in again. The average conflict detection time
can thus be calculated by dividing the total replay time by the
number of flows replayed. To isolate the conflict detection
code and avoid any network overhead, we performed our
evaluations directly using the software APIs rather than the
SDI manager’s RESTful APIs.

The first evaluation determined whether the conflict detec-
tion time increases as the number of existing flow entries in
the network (i.e. the number of flows stored in FlowRecords)
increases. Selecting a bit array size of 512,000, which rep-
resents a maximum of 512,000 flow rules in the network,
we varied the number of unique flows from 1000 to 9000
and observed the average conflict detection times. The results
can be seen in Fig. 6, which shows that the average conflict
detection times are all in the order of microseconds, and shows
no significant increase as the number of flows in the system
increases. These results are in line with our expectations as
the algorithms have a theoretical time complexity of O(1).
These results also show that our flow-level conflict detection
outperforms existing flow-level conflict detection proposals.
Time complexity of [9] was exponential and [8] was varied
from O(1) to O(n) depending on the algorithm used. Compared
with best case of [8], our conflict detection performs better by
an order of magnitude (ms to us scale) in terms of absolute
detection time.

Our second evaluation was to determine whether the average
conflict detection time increases with the size of the bit array.
We held the number of unique flows in the system constant
while varying the size of the bit array. The results of this

)

N

w

o
)

173.79
94.78

[N

N

]
L

56.39

(-2
'
1

37.93

25.69 29.28

Conflict Detection Time (ps

16000

32000 64000 128000

Bit-array Size

256000 512000

Fig. 7: Conflict detection time vs. Bit-array size

set of experiments, as seen in Fig. 7, shows that the average
time increases linearly with the bit array size. We note that
this result is not surprising as CPUs cannot perform atomic
bit-wise AND operations beyond the size of the hardware
registers (64-bit in modern x86 general-purpose registers), thus
the array must be segmented and processed in batches.

Due to space limitations, we present just a brief look on
the memory consumption of our library. In our review of
comparative works, we found that most experiments were
conducted with a limited number of flows, the most being 3600
in [8]. Thus, we conducted an experiment with a bit array size
of 3600 and inserted 3600 unique flows with a flow diversity
of 3612 (i.e. the flows only differed within a single header
field). The system consumed roughly 11.5 MB of RAM in this
scenario, with an average conflict detection time of 28.8 us.
Considering our target deployment environment is composed
of datacentre servers, we expect memory to be in abundance.

V. CONCLUSION AND FUTURE WORK

Enabling SDN capabilities for users in a multi-tenant cloud
presents many challenges that must be addressed in order
to ensure the integrity of the overall environment. In this
work, we have proposed an architecture that allows users in
a multi-tenant cloud to install custom L2 flows into their
network. Our system design provides assurance for multi-
tenant isolation while providing flow conflict detection in order
to catch inter- and intra-tenant flow-level conflicts, which may
cause interruptions to running applications and services. We
implemented a flow-level conflict detection library optimized
for detection speed, and validated it within the SAVI testbed, a
nationwide multi-tenant cloud in Canada. Preliminary perfor-
mance evaluations reveal that our implementation can detect
conflicts up to an order of magnitude faster than alternative
proposals in literature.

In future work, we will work to extend our library in support
of OpenFlow 1.3, as well as provide multi-table support. We
will also try to optimize the memory consumption further
to reduce the amount required by the system. In addition to
these, we also plan to implement our algorithm on FPGAs for
further performance improvement of our flow-level conflict
detection algorithm. Finally, we plan to deploy our proposed
system across all regions of the SAVI testbed and open the
flow installation APIs to general testbed users.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

REFERENCES

J. E. van der Merwe, S. Rooney, L. Leslie, and S. Crosby, “The Tempest-
a practical framework for network programmability,” IEEE Network,
vol. 12, no. 3, pp. 20-28, May 1998.

N. M. K. Chowdhury and R. Boutaba, “A Survey of Network Virtual-
ization,” Computer Networks, vol. 54, no. 5, pp. 862 — 876, 2010.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “FlowVisor: A Network Virtualization Layer,”
OpenFlow Switch Consortium, Tech. Rep, pp. 1-13, 2009.

A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make Your Virtual
SDNs Programmable,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14.
New York, NY, USA: ACM, 2014, pp. 25-30. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620741

Z. Bozakov and P. Papadimitriou, “AutoSlice: Automated and Scalable
Slicing for Software-Defined Networks,” in Proceedings of the 2012
ACM Conference on CoNEXT Student Workshop, ser. CONEXT Student
’12. New York, NY, USA: ACM, 2012, pp. 3—4. [Online]. Available:
http://doi.acm.org/10.1145/2413247.2413251

D. Drutskoy, E. Keller, and J. Rexford, “Scalable Network Virtualization
in Software-Defined Networks,” IEEE Internet Computing, vol. 17,
no. 2, pp. 20-27, March 2013.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
Innovation in Campus Networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69-74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

S. Natarajan, X. Huang, and T. Wolf, “Efficient Conflict Detection
in Flow-Based Virtualized Networks,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on, Jan 2012,
pp. 690-696.

B. Lopes Alcantara Batista, G. Lima de Campos, and M. Fernandez,
“Flow-Based Conflict Detection in OpenFlow Networks Using First-
Order Logic,” in Computers and Communication (ISCC), 2014 IEEE
Symposium on, June 2014, pp. 1-6.

Open Networking Foundation, “OpenFlow
Switch Specification,” 2014, [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
[Accessed: September 2016].

OpenStack Foundation, “OpenStack Open Source Cloud Computing
Software,” [Online]. Available: http://www.openstack.org/ [Accessed:
20-September-2016].

T. Lin, “Implementation and Evaluation of an SDN Management System
on the SAVI Testbed,” MS dissertation, University of Toronto, 2014.
J.-M. Kang, H. Bannazadeh, H. Rahimi, T. Lin, M. Faraji, and A. Leon-
Garcia, “Software-Defined Infrastructure and the Future Central Office,”
in Communications Workshops (ICC), 2013 IEEE International Confer-
ence on, June 2013, pp. 225-229.

J. M. Kang, H. Bannazadeh, and A. Leon-Garcia, “SDIGraph: Graph-
based management for converged heterogeneous resources in SDI,” in
2016 IEEE NetSoft Conference and Workshops (NetSoft), June 2016, pp.
88-92.

NTT DoCoMo, “Ryu SDN Framework,” [Online] Available:
http://osrg.github.io/ryu/ [Accessed: 20-September-2016].

B. Park, T. Lin, H. Bannazadeh, and A. Leon-Garcia, “JANUS: Design
of a Software-Defined Infrastructure Manager and Its Network Control
Architecture,” in 2016 IEEE NetSoft Conference and Workshops (Net-
Soft), June 2016, pp. 93-97.

P. San Segundo, “BITSCAN,” [Online]. Available:
https://github.com/psanse/bitscan [Accessed: September 2016].

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

399

