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Abstract—The current developments of software defined net-
working (SDN) paradigm provide a flexible architecture for
network control and management, in the cost of deploying
new hardwares by replacing the existing routing infrastructure.
Further, the centralized controller architecture of SDN makes the
network prone to single point failure and creates performance
bottleneck. To avoid these issues and to support network man-
ageability over the existing network infrastructure, we develop
Flipper in this paper, that uses only software augmentation to
convert existing off-the-shelf routers to network policy design
and enforcement points (PDEP). We develop a distributed self-
stabilized architecture for dynamic role change of network
devices from routers to PDEPs, and make the architecture fault-
tolerant. The performance of Flipper has been analyzed from
both simulation over synthetic networks, and emulation over
real network protocol stacks, and we observe that Flipper is
scalable, flexible and fail-safe that can significantly boost up the
manageability of existing network infrastructure.

Index Terms—Network architecture, Fault-tolerance, Pro-
grammable network, software defined network

I. INTRODUCTION

Consider the following scenario. The network administra-

tor of an academic institute wants to dynamically update

the bandwidth distribution policies based on network usage

statistics. The institute network is connected with multiple

network service providers, and therefore she needs to update

the configuration at different edge routers and gateways. With

traditional network devices, like layer 3 switches, this task is

tedious, as even a minor configuration inconsistency among

the edge routers and gateways may lead to severe network

underutilization or bandwidth imbalance. Further, the system

is also not scalable for such dynamic updates of network

configuration policies.

Software defined networking (SDN) [1] is a technique,

which can help in dynamic network configuration update. SDN

uses centralized controller to convert policies to device con-

figurations, and to update the targeted devices in the network

with the corresponding configurations. To enforce policy to

configuration conversion, SDN segregates the network control

plane from the data plane. The SDN control plane takes care of

all the control functionalities and update of device parameters

and configurations, whereas the data plane is only responsible

for data forwarding based on the configuration parameters set

by the control plane.

Although SDN has revolutionized dynamic network man-

agement aspects, it requires specific hardwares that can under-

stand the language for SDN, like OpenSwitch [2], [3], so that

a SDN controller can dynamically update the configuration pa-

rameters for those hardwares. Therefore the important question

is: How much effort and cost do one need to convert an existing

network infrastructure to a SDN supported one? The existing

studies in this direction talk about interoperability among SDN

supported and non-SDN network devices, such that incre-

mental deployment of SDN supported devices becomes pos-

sible [4]–[6]. However, the concern about cost-effectiveness

is still there. SDN supported hardwares are much costlier

than commercial off-the-shelf (COTS) network devices, and

therefore requires huge operational expenditure to replace

existing infrastructure by SDN supported infrastructure.

Although it is quite inevitable that the future of network

management is SDN, but simultaneously we also ask this

question: Can we make our existing network more management

friendly, such that dynamic network configuration becomes

possible without much changing the existing infrastructure?

This paper tries to find out the answer of this question.

We show that it is quite possible to use the existing COTS

routers to work as network policy decision and enforcement

points (PDEP), which are known as network information base

(NIB). We can turn a COTS router to a NIB by installing

a few additional software tools to support “network function

virtualization” [7] (NFV). With the help of NFV function-

alities, a COTS router can dynamically update the policy

control parameters within its neighborhood [8], [9]. Accord-

ingly, we develop a new network management architecture,

which is somewhere in-between the traditional architecture and

SDN based architecture, where the COTS routers dynamically

change their roles from a conventional network router to a

NIB, and participate in PDEP functionalities. We call this

architecture Flipper.

Flipper has two specific advantages over SDN based net-

work architecture, among others. First, to implement Flipper,

a network administrator does not need to procure new costly

hardwares, and second, Flipper avoids the controller bottleneck

problem [4], [7], [10]–[12] which is much debated in the

SDN research community. Flipper is a distributed architecture,

where the COTS routers execute a distributed self-stabilizing

algorithm to decide which nodes can work as a NIB. As
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the NIBs have limited resources because they are built on

top of the existing routers, a NIB can manage, control and

update the network policies only among its neighborhood.

Therefore, we develop a distributed self-stabilizing maximal

independent set (MIS) selection mechanism, which is in-

deed non-trivial. To maintain consistency in policy decisions

across the network, we have developed a fault-tolerant NIB

selection mechanism. We analyse the closure, fault-tolerance

and scalability properties of Flipper. The performance of

Flipper is analysed from both simulation through a synthetic

network environment, as well as through real implementation

over an emulation platform using network name-space. Our

implementation of Flipper provides a proof-of-concept support

of the new architecture, while compare the performance with

that of other protocols in terms of flow initiation delay.

II. FLIPPER ARCHITECTURE

This section gives the details of Flipper architecture and

its working procedure. Flipper uses a technology to convert

existing COTS routers to PDEP devices through NFV. For this

task to convert a COTS router to a PDEP supported device,

we use the existing technology called ONIX [7] that describes

how the NFV modules can be interfaced with existing router

operating system to make it work as a PDEP device that can

sync up network policies with other PDEP devices, converts

it to network configurations and feeds up those configurations

to other normal routers in the neighborhood. Although we use

the existing ONIX technology for this purpose, but deploying

it over an existing network is non-trivial, because of the

limited processing capacity of the existing COTS routers.

As a consequence, such devices introduce large delay and

processing overhead if a single ONIX node works like a SDN

controller. Therefore, in Flipper, we introduce a distributed

dynamic PDEP selection mechanism, which is self-stabilized

and fault-tolerant. The details of this architecture is discussed

next.

A. What is Flipper?

Our proposed Flipper architecture consists of following

components which are similar to ONIX. Although the com-

ponents are similar, the functionalities and arrangement of the

components are completely different in Flipper.

1. OpenFlow supported switch (OFS): An OFS is re-

sponsible for data forwarding based on forwarding rule set.

OpenFlow [13], [14] is a software component that is installed

in the router OS to provide NFV functionalities. However,

mere OpenFlow support does not make these devices SDN

complaint, as specialized hardware (like OpenSwitch) is re-

quired for this purpose. In our Flipper architecture, we install

additional components only at the software level, but the

COTS hardwares are used.

2. Host: End user devices connected with OFSs that hosts the

applications and generates data traffic.

3. DHT-NIB: Memory based high update prone eventually-

consistent “distributed hash table” based NIB (DHT-NIB) for

storing link level information of switches. DHT-NIB also helps

Fig. 1: FLIPPER: Architecture

in setting up forwarding rules in switches based on control

application. As shown in ONIX architecture, an OFS can act

as a DHT-NIB with additional functionalities.

4.tran-NIB: Strongly consistent tran-NIB is used for rarely

changed network wide policy management.

A major difference between the existing SDN based ar-

chitecture and Flipper is that the standard SDN components

have fixed roles to play. However, in this paper we define a

Flipper device as a service grade router which can dynamically

choose a role of either OFS or DHT-NIB. This dynamic

change of roles (“flip”) are possible due to use of NFV in

Flipper devices. For the sake of readability we refer the Flipper

architecture as “FLIPPER” and Flipper devices as “flipper”.

B. How FLIPPER works?

To understand the working principle of FLIPPER, we take

help of Figure 1. The topology consists of a dedicated high

performance transactional NIB, hosts (A,B,C,D) and flippers

(R1, R2, ..., R9). “switch-flipper” if a flipper that acts as

a OFS. “DHT-flipper” are the flippers that perform DHT-

NIB functionalities. Initially, flippers adjust themselves so

that a switch-flippers have at least one DHT-flipper in its

neighborhood. Upon receiving a flow request from switch-

flipper, the distributed control plane consults the relevant DHT-

flippers based on the programmable network rules in tran-

NIBs and completes the flow table setup procedure in switch-

flippers.

C. Fault-tolerance in FLIPPER

The use of NFV for deployment of services provides

the flexibility towards FLIPPER. However, general purpose

switches in a service provider network are failure prone. The

failure of a DHT-flipper can significantly affect the network

performance as it controls all the flows in its neighborhood.

Therefore, to maintain the robustness of the architecture,

FLIPPER needs to be fault-tolerant. For example, in Figure 1,

let us assume that R3, R5 and R8 are acting as DHT-

flippers. The associated switch-flippers of R2, R5 and R8 are

{R1, R3}, {R4, R6, R7} and {R9}, respectively. If R5 fails,

R4, R6 can not work in the absence of DHT-flipper. For main-

taining fault tolerance, we propose a distributed flipper read-

justment framework. Whenever one or more switch-flippers

detect unavailability of DHT-flipper in its (their) neighbor-

hood, it (they) invokes (invoke) flipper readjustment procedure.

The re-adjustment procedure provides the newly selected set of

DHT-flippers and switch-flippers. After reaching a consensus,

each switch-flipper notifies its adjacent DHT-flipper with its
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state information. A switch-flipper having multiple DHT-

flippers in its neighborhood chooses a DHT-flipper randomly.

Therefore, they can initiate the distributed flipper readjustment

framework. In this case, we use distributed self stabilization

technique to make the flipper readjustment fault-tolerant.

III. FAULT-TOLERANT FLIPPER READJUSTMENT

To make the readjustment of switch-flippers and DHT-

flippers fault-tolerant, we consider the use of “self-

stabilization” [15] which is a popular technique to provide

defense against “transient failures”. A transient failure is

defined as irregular and unpredictable brief failure. In this

work, we propose a novel flipper readjustment algorithm

which expectedly converges with linear time complexity. Our

proposed algorithm also satisfies the basic properties of self-

stabilization which are as following.

1) Convergence: From any state, the system must reach a

legitimate or desired state eventually.

2) Closure: In case of no failure, the system is guaranteed

to remain in legitimate states.

We consider the network as a graph G = {V,E}, where V is

the set of flippers, and E is the set of the edges representing

physical connections among flippers. Each flipper periodically

senses the physical medium for detecting link failure. A flipper

i maintains label Labeli = {NIB, Swi,Wait} and priority

variable Prii = {0, 1, . . . , B}, where B denotes the maximum

degree of G. Any flipper k with Labelk = NIB signify that,

the flipper k is ready to act as a DHT-flipper. Similarly, a

flipper l with Labell = Swi acts as an switch-flipper. We con-

sider flipper with Label = Wait as a flipper with intermediate

state whose role is yet to decide. Neighborhood of flipper i

is denoted by Ni. Flipper i also maintains NNIB
i = ∀

j∈Ni

j :

Labelj = NIB and NWait
i = ∀

j∈Ni

j : Labelj = Wait. We

consider the state of i as (Labeli, P rii). Each flipper also

maintains the state of its adjacent neighbor flippers. When a

flipper changes its state, it pro-actively notifies its neighbors.

Upon detecting a link failure, flipper removes the entry about

the corresponding neighbor from its table.

We represent our proposed algorithm as a set of guarded ac-

tions, where each guarded action is termed as a rule. A rule Rj ,

uses the following representation, (Rj)|< Gj >−→< Aj >,

where < Gj > represents the condition which is required to be

satisfied to execute action < Aj >. Upon receiving an update

from the neighbor, each flipper checks the guard statements

of the rules. If any one of the guard is found to be true, then

the corresponding action is executed.

A. flipper Readjustment in Case of Failure

Following the aforementioned model, the flipper readjust-

ment problem is defined as follows. Given a network graph G,

the objective of the flipper readjustment problem is to find the

set of DHT-flippers in such a way that all switch-flippers can

have at least one DHT-flipper in their neighborhoods, so that

the policy updates can be done with minimal control plane

delay and network overhead. The solution approach must find

Variables:

Labeli = {NIB,Swi,Wait} Prii = {0,1, . . . ,B}

Functions:

NNIB(i) = ∀j ∈ Ni : Labelj = NIB NWait(i) = ∀j ∈ Ni : Labelj = Wait

MaxW(i) = ∀j ∈ NWait
i : Max(Prij) Trial(i) : Prii = Rand(0,1,2, . . . ,B)

Rules:

(R1)—(Labeli = Swi)
∧

(NNIB(i) = ∅) −→ (Labeli = Wait)|Trial

(R2)—(Labeli = NIB)
∧

(NNIB(i) 6= ∅) −→ (Labeli = Swi)

(R3)—(Labeli = Wait)
∧

(NNIB(i) 6= ∅) −→ (Labeli = Swi)

(R4a)—(Labeli = Wait)
∧

(NNIB(i) = ∅)
∧

(Prii = MaxW(i)) −→ (Labeli = Wait|Trial

(R4b)—(Labeli = Wait)
∧

(NNIB(i) = ∅)
∧

(Prii > MaxW(i)) −→ (Labeli = NIB)

Here ∅ represents empty set.

Fig. 2: SS-MIS Protocol

an alternative DHT-flipper dynamically when any flipper or

link fails, to incorporate fault-tolerance property. The flipper

readjustment mechanism is similar to finding a “maximal inde-

pendent set” (MIS) in flipper connectivity graph. We propose a

novel distributed anonymous “self-stabilizing MIS” (SS-MIS)

algorithm to find DHT-flippers dynamically. The reason for

using anonymous algorithm is to remove the unfairness issue

caused by the identifier system. Our proposed anonymous SS-

MIS protocol has a step complexity 1 of O(n). Although there

exists a linear time self-stabilizing distributed algorithm [16]

for solving MIS problem, to the best of our knowledge in case

of anonymous systems the best proposed solution [17] has

O(n logn) step complexity. In this work, we propose a linear

time algorithm for anonymous systems that can significantly

reduce the control plane overhead in FLIPPER.

B. SS-MIS Algorithm for flipper Readjustment

The proposed SS-MIS protocol selects switch-flippers and

DHT-flippers in terms of assigning Label = Swi and Label =
NIB respectively. According to MIS properties, no two DHT-

flipper can be adjacent and, each switch-flipper should have

at least one DHT-flipper in its adjacency list. The proposed

protocol is described in Figure 2.

A flipper i which has Labeli = Wait or Labeli = NIB,

violates the independence property if any of its neighbor is

in NIB state. Hence, it must execute (R2, R3), and must

go to a state having Labeli = Swi. If two adjacent flipper

have Label = Wait, and no other neighbor of them are in

Label = NIB state, then both the adjacent flippers will try

to enter in a state with Label = NIB state which requires

a tie breaking mechanism. Although, the tie breaking can be

done using an identifier (ID) of the flipper, in this work ID

based tie breaking is not used. ID based tie breaking introduces

unfairness problem, because a flipper with higher ID always

gets a priority. Therefore, to break this tie, a randomized trial

is performed. The proposed random trial is designed in the

following way. Each node in Wait state generates a random

number in the range {0, 1, 2, . . . , B}, and assigns to Pri. A

1Execution of an action is called a step. Step complexity of a distributed
system is defined as the number of steps executed by the system. Throughout
this work, the terms step and move are used invariably.
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“Winner” is decided based on the unique maximum Pri value

in a closed neighborhood. If no winner is found in a single

experiment, it is repeated until there is a winner. The winner

gets the privilege to enter into the NIB state.

IV. PROPERTIES OF FLIPPER ARCHITECTURE

In this section we discuss about the properties of proposed

flipper architecture. Let the global state of the system be

denoted as S; and legitimate state is defined as the global

configuration where no further rule may be applied at any

flipper. We claim that the proposed scheme is self-stabilizing.

A proof of self-stabilization requires the proof of Closure

property and Convergence property.

A. FLIPPER Supports Closure Property

Theorem 1: If any flipper in the system is in intermediate

state then there is at least one rule which can be executed.

Proof: Assume the state of an intermediate flipper u is

Wait. Now there can be following scenarios.

Case 1: ∃v ∈ Nu : (Labelv = NIB). In this case, R3 will

be applicable.

Case 2: ∀v ∈ Nu : (Labelv = Wait) and (Priv < Priu). In

this case flipper u has unique maximum priority. R4b will be

applicable on flipper u and it will act as DHT-flipper.

Case 3: ∃v ∈ Nu : (Labelv = Wait) and (Priv = Priu)
where Priv and Priu are maximum in their neighborhood. In

this case flipper u and v must apply rule R4a and retrial for

a new priority value.

Case 4: ∃v ∈ Nu : (Labelv = Wait) and (Priv > Priu).
Also ∃w ∈ N (v) : (Labelw = Wait) and (Priw > Priv).
From this statement it can be concluded that (Priw > Priu).
Hence priority of these forms a non-increasing function. Also

number of flippers are bounded by N. Hence, at least one

flipper will have highest priority which will be able to execute

rule R4b or R4a.

Corollary 1.1: (Closure property) If the system is in a state

where flippers with DHT-flippers form a MIS, it will remain

in that state forever, provided no further fault occurs.

Corollary 1.1 also suggests the correctness of the proposed

scheme. Detailed proof of this statement is omitted due to

space restriction of the paper.

B. FLIPPER Converges If a Failure Occurs and It is Scalable

A self-stabilizing system always converges in case of a

failure. We analyze the algorithm and prove that, the expected

time required to converge is linearly dependent on the number

of flipper used.

Theorem 2: Let N denote the cardinality of the closed

neighborhood of any arbitrary flipper v. Let P (N,B) denote

the probability of finding an unique maximum in the closed

neighborhood of v. Then

P (N,B) =
(N×

∑
B

i=1 i(N−1))

(B+1)N

Proof: Let i be the highest priority in a configuration S
after one round, where each round corresponds to the event of

generating the priority by at most each flipper in the closed

neighborhood of v. To satisfy unique maximum property, i

can be assigned to any one of the N flippers and the rest of

the flippers can have a priority value ranging from 0 to i− 1.

So there will be N × i(N−1) different possibilities. The value

of i can vary from 1 to B. The sample space is (B + 1)N

as each node in the closed neighborhood of v can take values

from 0 to B independently. Hence the total probability:

P (N,B) =
(N×

∑
B

i=1 i(N−1))

(B+1)N

Consider N flippers in the closed neighborhood of v are

executing R4a and R4b. To find the expected number of rounds

for one of the intermediate flipper to move to DHT-flipper

state, we have to find the expected number of rounds in which

there will be one flipper with unique maximum Pri in the

neighborhood.

Theorem 3: If X denote the random variable indicating the

number of rounds required to find a unique maximum priority

in the closed neighborhood of v then E[X ] ≤ e, where e

represents “Euler-Mascheroni constant”.

Proof: For calculating expected number of rounds, we

need to determine the probability distribution function

Pr [X = r] = (1− P (N,B))(r−1) × P (N,B)

Clearly this is a geometric distribution and we can say that

the expected number of rounds can be calculated as following

E[X ] =
1

P (N,B)
=

(B + 1)N

N ×
∑B

i=1 i
N−1

E[X ] ≤
(B + 1)B+1

(B + 1)×
B
∫

0

iB di

=
(B + 1)B+1

BB+1
=

(

1 +
1

B

)(B+1)

Note here that the value of N is upper bounded by (B + 1).
Hence

lim
B→∞

(

1 +B−1
)(B+1)

= e

Therefore E[X ] ≤ e. This result signifies that each flipper

needs “e” moves on average for the transition from Label =
Wait state to Label = NIB state.

Theorem 4: Only the following sequence or

subsequence of state change is possible for each

flipper during the execution of the protocol.
(Wait→Swi→Wait→Swi), (Wait→Swi→Wait→NIB),

(NIB→Swi→Wait→Swi), (NIB→Swi→Wait→NIB)
Proof: We can see in Figure 2 that if a flipper executes

R4b then it will not execute any other rule. So no other flipper

in its neighborhood can go to Label = NIB state. It can also

be shown that if a flipper executes R4b then its neighbors can

only execute R2.

Now from Theorem 3 we can say that each node takes

expected e moves to go from Label = Wait state to

Label = NIB state. Hence the sequences will take expected

2 + e moves. This is true for each flipper. Therefore, we

can conclude O(n) is the expected number of moves for

convergence.

Being a self-stabilized algorithm flippers are most of the time

available except the convergence time. We have also shown
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that, the expected convergence time is also within a finite and

acceptable bound. Therefore, we can argue that FLIPPER is

scalable.

C. FLIPPER is Partition Tolerant

A partition tolerant network can function individually and

independently, even if it gets partitioned due to link or

node failure. As flipper readjustment does not require any

bootstrapping, therefore the proposed architecture is partition

tolerant. FLIPPER requires each switch-flipper to have atleast

one DHT-flipper in their neighborhood. Corollary 1.1 ensures

this property. Therefore, even the network becomes partitioned

due to failure, FLIPPER helps them to function individually.

V. ANALYSIS OF FLIPPER PERFORMANCE FROM

SIMULATION OVER SYNTHETIC NETWORKS

To evaluate the performance of FLIPPER, we simulate the

proposed method and compared with one standard fault re-

silient SDN based framework, called POCO-PLC [18]. POCO-

PLC is a distributed SDN platform that uses 20% of controller

nodes to provide a Pareto optimal fault resiliency. The con-

trollers act as NIB also. However, POCO-PLC provides an

off-line solution of controller placement problem. On the other

hand, POCO-PLC can handle limited node failure, whereas

FLIPPER can sustain arbitrary node failures.

A. Simulation Setup

For simulation we use NS-3.22 [19] network simulator. We

use three different topologies. Topology 1 is a synthetic 64×64
regular grid topology. Topology 2 (AS Topology [20]) and

Topology 3 (Oregon [21]) are real autonomous system data

sets taken from University of Oregon Route Views Project

BGP logs, where each node represents a border router. For

simulation purpose, we consider that these border routers are

flipper devices. In each case, flippers are connected via 100
Mbps capacity and 2 ms delay Ethernet channels. Each flipper

is configured to generate 4 flows/second with 5 Mbps data rate.

B. Results and Analysis

Figure 3 depicts the average number of moves executed by

a flipper in case of random number of flipper failures when

SS-MIS is used. It shows that the simulation results do not

exceed the theoretical expected bound, which is 2 + e (see

Theorem 4). The number of used DHT-flipper depends not

only on the number of nodes but also on the topology itself.

We found that, the required number of DHT-flippers for the

two real dataset does not exceed 30%. This result is optimistic

in a sense that, if the existing network infrastructure is to be

deployed, then 25% − 30% of the total number of flippers

are required to act as DHT-flipper for reducing flow set-up
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TABLE I: Emulation Topology Properties

Attributes Values Attributes Values

Nodes 50 Edges 136

Avg Degree 5.44 Max Degree 20

Average
DHT-flippers

18± 1.23
Average flow
set-up delay

42.29± 7.2ms

delay. Figure 4 presents a comparison between the proposed

flipper architecture and the existing POCO-PLC framework in

terms of flow setup delay. The POCO-PLC framework uses

a heuristic Pareto-optimal solution for distributed controller

placement. Their work suggests the delay will be Pareto-

optimal in case of 20% controller usage in most of the network

scenarios. However, Figure 4 shows that, in case of flipper,

5%− 10% increase in number of controllers can reduce flow

setup delay by more than 60% for both of the real networks.

The performance improvement in terms of flow setup delay is

due to the fact that, each switch-flipper has a DHT-flipper in

it’s neighborhood.

VI. ANALYSIS OF FLIPPER FROM EMULATION OVER A

TESTBED

Motivated by the simulation results, we have emulated

our proposed architecture on top of mininet [22]. mininet

creates virtual nodes for emulated environments over a real

networking testbed.

A. Testbed Setup

We have taken a 50 node topology extracted from Oregon

dataset [21]. Each node is configured to act a switch-flipper

and DHT-flipper with the help of existing OpenVSwitch [23]

and OpenVSwitch database server [24] respectively. The flip-

pers are connected via links of 5 Mbps and 2 ms delay.

The link characteristics are configured with Linux “tc” utility.

Each node generates 4 random TCP flows consuming 5 Mbps

of bandwidth each. The rest of the topology characteristics

and the cumulative results from the emulation are given in

Table I. Each flipper periodically checks for the states of

adjacent neighbors and links within a time period of 20ms.

When a DHT-flipper fails, the newly appointed DHT-flipper

interacts with switch-flippers via “JSON-rpc” and gathers

flow table as well as link state information. The objective of

these experiments is to identify the effect of different types

of failures on data plane operation. As POCO-PLC uses static

role assignment, the convergence time of the protocol becomes

irrelevant. Therefore, we do not compare flipper with POCO-

PLC in emulated experiments.
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B. Effect of Node Failure

We select variable number of flippers as candidates for

failure. To visualize the effect of mutual separation (in terms

of hop counts) between failed flippers, candidate flippers are

selected in following two ways. Experiment 1.a: The selected

flippers are 1-hop away from each other. Experiment 1.b:

The selected flippers are more than 2 hops distance apart. The

chosen nodes are selected carefully, so that there exists at least

one path between the source and the destination of each TCP

flow even after the chosen nodes fails. The system can not

accept a new flow, until the flipper readjustment converges.

Therefore, the convergence time of the flipper readjustment

is significant in case of failure. Convergence time for flipper

readjustments are shown in Figure 5a. The results suggest

that, the effect of multiple flipper failure is dependent on the

separation of the failed flippers. However, the convergence

time difference reduces for Experiments 1.a and 1.b at k = 5
as the diameter of the used topology is 5.

The role change of flippers results in path adjustment of

flows. Out of generated 200 random flows, Figure 5a shows

the number of flows needs to be readjusted due to the change in

data plane topology. The plot signifies that the number of flow

adjustments also depend on the separation between the failed

flippers. The higher separation between failed flippers requires

large number of role change operations to reach convergence.

This results higher number of flow adjustment. The result also

shows that, the increase in number of flipper failure increases

the number of flows required to be rerouted.

C. Effect of Link Failure

To visualize the effect of link failure on data plane oper-

ation, we perform similar experiments as mentioned earlier.

In this experimental setup, k links are chosen randomly so

that there is at least one path between the source to the

destination of each flow. We perform the following two exper-

iments by selecting variable number of k links as following.

Experiment 2.a: The failed links are 1-hop distance apart and

Experiment 2.b: The failed links are at least 2-hop distance

apart. These selected links are disconnected simultaneously to

perform the failure experiments. The emulation results shown

in Figure 5b reveals that, the convergence time and required

number of flow adjustments depends on the number of failed

links and separation between the failed links.

VII. BACKGROUND AND RELATED WORKS

Traditional SNMP based for network management sys-

tem [25]–[27] resulted complex and rigid architectures. [28]

shows that, network configurations are highly error prone.

The error of configuration happens due to the complexity

of managing each network devices individually. To reduce

the network management overhead, SDN came into existence.

Some of the popular SDN control plane approaches are, [29]–

[33]. To ensure scalability, SDN control plane for service

provider network needs to be distributed. According to Panda

et.al. [34], it is not possible to ensure strong consistency,

availability and partition tolerance simultaneously in case of

distributed control platform. Increase in number of controllers

increases scalability and management overhead both [35]. On

the other hand, reduction of controllers makes the control

plane a bottleneck [36]. Therefore, designing of distributed

control platform for service provider network is non-trivial.

Although, [7], [8] have proposed distributed control plane,

fault-tolerance remains an issue in case of distributed control

plane. To However, some of the fault resilient distributed

control planes are refereed in [37]. Among the existing works,

POCO-PLC [18] proposes a Pareto optimal, fault-resilient off-

line control plane. However, designing a fault tolerant SDN

network management system is non-trivial due to the fact that

selecting a recovery strategy might take longer convergence

time. These limitations have motivated us to design a dynamic

architecture, which can reduce the flow initiation delay and can

provide fault tolerance.

VIII. COMMONLY ASKED QUESTIONS

Here we discuss the answer of some questions that may

arise while reading this paper.

How FLIPPER is different from SDN?

Standard SDN platform uses static role assignments at the time

of deployment. Static deployment limits performance of SDN

in case of topology changing networks. In case of controller

failure, SDN might cease to perform. In such cases, FLIPPER

provides more availability than SDN by utilizing dynamic role

assignment of flippers.

Can FLIPPER Work in fail-open and fail-close semantic?

Fail-open and fail-close semantics provide partition tolerance

in case of fault resilient architecture. Fault-resilience architec-

tures handle specific types of failures. In Section IV, we prove

that, the proposed FLIPPER is fault-tolerant. In a fault-tolerant

architecture the effect of failure only affects in terms of delay.

Therefore, we argue that FLIPPER provides a stronger solution

to handle network partitioning problem.

Why our emulation results are not comparable with existing

works?

Existing SDN based architectures do not focus on fault toler-

ance, and most of the cases the solutions are off-line and static

deployment based. So, they can not handle arbitrary failure.

Once the SDN controllers fail, the switches under the influence

of the controllers can not perform data forwarding until a new

controller is configured to work with them. Therefore, the term

convergence time becomes irrelevant in that context.

IX. CONCLUSION

In this work, we propose FLIPPER which supports SDN

like network management and control, while avoiding the con-

troller bottleneck problem, and supporting a stronger notion

of fault tolerance. Built over the existing ONIX architecture,

FLIPPER supports a scalable notion of dynamic role adap-

tation based on a distributed self-stabilizing algorithm. The

simulation result shows the benefits of FLIPPER, whereas the

emulation over a real testbed conveys the feasibility of FLIP-

PER implementation over the existing network infrastructure.
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