
Reinforcement Learning Based Dynamic Resource
Migration for Virtual Networks

Takaya Miyazawa, Ved P. Kafle, and Hiroaki Harai
National Institute of Information and Communications Technology (NICT),

4-2-1 Nukui-Kitamachi, Koganei-shi, Tokyo, 184-8795 Japan
E-mail: {takaya, kafle, harai}@nict.go.jp

Abstract— Network virtualization techniques enable network
operators to implement and provide multiple virtual networks
(VNs) on a common substrate network infrastructure. The
network resources should be able to be dynamically reallocated
among VNs or migrated from a place to another one in various
situations, such as to construct a new urgent VN in case of
occurrence of some urgent contingency, or to satisfy quality of
service (QoS) requirements of non-urgent VNs in case of time-
varying network traffic conditions as much as possible. In this
paper, we propose methods to automatically and dynamically
select and migrate resources of non-urgent VNs. In particular,
our proposal applies reinforcement learning for the selection of
resources from alternate places to satisfy the QoS requirements.
We evaluate the performances in terms of the satisfaction level of
QoS requirement with various frequency of network traffic
variation in a given duration and learning parameter
configurations. Simulation results show that the proposed
dynamic resource migration method can increase the number of
times that non-urgent VNs’ QoS requirements are satisfied in
comparison with a static resource assignment method. Moreover,
we show that, depending on traffic variation and parameter
configuration, applying reinforcement learning can increase the
number of times the QoS requirement is satisfied compared to
the dynamic method with completely random resource selection.

Keywords—Virtualization; Resource Migration; Reinforcement Learning;
Quality of Service.

I. INTRODUCTION

Recently, many researchers have been investigating
techniques for the virtualization of networks, servers, and
network functions [1]-[4]. One of the advantages of
virtualization is that it realizes isolation. For example, virtual
networks (VNs) configured through network virtualization on
the top of an underlying substrate infrastructure can be isolated
from each other by allocating and managing network resources,
network functions, or flow spaces separately. In [1], FlowVisor
is proposed as a network virtualization technique. It can be
implemented on OpenFlow-based packet-switched networks,
and realizes network virtualization by allocating separate flow
spaces at multiple layers (e.g. by using source/destination
MAC address, source/destination IP address, VLAN ID, and
source/destination TCP/UDP port) to each VN. In the future
networks, virtual network operators (VNOs) will appear as
entities for network service provisioning, and network
virtualization enables multiple VNOs to provide and manage
individual resources, functions or flow spaces on separate VNs
constructed on a common physical substrate network. For
example, as for mobile networks, mobile VNOs are already

providing virtual network services by leasing physical lines
from other carriers.

Current network construction mainly depends on manual
operations for network resource allocation, identifiers (IP
address, VLAN ID, etc.) allocation, parameter configurations,
management, and so on. Hence, automation of such operations
will be essential to shorten network configuration time, avoid
human errors, or deal with shortage of human resources.
Moreover, data generating devices (e.g. PCs, mobile/smart
phones, vehicles, sensors, and robots) and quality-of-service
(QoS) requirements (e.g. packet loss rate, latency and jitter)
will be increasingly diverse due to rapid prevalence of Internet-
of-Things (IoT) applications in the future. Especially in view of
using mobile terminals, VNs should be constructed by
recognizing both time-varying network environments (e.g.
network traffic and failure status) and diversified service
requirements (i.e. service levels specified by application
service providers). In other words, VNOs will be required to
automatically and dynamically select virtualized resources
suited for each VN by recognizing networking environments
and service requirements. Here, let us assume that some urgent
contingency (e.g. due to traffic accidents, natural disasters,
security enhancement against massive crimes, or some short-
notice social events) occurs, and a VN for the contingency
needs to be constructed. In such a case, the infrastructure
provider (InP) should ensure requisite resources for the VN,
and already-allocated resources to non-urgent VNs may have to
be reallocated to the urgent VN so that the quality of service
(QoS) requirement of the urgent VN can be guaranteed.
Meanwhile, as mentioned above, the network traffic tends to be
time-varying, especially in networks of the future IoT
applications. In such network environments, non-urgent VNs
also need to automatically and dynamically perform migration
of resources for satisfying their QoS requirements to a
maximum extent when their traffic volume fluctuates.

The authors in [2] propose migration of network functions
(intrusion detection system, NAT, load balancer, caching proxy,
traffic monitoring, etc.) from an instance to another; along with
a migration process, switches in relevant nodes (on both old
and new routes) are controlled by software-defined networking
(i.e. OpenFlow). The authors in [3] construct a combined
server virtualization environment using Host Hypervisors and
network virtualization environment using a Network
Hypervisor, and create and migrate logical forwarding data
paths between virtual machines (VMs). The authors in [4]
propose a framework for mapping a service function chain
(SFC) onto physical network infrastructure of nodes and links.

978-3-901882-89-0 @2017 IFIP 428

An SFC is created by connecting virtual network functions
(VNFs) by logical links, and the proposed method has a
resource migration function to protect the SFC from VNF
failures. The authors in [5] propose inter-domain VM
migration, in which network controllers and a global
orchestrator select and change the route by means of OpenFlow
when they receive a VM migration request from Cloud OS.
However, these exiting researches lack sufficient discussion on
how to dynamically decide and update about where to migrate
each VN’s resource in consideration of time-varying network
traffic and QoS requirement of each VN. Especially, there is no
prior work on application of machine learning (ML) to satisfy
QoS requirements in time-varying core network environments.
The authors in [6] propose to apply a ML technique to resource
migration; however, they only target at cloud & VMs
environment, and do not touch the issue of resource migration
in a large-scale network consisting of edge/core networks and
datacenters, where multiple VNs requiring diverse QoS levels
are constructed on the common substrate network.

In this paper, we propose methods to dynamically select
and migrate virtual resources of (non-urgent) VNs. The most
straightforward way to realizing dynamic resource migration is
to randomly migrate a VN’s resources from a place to another
one to satisfy its QoS requirement. However, it is not an
optimal solution. Therefore, in our methods, we propose to
apply reinforcement learning for the selection of alternate
resources to satisfy the QoS requirement. The reinforcement
learning [7][8] is classified as a ML technique, and has been
applied to various types of network control [6][9][10]. We
evaluate the performance in terms of the satisfaction level of
QoS requirement with various frequency of network traffic
variation in a given duration and learning parameter
configurations. By computer simulations, we demonstrate that
the dynamic resource migration methods can increase the
number of times that a non-urgent VN’s QoS requirement is
satisfied in comparison with static resource utilization, and
moreover, applying the reinforcement learning can further
increase the number of times that the QoS requirement is
satisfied compared to the dynamic method with completely
random selection.

II. VIRTUAL NETWORK CONSTRUCTION

Figure 1 illustrates (a) structure of physical and virtual
networks and (b) mapping of virtual resources onto physical
resources. In the physical networks, edge networks and data
centers are connected to a large-scale core network. The edge
networks are composed of equipment collecting/processing
data from various IoT terminals such as PCs, mobile/smart
phones, vehicles, sensors, and robots. In this work, we assume
that the whole physical network is managed by a single InP, i.e.
a single domain environment. VNs are constructed over the
whole physical network consisting of edge/core networks and
data centers, and “resources” include computational (CPU,
memory, and storage) as well as network (link bandwidth and
buffer space in nodes) resources. Each VNO recognizes the
service level requirements of an application (which we call
service requirements) and/or social/environment conditions (i.e.
urgent contingency, network traffic, etc.), and is in charge of
VN construction including both creation of logical topology
and selection of network and computational resources. The

VNO then requests the InP to lease physical resources. The InP
performs mapping of virtual resources (nodes and links) onto
physical resources in the substrate networks. This mapping
process is often referred to as VN embedding [11]. Based on the
requests from VNOs, the InP leases physical resources to them
(e.g. registers or updates each mapping information) for VN
construction. VNs’ virtual resources may be migrated from a
set of physical resources to another set of physical resources
for satisfying their QoS requirements. Here, a set of physical

Fig. 1. Images of (a) structure of whole network and (b) VN embedding.

Fig. 2. An image of migration of non-urgent VN’s resources.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 429

resources consists of resources in the relevant edge network,
core network, and data center. Different VNs may have
different logical topologies, as well as various network and
computational resources.

Figure 2 illustrates migration of non-urgent VN’s resources
when an urgent contingency occurs. The VNO recognizes the
urgent contingency by analyzing social/environmental data
regularly collected by them. In order to construct a VN with
high QoS, the VNO selects virtual resources over edge/core
networks and data centers, and requests the InP to lease the
physical resources. The VN with a high QoS requirement is
preferentially allocated with optimal resources. Then, if
multiple VNs happen to compete for resources, the resources
being used by non-urgent VNs are reallocated to the urgent VN.
In this way, the high QoS requirement of urgent VN is always
met. Meanwhile, the networks should also be able to maintain
the QoS of resource migrated non-urgent VNs to an optimal
level.

III. ML-BASED AUTONOMIC RESOURCE CONTROL

In order to achieve automation of various operations and
handle increasingly diverse IoT devices/applications and QoS
requirements, we apply ML techniques in VN construction.
Especially for resource control, we propound machine
learning-based autonomic resource control (MLARC).
Currently, we strive to apply ML to (i) selecting virtual
resources in the process of initial VN construction according to
a certain VN request [12] and (ii) deciding where to migrate
each (non-urgent) VN’s resources dynamically in consideration
of network traffic situation and QoS requirements.

Figure 3 shows a control process flow diagram of MLARC.
Inside the VNO, “Output” is determined by a virtual resource
selection process for the initial VN construction on the basis of
information of “Input”. We have applied a ML technique (i.e.
support vector machine tool) to the virtual resource selection
process [12]. Here, the input information consists of QoS
requirement levels and network parameters. For example, the
input can include service requirements on link bandwidth,
packet loss rate, delay, and jitter. It can also include network
traffic load, failure status, geographical position from where a
user receives data, and so on. The output information includes
logical topology, network resources such as link bandwidth and
buffer space in network nodes, and computational resources
such as CPU, memory, and storage space of computer
equipment (e.g. server and controller). The VNO sends a
request for physical resources to the InP on the basis of the
output. The InP executes the VN embedding to map virtualized
resources onto physical resources in the substrate networks,
and leases physical resources to VNOs. A VN for urgent
contingency is preferentially allocated an optimal amount of
physical resources. As a consequence, if there are not enough
physical resources, non-urgent VNs’ resources should be
migrated to another set of physical resources by the resource
migration process. In this paper, we mainly focus on this
resource migration. Especially, we apply reinforcement
learning to this process. After the decision about resource
migration is made, the InP executes the VN embedding, and
then, reallocates physical resources to each relevant VN. After
the VN construction is completed, the VNO monitors
performance (e.g. packet loss rate and delay) of each VN and

inspects QoS satisfaction levels. The VNO can promptly reflect
the monitoring results in the virtual resource selection process
and/or resource migration process.

IV. PROPOSED RESOURCE MIGRATION SCHEME

As mentioned in Section I, the most straightforward way to
realizing dynamic resource migration is to randomly select
where to migrate a VN’s resources when the QoS requirement
is not satisfied. Note that, while the QoS requirement is
satisfied, no resource migration takes place. The dynamic
method is expected to make it easier to satisfy QoS
requirement of each (non-urgent) VN. However, it is possible
that the dynamic method with completely random selection
may experience unfortunate cases where migrated resources
still cannot satisfy the QoS requirement. Therefore, we propose
to utilize the reinforcement learning to selection of alternate
resources in the case that the QoS requirement is not satisfied.
Reinforcement learning is one of ML techniques [7][8]. The
key parameters of the reinforcement learning process are States,
Actions, and Rewards. Figure 4 shows a conceptual diagram of
reinforcement learning. Initially, the state starts at the source
state. The learning agent perceives the current state of the
network environment, and selects and executes one of possible
actions by means of an action selection method. Generally,
learning agent and environment are regarded as a controller
and a controlled object, respectively. The agent function is
installed inside each VNO, and executes control processes for
resource migration. The state is shifted from the current state to
the next state by executing an action. Through iterative trial
and error, a reward is given to every action or to the action to

Fig. 3. Control process flow diagram of MLARC.

Fig. 4. A conceptual diagram of reinforcement learning.

Environment

Action
Selection

Perceiving
State

Learning
(updating
Q-values)

Action

Reward

Learning Agent

State

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference430

reach the goal (destination state), and the learning agent
updates Q-values which express how much worthy the actions
are. The learning agent iteratively learns actions to optimize
(e.g. maximize) the overall reward between source and
destination states. In this paper, for simplicity, we assume that
a single agent system is installed in the VNO although multiple
agents system will be effective at achieving higher scalability.
The reinforcement learning is a systematic trial and error
approach, and one of major learning algorithms is Q-learning
[6]-[9]. We use the Q-learning in this paper.

Our proposed method defines States, Actions, and Rewards
as in the typical process of Q-learning. Actions are
stochastically selected through iterative learning processes, and
resource migration is executed in accordance with the selected
set of actions. Depending on parameter configuration, an action
with higher Q-value (i.e. high-value action) tends to be selected,
and it results in improvement of performances (i.e. better
satisfaction of QoS requirements). Meanwhile, note that “partly”
random selection is preferable in order to avoid the situation
that resources of many VNs are migrated to the same set of
physical resources and congestion may occur there. In the
reinforcement learning, there is an action selection method
which is stochastically executed on the basis of one of the
following two logics: (1) selecting an action with higher Q-
value, or (2) selecting an action randomly. It can be formulated
as described below.
We define States as si ∈ S = {SRC, E1, E2, …, EJ, C1, C2, …,

CK, D1, D2, …, DL, DST}, which varies through a learning
process. Here, SRC is the source node, Ex (x = 1, 2, …, J) are
edge nodes, Cx (x = 1, 2, …, K) are core nodes, Dx (x = 1, 2, …,
L) are data center nodes, and DST is the destination node. The
values of J, K, and L represent the numbers of nodes in the
edge network, core network, and data center, respectively, in a
single domain network. The variable i corresponds to the hop
number starting from SRC, e.g. for i = 0, si = SRC. We also
define Actions as the decision of selection of a link connecting
the current node to the next node, which are expressed as ai ∈
A(s) = {A1(s), A2(s), …}, where Ax(s) means the action of
selection of link index x at a state s ∈ S. By executing action
ai, the state transits from si to si+1. Additionally, we define
Rewards as QoS satisfaction levels of each VN. Reward ri is
the reward obtained when action ai-1 is executed at state si-1. A
reward is given to an action in accordance with the QoS
satisfaction level. The higher the QoS satisfaction level is, the
higher the reward is. In this paper, for simplicity, we focus only
on packet loss rate (PLR) as the QoS parameter. Reward ri is
expressed as

ri = {1 – pM / PR} × β if pM < PR,
 0 otherwise, (1)

where pM is the measured (monitored) PLR between SRC and
DST, PR is the requirement on PLR for the VN, and β is a
positive integer to adjust reward values. In this work, a reward
is obtained only when the state arrives at DST. Namely, when
si+1 = DST, reward ri+1 is given to action ai. As we can see in
Eq. (1), a lower PLR results in the higher value of reward.

We denote Q-value in the case that action ai is selected at
state si by Q(si, ai). All Q-values are initially set to 0. In every
learning process, when state si is shifted to state si+1 by
performing action ai, the Q-values are updated by use of the Q-
learning rule expressed as

Q(si , ai) ← Q(si , ai) +
 α × [ri+1 + γ × max Q(si+1 , a) – Q(si , ai)] (2) 																																																								ܽ ∈ (s)ܣ

where α is learning rate (0 ≤ α ≤ 1, which is usually set as
around 0.1), and γ is discount factor (0 ≤ γ ≤ 1, which is usually
set as a value in the range from 0.90 to 0.99).

The model and formulation in our proposed method have
an advantage that it can give a reward every time the state
reaches a transit node as well as DST. Note that we could also
use another model and formulation (e.g. a state is a current end-
to-end route, an action is moving the VN from one state to a
new one, and a reward is given only at DST).

For an action selection, we propose to apply ε–greedy
method due to its simplicity and practicality [8]. Action
selection is performed only when the QoS requirement is not
satisfied and resource migration is needed. Our method selects
an action that gives the maximum value of Q(si , ai) with the
probability of (1 - ε), and randomly selects an action with the
probability of ε. The value of ε can be dynamically changed
depending on the situation. The learning agent selects an action
at each state independent of actions selection at other states
between SRC and DST. Next to the state DST, the state goes
back to SRC. One cycle from SRC to DST is called a learning
process. By the iterative learning processes, the reward is
reflected in Q-values at previous states/actions in series. The
learning agent performs the prescribed number of learning
processes, and finally decides resources for the VN and
resource migration is executed in accordance with the set of
actions that have been finally decided. Q(si , ai) can have only
one value at a time, and thus, each Q-value is dynamically
updated through the iterative learning processes. An advantage
of reinforcement learning is that the Q-values associated with a
route where the QoS requirement has been continuously
satisfied in the past get higher and higher, and the route tends
to be selected with a higher probability. We assume network
environments that each VNO cannot get complete information
about other VNOs’ decisions on resources selection; thus, each
agent cannot find the optimal solution (e.g. by linear
programming). Even if the complete information can be
obtained, the time needed to find the solution drastically
increases as the number of VNs is larger and especially in
unpredictable network environments. Our proposed method is
not affected by the number of VNs because it selects a route for
a VN independently of routes selected for other VNs.
Moreover, it performs trial-and-error for dynamic resource
migration in such environments.

V. EVALUATIONS

We evaluated our proposed scheme to show the
effectiveness of dynamic resource migration and application of
reinforcement learning. As a first step, we performed computer
simulations with some simple assumptions as explained below:
We assume the network topology depicted in Figure 5. In the
edge network, there are one source node (SRC) and two edge
nodes (E1 and E2). In the core network, there are five core
nodes (C1, C2, …, C5). In the data center, there are three data
center nodes (D1, D2, and D3) and a destination node (DST). It
is assumed that an urgent contingency occurs and its VN
occupies all physical resources on the route of SRC – E1 – C2 –

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 431

C4 – D2 – DST which we call as the urgent route. We focus on
an existing non-urgent VN with the QoS requirement of PLR ≤
10-3, and its virtual resources are migrated from the physical
resources on the urgent route to the other route which does not
get through the urgent route. We assume that the non-urgent
VN is constructed on bandwidth-shared (e.g. packet-switched)
type of networks. This means that its physical resources are
shared with other network traffic including best-effort
background traffic although it might be better if some nodes
were able to provide dedicated resources to the VN in order to
reliably guarantee the QoS. Additionally, other background
traffic is coming into C1, C3, and C5 from outside networks.
Thus, it is too difficult to predict the amount of network traffic.
In Fig. 5, the numbers (“1” and “2”) in red font are link
interface IDs, which also correspond to the action numbers; for
example, when si = E2 and si+1 = C3, ai = 2. Note that, in this
simple network topology, the migrated non-urgent VN has to
get through E2 and C5 between SRC and DST inevitably.

Table I shows the possible combinations of state si, action
ai and state si+1. Note that the 1st, 7th, 9th, 13th lines cannot be
selected because the urgent contingency’s VN occupies the
relevant physical resources. At states E2 and C5, there are two
actions A1(s) and A2(s) from each state. This means that, in this
paper, we assume that there are four possible end-to-end
resources between SRC and DST. For the sake of convenience,
we call the route of SRC – E2 – C1 – C5 – D1 – DST as Route-1,
SRC – E2 – C1 – C5 – D3 – DST as Route-2, SRC – E2 – C3 – C5
– D1 – DST as Route-3, and SRC – E2 – C3 – C5 – D3 – DST as
Route-4.

We obtained and compared performances of three resource

migration methods: (A) Static resource migration method, (B)
Dynamic resource migration with completely random selection
method, and (C) Dynamic resource migration with
reinforcement learning method. When an urgent contingency
occurs, the learning agent selects a certain route for the non-
urgent VN, which is Route-1 in this simulation. After that, in
method (A), the route does not change during the lifetime of
the VN. In method (B), a route is decided and changed by
completely random selection when the QoS requirement is not
satisfied. While the QoS requirement is satisfied, resource
migration is not executed. In method (C), a route is decided
and changed in accordance with the result of the iterative Q-
learning processes formulated in Eq. (2). While the QoS
requirement is satisfied, resource migration is not executed as
in the case of method (B). We set the values of β, α, and γ as
10, 0.1, and 0.95, respectively.

We define a unit time slot TU as the time interval required
for both route selection and resource migration for a VN, and tf
as the time interval in which the amount of network traffic (and
thus PLR) changes. We also define cf as the ratio of tf to TU,
which we call the network traffic variation interval; the unit is
slot (i.e. cf = tf / TU). Note that fluctuation of network traffic
causes fluctuation of PLRs in each link. We assume tf ≥ TU and
cf is positive integer for simplicity. The follow-up of
reinforcement learning should be done within the time of much
less than TU. We classify links into four kinds of transparent
links: E2 – C1 – C5, E2 – C3 – C5, C5 – D1 – DST, and C5 – D3 –
DST. The transparent link means that there is no branching
along the way between both ends of the link. We generate a
value of PLR on each transparent link by a random number
generator in the range from 10-5 to 10-1 in each time slot in
which PLRs change (by using different values of random
seeds). Thus, we can obtain the value of PLR on each route by
simply adding the PLRs on two relevant transparent links [13].
In method (C), we assume that the learning agent in VNO can
obtain the PLR of any route.

In this evaluation, we set the number of time slots as 300,
which corresponds to the execution time of this simulation. In
other words, the maximum number of resource migration steps

Fig. 6. The number of satisfied slots versus cf, where ni = 10 and ε = 0.2.

Fig. 5. Network topology for simulation.

SRC

E1

E2

C1

C2

C3

C4

C5

D1

D2

D3

DST

Occupied by the urgent contingency’s VN

1

2

1

1

2

1

1

1

1

1
2

1

1

1

Table I. Possible combinations of state si, action ai, and state si+1.

State

si

Action

ai

State

si+1

Selectable or Not
for non-urgent
VNs

SRC 1 E1 Not

SRC 2 E2 Selectable

E1 1 C2 Selectable

E2 1 C1 Selectable

E2 2 C3 Selectable

C1 1 C5 Selectable

C2 1 C4 Not

C3 1 C5 Selectable

C4 1 D2 Not

C5 1 D1 Selectable

C5 2 D3 Selectable

D1 1 DST Selectable

D2 1 DST Not

D3 1 DST Selectable

DST - - -

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference432

is 300, and also the upper limit of time slots the QoS
requirement is satisfied is 300. Figure 6 shows the number of
time slots the QoS requirement is satisfied (which is called “the
number of satisfied slots” below) versus the network traffic
variation interval cf. Here, we have set values of the number of
iterations of learning in one process of route selection, ni, as 10
and ε as 0.2. We can see that the dynamic methods (B) and (C)
can drastically increase the number of satisfied slots compared
to the static method (A) in the majority of cases. This is
because the dynamic methods execute resource migration when
the PLR exceeds 10-3, while the static method does not execute
it even if the requirement on PLR is not satisfied. Note that,
when cf = 1, the performance of static method is almost the
same in comparison with dynamic methods because of the fact
explained below: It is probable that, just after the network
traffic changes, the PLR of route selected in the static method
(i.e. Route-1) does not exceed 10-3 while the PLR of route
selected in method (B) or (C) exceeds 10-3. Especially, when
the network traffic variation interval is very short, it might have
adverse effects on the dynamic methods depending on the
situation such as traffic fluctuation patterns and parameters
configuration. In fact, we can see that, as the value of cf
becomes higher, the improvement effects of dynamic methods
increase in comparison with the static method. Meanwhile,
method (C) can achieve higher number of satisfied slots
compared to method (B) because method (C) tends to select a
set of actions with higher Q-values through iterative learning
processes. When a route satisfies the QoS requirement of the
VN, the relevant Q-values increase by the reward formulated in
Eq. (1) in Section IV.

Figure 7 shows the number of satisfied slots versus action
selection parameter in reinforcement learning ε. We set the
value of ni as 10 for method (C). The dots indicate the
performances of method (C), and the solid lines indicate those
of method (B). In comparison with the performances of method
(B), method (C) can improve the performances in the majority
of cases in this parameter configuration (i.e. ni), but method (B)
is better only when cf = 1 and the value of ε is not 0.1. In this
simulation, we obtain a value of PLR on each link by a random
number generator as already mentioned. This means that, when

the network traffic (reflecting in PLRs) changes, method (C)
may increase the number of time slots the QoS requirement is
not satisfied depending on previous action selection results
even though a set of actions with higher Q-values was selected.
In other words, when the network traffic variation interval is
very short, we may not be able to receive the benefit from
reinforcement learning because the traffic fluctuation is too fast
and it is probable that a result of resource migration causes
QoS unsatisfaction. Meanwhile, the performances change when
we change the value of ε. It is effective to dynamically set the
value of ε in consideration of network situation.

Figure 8 shows the number of satisfied slots versus the
number of iterations of learning in one process of route
selection ni. We set the value of cf as 5. As shown in Fig. 6,
when cf = 5, the number of satisfied slots in method (B) is 126.
In comparison with method (B), method (C) achieves better
performances at all times when the value of ni is equal to or
larger than 2. Besides, the numbers of satisfied slots in method
(C) become larger as the value of ni increases, and converge
more or less when the value of ni exceeds 9. As the value of ni
is smaller (e.g. 1 or 2), the number of iterations of updating Q-
values decreases, and thus, the reward cannot be reflected in
the Q-values related to a route where the QoS requirement is
satisfied. If enough number of iterations are executed, the
reward can be reflected in all Q-values related to the route.
Thus, it results in convergence of performances. Meanwhile, as
method (C) adopts the ε-greedy method for an action selection
and an action is selected randomly with the probability of ε, it
results in variation of performances along with change of ni.

VI. CONCLUSION

We proposed the methods to dynamically select/migrate
resources of VNs when some urgent contingency occurs and a
highest-priority VN needs to be constructed. Our proposal
applies the reinforcement learning to selection of alternate
resources to satisfy non-urgent VNs’ QoS requirements. We
demonstrated that the proposed method can increase the
number of times that a non-urgent VN’s QoS requirement (on
packet loss rate limit) is satisfied in comparison with both the
static and dynamic methods with completely random selection.

Fig. 8. The number of satisfied slots versus the value of ni where cf = 5.

Fig. 7. The number of satisfied slots versus the value of ε, where ni = 10.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 433

REFERENCES
[1] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N.

McKeown, and G. Parulkar, “FlowVisor: A Network Virtualization
Layer,” OpenFlow Switch Consortium, Technical Report, Oct. 2009.

[2] A. G. Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S.
Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” Proc. of ACM SIGCOMM ‘14, Chicago, IL, USA,
pp.163-174, Aug. 2014.

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth, R.
Lenglet, S. H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S.
Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and
R. Zhang, “Network Virtualization in Multi-tenant Datacenters,” Proc.
of 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI '14), Seattle, WA, USA, pp.203-216, April. 2014.

[4] J. Fan, Z. Ye, C. Guan, X. Gao, K. Ren, and C. Qiao, “GREP:
Guaranteeing Relialibity with Enhanced Protection in NFV,” Proc. of
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization (HotMiddlebox’15), London, UK, pp.13-18,
Aug. 2015.

[5] J. Liu, Y. Li, and D. Jin, “SDN-based Live VM Migration Across
Datacenters,” Proc. of ACM SIGCOMM ‘14, Chicago, IL, USA, pp.583-
584, Aug. 2014.

[6] M. Duggan, J. Duggan, E. Howley, E. Barrett, “An Autonomous
Network Aware VM Migration Strategy in Cloud Data Centres,” Proc.
of IEEE International Conference on Cloud and Autonomic Computing
(ICCAC 2016), Augsburg, Germany, pp.24-32, Sep. 2016.

[7] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement Learning: A
Survey,” Journal of Artificial Intelligence Research, vol.4, pp.237-285,
Jan. 1996.

[8] Y. Mohan and Ponnambalam S. G., “Q-learning Policies for a Single
Agent Foraging Tasks,” Proc. of 7th International Symposium on
Mechatronics and its Applications (ISMA ‘10), Sharjah, UAE, pp.1-6,
Apr. 2010.

[9] I. Koyanagi, T. Tachibana, and K. Sugimoto, “A Reinforcement
Learning-Based Lightpath Establishment for Service Differentiation in
All-Optical WDM Networks,” Proc. of IEEE GLOBECOM 2009,
Honolulu, HI, USA, pp.1-6, Nov.-Dec. 2009.

[10] J. V. D. Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. D. Turck, “A
Learning-Based Algorithm for Improved Bandwidth-Awareness of
Adaptive Streaming Clients,” Proc. of IEEE/IFIP International
Symposium on Integrated Network Management (IM 2015), Ottawa, ON,
Canada, pp. 131-138, May 2015.

[11] F. Esposito and I. Matta, “A Decomposition-Based Architecture for
Distributed Virtual Network Embedding,” Proc. of ACM SIGCOMM
Workshop on Distributed Cloud Computing (DCC’14), Chicago, IL,
USA, pp.53-58, Aug. 2014.

[12] T. Miyazawa and H. Harai, “Supervised Learning Based Automatic
Adaptation of Virtualized Resource Selection Policy,” Proc. of 17th
International Network Strategy and Planning Symposium (IEEE
Networks 2016), Montreal, QC, Canada, pp.170-175, Sep. 2016.

[13] ITU-T Recommendation Y.1541 (12/11) “Network performance
objectives for IP-based services”. https://www.itu.int/rec/T-REC-
Y.1541/en

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference434

