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Abstract— Network virtualization techniques enable network 
operators to implement and provide multiple virtual networks 
(VNs) on a common substrate network infrastructure. The 
network resources should be able to be dynamically reallocated 
among VNs or migrated from a place to another one in various 
situations, such as to construct a new urgent VN in case of 
occurrence of some urgent contingency, or to satisfy quality of 
service (QoS) requirements of non-urgent VNs in case of time-
varying network traffic conditions as much as possible. In this 
paper, we propose methods to automatically and dynamically 
select and migrate resources of non-urgent VNs. In particular, 
our proposal applies reinforcement learning for the selection of 
resources from alternate places to satisfy the QoS requirements. 
We evaluate the performances in terms of the satisfaction level of 
QoS requirement with various frequency of network traffic 
variation in a given duration and learning parameter 
configurations. Simulation results show that the proposed 
dynamic resource migration method can increase the number of 
times that non-urgent VNs’ QoS requirements are satisfied in 
comparison with a static resource assignment method. Moreover, 
we show that, depending on traffic variation and parameter 
configuration, applying reinforcement learning can increase the 
number of times the QoS requirement is satisfied compared to 
the dynamic method with completely random resource selection. 

Keywords—Virtualization; Resource Migration; Reinforcement Learning; 
Quality of Service. 

I. INTRODUCTION 

Recently, many researchers have been investigating 
techniques for the virtualization of networks, servers, and 
network functions [1]-[4]. One of the advantages of 
virtualization is that it realizes isolation. For example, virtual 
networks (VNs) configured through network virtualization on 
the top of an underlying substrate infrastructure can be isolated 
from each other by allocating and managing network resources, 
network functions, or flow spaces separately. In [1], FlowVisor 
is proposed as a network virtualization technique. It can be 
implemented on OpenFlow-based packet-switched networks, 
and realizes network virtualization by allocating separate flow 
spaces at multiple layers (e.g. by using source/destination 
MAC address, source/destination IP address, VLAN ID, and 
source/destination TCP/UDP port) to each VN. In the future 
networks, virtual network operators (VNOs) will appear as 
entities for network service provisioning, and network 
virtualization enables multiple VNOs to provide and manage 
individual resources, functions or flow spaces on separate VNs 
constructed on a common physical substrate network. For 
example, as for mobile networks, mobile VNOs are already 

providing virtual network services by leasing physical lines 
from other carriers. 

Current network construction mainly depends on manual 
operations for network resource allocation, identifiers (IP 
address, VLAN ID, etc.) allocation, parameter configurations, 
management, and so on. Hence, automation of such operations 
will be essential to shorten network configuration time, avoid 
human errors, or deal with shortage of human resources. 
Moreover, data generating devices (e.g. PCs, mobile/smart 
phones, vehicles, sensors, and robots) and quality-of-service 
(QoS) requirements (e.g. packet loss rate, latency and jitter) 
will be increasingly diverse due to rapid prevalence of Internet-
of-Things (IoT) applications in the future. Especially in view of 
using mobile terminals, VNs should be constructed by 
recognizing both time-varying network environments (e.g. 
network traffic and failure status) and diversified service 
requirements (i.e. service levels specified by application 
service providers). In other words, VNOs will be required to 
automatically and dynamically select virtualized resources 
suited for each VN by recognizing networking environments 
and service requirements. Here, let us assume that some urgent 
contingency (e.g. due to traffic accidents, natural disasters, 
security enhancement against massive crimes, or some short-
notice social events) occurs, and a VN for the contingency 
needs to be constructed. In such a case, the infrastructure 
provider (InP) should ensure requisite resources for the VN, 
and already-allocated resources to non-urgent VNs may have to 
be reallocated to the urgent VN so that the quality of service 
(QoS) requirement of the urgent VN can be guaranteed. 
Meanwhile, as mentioned above, the network traffic tends to be 
time-varying, especially in networks of the future IoT 
applications. In such network environments, non-urgent VNs 
also need to automatically and dynamically perform migration 
of resources for satisfying their QoS requirements to a 
maximum extent when their traffic volume fluctuates. 

The authors in [2] propose migration of network functions 
(intrusion detection system, NAT, load balancer, caching proxy, 
traffic monitoring, etc.) from an instance to another; along with 
a migration process, switches in relevant nodes (on both old 
and new routes) are controlled by software-defined networking 
(i.e. OpenFlow). The authors in [3] construct a combined 
server virtualization environment using Host Hypervisors and 
network virtualization environment using a Network 
Hypervisor, and create and migrate logical forwarding data 
paths between virtual machines (VMs). The authors in [4] 
propose a framework for mapping a service function chain 
(SFC) onto physical network infrastructure of nodes and links. 
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An SFC is created by connecting virtual network functions 
(VNFs) by logical links, and the proposed method has a 
resource migration function to protect the SFC from VNF 
failures. The authors in [5] propose inter-domain VM 
migration, in which network controllers and a global 
orchestrator select and change the route by means of OpenFlow 
when they receive a VM migration request from Cloud OS. 
However, these exiting researches lack sufficient discussion on 
how to dynamically decide and update about where to migrate 
each VN’s resource in consideration of time-varying network 
traffic and QoS requirement of each VN. Especially, there is no 
prior work on application of machine learning (ML) to satisfy 
QoS requirements in time-varying core network environments. 
The authors in [6] propose to apply a ML technique to resource 
migration; however, they only target at cloud & VMs 
environment, and do not touch the issue of resource migration 
in a large-scale network consisting of edge/core networks and 
datacenters, where multiple VNs requiring diverse QoS levels 
are constructed on the common substrate network. 

In this paper, we propose methods to dynamically select 
and migrate virtual resources of (non-urgent) VNs. The most 
straightforward way to realizing dynamic resource migration is 
to randomly migrate a VN’s resources from a place to another 
one to satisfy its QoS requirement. However, it is not an 
optimal solution. Therefore, in our methods, we propose to 
apply reinforcement learning for the selection of alternate 
resources to satisfy the QoS requirement. The reinforcement 
learning [7][8] is classified as a ML technique, and has been 
applied to various types of network control [6][9][10]. We 
evaluate the performance in terms of the satisfaction level of 
QoS requirement with various frequency of network traffic 
variation in a given duration and learning parameter 
configurations. By computer simulations, we demonstrate that 
the dynamic resource migration methods can increase the 
number of times that a non-urgent VN’s QoS requirement is 
satisfied in comparison with static resource utilization, and 
moreover, applying the reinforcement learning can further 
increase the number of times that the QoS requirement is 
satisfied compared to the dynamic method with completely 
random selection. 

II. VIRTUAL NETWORK CONSTRUCTION 

Figure 1 illustrates (a) structure of physical and virtual 
networks and (b) mapping of virtual resources onto physical 
resources. In the physical networks, edge networks and data 
centers are connected to a large-scale core network. The edge 
networks are composed of equipment collecting/processing 
data from various IoT terminals such as PCs, mobile/smart 
phones, vehicles, sensors, and robots. In this work, we assume 
that the whole physical network is managed by a single InP, i.e. 
a single domain environment. VNs are constructed over the 
whole physical network consisting of edge/core networks and 
data centers, and “resources” include computational (CPU, 
memory, and storage) as well as network (link bandwidth and 
buffer space in nodes) resources. Each VNO recognizes the 
service level requirements of an application (which we call 
service requirements) and/or social/environment conditions (i.e. 
urgent contingency, network traffic, etc.), and is in charge of 
VN construction including both creation of logical topology 
and selection of network and computational resources. The 

VNO then requests the InP to lease physical resources. The InP 
performs mapping of virtual resources (nodes and links) onto 
physical resources in the substrate networks. This mapping 
process is often referred to as VN embedding [11]. Based on the 
requests from VNOs, the InP leases physical resources to them 
(e.g. registers or updates each mapping information) for VN 
construction. VNs’ virtual resources may be migrated from a 
set of physical resources to another set of physical resources 
for satisfying their QoS requirements. Here, a set of physical 

 
Fig. 1.  Images of (a) structure of whole network and (b) VN embedding. 

Fig. 2.  An image of migration of non-urgent VN’s resources. 
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resources consists of resources in the relevant edge network, 
core network, and data center. Different VNs may have 
different logical topologies, as well as various network and 
computational resources. 

Figure 2 illustrates migration of non-urgent VN’s resources 
when an urgent contingency occurs. The VNO recognizes the 
urgent contingency by analyzing social/environmental data 
regularly collected by them. In order to construct a VN with 
high QoS, the VNO selects virtual resources over edge/core 
networks and data centers, and requests the InP to lease the 
physical resources. The VN with a high QoS requirement is 
preferentially allocated with optimal resources. Then, if 
multiple VNs happen to compete for resources, the resources 
being used by non-urgent VNs are reallocated to the urgent VN. 
In this way, the high QoS requirement of urgent VN is always 
met. Meanwhile, the networks should also be able to maintain 
the QoS of resource migrated non-urgent VNs to an optimal 
level. 

III. ML-BASED AUTONOMIC RESOURCE CONTROL 

In order to achieve automation of various operations and 
handle increasingly diverse IoT devices/applications and QoS 
requirements, we apply ML techniques in VN construction. 
Especially for resource control, we propound machine 
learning-based autonomic resource control (MLARC). 
Currently, we strive to apply ML to (i) selecting virtual 
resources in the process of initial VN construction according to 
a certain VN request [12] and (ii) deciding where to migrate 
each (non-urgent) VN’s resources dynamically in consideration 
of network traffic situation and QoS requirements. 

Figure 3 shows a control process flow diagram of MLARC. 
Inside the VNO, “Output” is determined by a virtual resource 
selection process for the initial VN construction on the basis of 
information of “Input”. We have applied a ML technique (i.e. 
support vector machine tool) to the virtual resource selection 
process [12]. Here, the input information consists of QoS 
requirement levels and network parameters. For example, the 
input can include service requirements on link bandwidth, 
packet loss rate, delay, and jitter. It can also include network 
traffic load, failure status, geographical position from where a 
user receives data, and so on. The output information includes 
logical topology, network resources such as link bandwidth and 
buffer space in network nodes, and computational resources 
such as CPU, memory, and storage space of computer 
equipment (e.g. server and controller). The VNO sends a 
request for physical resources to the InP on the basis of the 
output. The InP executes the VN embedding to map virtualized 
resources onto physical resources in the substrate networks, 
and leases physical resources to VNOs. A VN for urgent 
contingency is preferentially allocated an optimal amount of 
physical resources. As a consequence, if there are not enough 
physical resources, non-urgent VNs’ resources should be 
migrated to another set of physical resources by the resource 
migration process. In this paper, we mainly focus on this 
resource migration. Especially, we apply reinforcement 
learning to this process. After the decision about resource 
migration is made, the InP executes the VN embedding, and 
then, reallocates physical resources to each relevant VN. After 
the VN construction is completed, the VNO monitors 
performance (e.g. packet loss rate and delay) of each VN and 

inspects QoS satisfaction levels. The VNO can promptly reflect 
the monitoring results in the virtual resource selection process 
and/or resource migration process. 

IV. PROPOSED RESOURCE MIGRATION SCHEME 

As mentioned in Section I, the most straightforward way to 
realizing dynamic resource migration is to randomly select 
where to migrate a VN’s resources when the QoS requirement 
is not satisfied. Note that, while the QoS requirement is 
satisfied, no resource migration takes place. The dynamic 
method is expected to make it easier to satisfy QoS 
requirement of each (non-urgent) VN. However, it is possible 
that the dynamic method with completely random selection 
may experience unfortunate cases where migrated resources 
still cannot satisfy the QoS requirement. Therefore, we propose 
to utilize the reinforcement learning to selection of alternate 
resources in the case that the QoS requirement is not satisfied. 
Reinforcement learning is one of ML techniques [7][8]. The 
key parameters of the reinforcement learning process are States, 
Actions, and Rewards. Figure 4 shows a conceptual diagram of 
reinforcement learning. Initially, the state starts at the source 
state. The learning agent perceives the current state of the 
network environment, and selects and executes one of possible 
actions by means of an action selection method. Generally, 
learning agent and environment are regarded as a controller 
and a controlled object, respectively. The agent function is 
installed inside each VNO, and executes control processes for 
resource migration. The state is shifted from the current state to 
the next state by executing an action. Through iterative trial 
and error, a reward is given to every action or to the action to 

Fig. 3.  Control process flow diagram of MLARC. 

 
Fig. 4.  A conceptual diagram of reinforcement learning. 
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reach the goal (destination state), and the learning agent 
updates Q-values which express how much worthy the actions 
are. The learning agent iteratively learns actions to optimize 
(e.g. maximize) the overall reward between source and 
destination states. In this paper, for simplicity, we assume that 
a single agent system is installed in the VNO although multiple 
agents system will be effective at achieving higher scalability. 
The reinforcement learning is a systematic trial and error 
approach, and one of major learning algorithms is Q-learning 
[6]-[9]. We use the Q-learning in this paper. 

Our proposed method defines States, Actions, and Rewards 
as in the typical process of Q-learning. Actions are 
stochastically selected through iterative learning processes, and 
resource migration is executed in accordance with the selected 
set of actions. Depending on parameter configuration, an action 
with higher Q-value (i.e. high-value action) tends to be selected, 
and it results in improvement of performances (i.e. better 
satisfaction of QoS requirements). Meanwhile, note that “partly” 
random selection is preferable in order to avoid the situation 
that resources of many VNs are migrated to the same set of 
physical resources and congestion may occur there. In the 
reinforcement learning, there is an action selection method 
which is stochastically executed on the basis of one of the 
following two logics: (1) selecting an action with higher Q-
value, or (2) selecting an action randomly. It can be formulated 
as described below. 
We define States as si ∈ S = {SRC, E1, E2, …, EJ, C1, C2, …, 

CK, D1, D2, …, DL, DST}, which varies through a learning 
process. Here, SRC is the source node, Ex (x = 1, 2, …, J) are 
edge nodes, Cx (x = 1, 2, …, K) are core nodes, Dx (x = 1, 2, …, 
L) are data center nodes, and DST is the destination node. The 
values of J, K, and L represent the numbers of nodes in the 
edge network, core network, and data center, respectively, in a 
single domain network. The variable i corresponds to the hop 
number starting from SRC, e.g. for i = 0, si = SRC. We also 
define Actions as the decision of selection of a link connecting 
the current node to the next node, which are expressed as ai ∈ 
A(s) = {A1(s), A2(s), …}, where Ax(s) means the action of 
selection of link index x at a state s ∈ S. By executing action 
ai, the state transits from si to si+1. Additionally, we define 
Rewards as QoS satisfaction levels of each VN. Reward ri is 
the reward obtained when action ai-1 is executed at state si-1. A 
reward is given to an action in accordance with the QoS 
satisfaction level. The higher the QoS satisfaction level is, the 
higher the reward is. In this paper, for simplicity, we focus only 
on packet loss rate (PLR) as the QoS parameter. Reward ri is 
expressed as 

ri = {1 – pM / PR} × β if pM < PR, 
 0                   otherwise,             (1) 

where pM is the measured (monitored) PLR between SRC and 
DST, PR is the requirement on PLR for the VN, and β is a 
positive integer to adjust reward values. In this work, a reward 
is obtained only when the state arrives at DST. Namely, when 
si+1 = DST, reward ri+1 is given to action ai. As we can see in 
Eq. (1), a lower PLR results in the higher value of reward. 

We denote Q-value in the case that action ai is selected at 
state si by Q(si, ai). All Q-values are initially set to 0. In every 
learning process, when state si is shifted to state si+1 by 
performing action ai, the Q-values are updated by use of the Q-
learning rule expressed as 

Q(si , ai) ← Q(si , ai) + 
         α × [ ri+1 + γ × max Q(si+1 , a) – Q(si , ai) ]    (2)  																																																								ܽ ∈  (s)ܣ
 
where α is learning rate (0 ≤ α ≤ 1,  which is usually set as 
around 0.1), and γ is discount factor (0 ≤ γ ≤ 1, which is usually 
set as a value in the range from 0.90 to 0.99). 

The model and formulation in our proposed method have 
an advantage that it can give a reward every time the state 
reaches a transit node as well as DST. Note that we could also 
use another model and formulation (e.g. a state is a current end-
to-end route, an action is moving the VN from one state to a 
new one, and a reward is given only at DST).  

For an action selection, we propose to apply ε–greedy 
method due to its simplicity and practicality [8]. Action 
selection is performed only when the QoS requirement is not 
satisfied and resource migration is needed. Our method selects 
an action that gives the maximum value of Q(si , ai) with the 
probability of (1 - ε), and randomly selects an action with the 
probability of ε. The value of ε can be dynamically changed 
depending on the situation. The learning agent selects an action 
at each state independent of actions selection at other states 
between SRC and DST. Next to the state DST, the state goes 
back to SRC. One cycle from SRC to DST is called a learning 
process. By the iterative learning processes, the reward is 
reflected in Q-values at previous states/actions in series. The 
learning agent performs the prescribed number of learning 
processes, and finally decides resources for the VN and 
resource migration is executed in accordance with the set of 
actions that have been finally decided. Q(si , ai) can have only 
one value at a time, and thus, each Q-value is dynamically 
updated through the iterative learning processes. An advantage 
of reinforcement learning is that the Q-values associated with a 
route where the QoS requirement has been continuously 
satisfied in the past get higher and higher, and the route tends 
to be selected with a higher probability. We assume network 
environments that each VNO cannot get complete information 
about other VNOs’ decisions on resources selection; thus, each 
agent cannot find the optimal solution (e.g. by linear 
programming). Even if the complete information can be 
obtained, the time needed to find the solution drastically 
increases as the number of VNs is larger and especially in 
unpredictable network environments. Our proposed method is 
not affected by the number of VNs because it selects a route for 
a VN independently of routes selected for other VNs. 
Moreover, it performs trial-and-error for dynamic resource 
migration in such environments. 

V. EVALUATIONS 

We evaluated our proposed scheme to show the 
effectiveness of dynamic resource migration and application of 
reinforcement learning. As a first step, we performed computer 
simulations with some simple assumptions as explained below: 
We assume the network topology depicted in Figure 5. In the 
edge network, there are one source node (SRC) and two edge 
nodes (E1 and E2). In the core network, there are five core 
nodes (C1, C2, …, C5). In the data center, there are three data 
center nodes (D1, D2, and D3) and a destination node (DST). It 
is assumed that an urgent contingency occurs and its VN 
occupies all physical resources on the route of SRC – E1 – C2 – 

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 431



 

C4 – D2 – DST which we call as the urgent route. We focus on 
an existing non-urgent VN with the QoS requirement of PLR ≤ 
10-3, and its virtual resources are migrated from the physical 
resources on the urgent route to the other route which does not 
get through the urgent route. We assume that the non-urgent 
VN is constructed on bandwidth-shared (e.g. packet-switched) 
type of networks. This means that its physical resources are 
shared with other network traffic including best-effort 
background traffic although it might be better if some nodes 
were able to provide dedicated resources to the VN in order to 
reliably guarantee the QoS. Additionally, other background 
traffic is coming into C1, C3, and C5 from outside networks. 
Thus, it is too difficult to predict the amount of network traffic. 
In Fig. 5, the numbers (“1” and “2”) in red font are link 
interface IDs, which also correspond to the action numbers; for 
example, when si = E2 and si+1 = C3,  ai = 2. Note that, in this 
simple network topology, the migrated non-urgent VN has to 
get through E2 and C5 between SRC and DST inevitably. 

Table I shows the possible combinations of state si, action 
ai and state si+1. Note that the 1st, 7th, 9th, 13th lines cannot be 
selected because the urgent contingency’s VN occupies the 
relevant physical resources. At states E2 and C5, there are two 
actions A1(s) and A2(s) from each state. This means that, in this 
paper, we assume that there are four possible end-to-end 
resources between SRC and DST. For the sake of convenience, 
we call the route of SRC – E2 – C1 – C5 – D1 – DST as Route-1, 
SRC – E2 – C1 – C5 – D3 – DST as Route-2, SRC – E2 – C3 – C5 
– D1 – DST as Route-3, and SRC – E2 – C3 – C5 – D3 – DST as 
Route-4. 

We obtained and compared performances of three resource 

migration methods: (A) Static resource migration method, (B) 
Dynamic resource migration with completely random selection 
method, and (C) Dynamic resource migration with 
reinforcement learning method. When an urgent contingency 
occurs, the learning agent selects a certain route for the non-
urgent VN, which is Route-1 in this simulation. After that, in 
method (A), the route does not change during the lifetime of 
the VN. In method (B), a route is decided and changed by 
completely random selection when the QoS requirement is not 
satisfied. While the QoS requirement is satisfied, resource 
migration is not executed. In method (C), a route is decided 
and changed in accordance with the result of the iterative Q-
learning processes formulated in Eq. (2). While the QoS 
requirement is satisfied, resource migration is not executed as 
in the case of method (B). We set the values of β, α, and γ as 
10, 0.1, and 0.95, respectively. 

We define a unit time slot TU as the time interval required 
for both route selection and resource migration for a VN, and tf 
as the time interval in which the amount of network traffic (and 
thus PLR) changes. We also define cf as the ratio of tf to TU, 
which we call the network traffic variation interval; the unit is 
slot (i.e. cf = tf / TU). Note that fluctuation of network traffic 
causes fluctuation of PLRs in each link. We assume tf ≥ TU and 
cf is positive integer for simplicity. The follow-up of 
reinforcement learning should be done within the time of much 
less than TU. We classify links into four kinds of transparent 
links: E2 – C1 – C5, E2 – C3 – C5, C5 – D1 – DST, and C5 – D3 – 
DST. The transparent link means that there is no branching 
along the way between both ends of the link. We generate a 
value of PLR on each transparent link by a random number 
generator in the range from 10-5 to 10-1 in each time slot in 
which PLRs change (by using different values of random 
seeds). Thus, we can obtain the value of PLR on each route by 
simply adding the PLRs on two relevant transparent links [13]. 
In method (C), we assume that the learning agent in VNO can 
obtain the PLR of any route. 

In this evaluation, we set the number of time slots as 300, 
which corresponds to the execution time of this simulation. In 
other words, the maximum number of resource migration steps 

 
Fig. 6.  The number of satisfied slots versus cf, where ni = 10 and ε = 0.2. 

 
Fig. 5.  Network topology for simulation. 
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Table I.  Possible combinations of state si, action ai, and state si+1. 

State

si

Action

ai

State

si+1

Selectable or Not
for non-urgent 
VNs

SRC 1 E1 Not

SRC 2 E2 Selectable

E1 1 C2 Selectable

E2 1 C1 Selectable

E2 2 C3 Selectable

C1 1 C5 Selectable

C2 1 C4 Not

C3 1 C5 Selectable

C4 1 D2 Not

C5 1 D1 Selectable

C5 2 D3 Selectable

D1 1 DST Selectable

D2 1 DST Not

D3 1 DST Selectable

DST - - -

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5
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is 300, and also the upper limit of time slots the QoS 
requirement is satisfied is 300. Figure 6 shows the number of 
time slots the QoS requirement is satisfied (which is called “the 
number of satisfied slots” below) versus the network traffic 
variation interval cf. Here, we have set values of the number of 
iterations of learning in one process of route selection, ni, as 10 
and ε as 0.2. We can see that the dynamic methods (B) and (C) 
can drastically increase the number of satisfied slots compared 
to the static method (A) in the majority of cases. This is 
because the dynamic methods execute resource migration when 
the PLR exceeds 10-3, while the static method does not execute 
it even if the requirement on PLR is not satisfied. Note that, 
when cf = 1, the performance of static method is almost the 
same in comparison with dynamic methods because of the fact 
explained below: It is probable that, just after the network 
traffic changes, the PLR of route selected in the static method 
(i.e. Route-1) does not exceed 10-3 while the PLR of route 
selected in method (B) or (C) exceeds 10-3. Especially, when 
the network traffic variation interval is very short, it might have 
adverse effects on the dynamic methods depending on the 
situation such as traffic fluctuation patterns and parameters 
configuration. In fact, we can see that, as the value of cf 
becomes higher, the improvement effects of dynamic methods 
increase in comparison with the static method. Meanwhile, 
method (C) can achieve higher number of satisfied slots 
compared to method (B) because method (C) tends to select a 
set of actions with higher Q-values through iterative learning 
processes. When a route satisfies the QoS requirement of the 
VN, the relevant Q-values increase by the reward formulated in 
Eq. (1) in Section IV. 

Figure 7 shows the number of satisfied slots versus action 
selection parameter in reinforcement learning ε. We set the 
value of ni as 10 for method (C). The dots indicate the 
performances of method (C), and the solid lines indicate those 
of method (B). In comparison with the performances of method 
(B), method (C) can improve the performances in the majority 
of cases in this parameter configuration (i.e. ni), but method (B) 
is better only when cf = 1 and the value of ε is not 0.1. In this 
simulation, we obtain a value of PLR on each link by a random 
number generator as already mentioned. This means that, when 

the network traffic (reflecting in PLRs) changes, method (C) 
may increase the number of time slots the QoS requirement is 
not satisfied depending on previous action selection results 
even though a set of actions with higher Q-values was selected. 
In other words, when the network traffic variation interval is 
very short, we may not be able to receive the benefit from 
reinforcement learning because the traffic fluctuation is too fast 
and it is probable that a result of resource migration causes 
QoS unsatisfaction. Meanwhile, the performances change when 
we change the value of ε. It is effective to dynamically set the 
value of ε in consideration of network situation. 

Figure 8 shows the number of satisfied slots versus the 
number of iterations of learning in one process of route 
selection ni. We set the value of cf as 5. As shown in Fig. 6, 
when cf = 5, the number of satisfied slots in method (B) is 126. 
In comparison with method (B), method (C) achieves better 
performances at all times when the value of ni is equal to or 
larger than 2. Besides, the numbers of satisfied slots in method 
(C) become larger as the value of ni increases, and converge 
more or less when the value of ni exceeds 9. As the value of ni 
is smaller (e.g. 1 or 2), the number of iterations of updating Q-
values decreases, and thus, the reward cannot be reflected in 
the Q-values related to a route where the QoS requirement is 
satisfied. If enough number of iterations are executed, the 
reward can be reflected in all Q-values related to the route. 
Thus, it results in convergence of performances. Meanwhile, as 
method (C) adopts the ε-greedy method for an action selection 
and an action is selected randomly with the probability of ε, it 
results in variation of performances along with change of ni. 

VI. CONCLUSION 

We proposed the methods to dynamically select/migrate 
resources of VNs when some urgent contingency occurs and a 
highest-priority VN needs to be constructed. Our proposal 
applies the reinforcement learning to selection of alternate 
resources to satisfy non-urgent VNs’ QoS requirements. We 
demonstrated that the proposed method can increase the 
number of times that a non-urgent VN’s QoS requirement (on 
packet loss rate limit) is satisfied in comparison with both the 
static and dynamic methods with completely random selection. 

Fig. 8.  The number of satisfied slots versus the value of ni where cf = 5. 
 

Fig. 7.  The number of satisfied slots versus the value of ε, where ni = 10. 
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