
Sharing Data Store and Backup Controllers for
Resilient Control Plane in Multi-domain SDN

Jiacong Li, Ying Wang, Wenjing Li, Xuesong Qiu
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications
Beijing, China

Email: {huanshiweiyang, wangy}@bupt.edu.cn

Abstract—software-defined networking (SDN) uses a
centralized control plane to manage the whole network. If the scale
of the network is large, it is necessary to divide it into multiple
domains. Since the network scale becomes larger, the probability
of failure occurrences is higher. Therefore, it is important to
guarantee the control plane resilience in multi-domain SDN.
However, the existing approaches cannot store the network state
in real time, and do not consider the backup controllers placement
problem in multi-domain SDN. In order to ensure the resilience of
the control plane in multi-domain SDN, we propose a sharing data
store and backup controllers based approach. Sharing data store
is used to ensure that each master controller has a view of the
whole network and data store can save the network state during
the failure time. The sharing backup controllers are used to
guarantee the resilience of control plane with minimum cost.
Simulations show that our approach can use as less backup
controllers as possible to ensure the resilience of control plane.

Keywords—multi-domain SDN; resilient; control plane; sharing
data store; sharing backup controller placement;

I. INTRODUCTION

With the development of the network, the scale of network
is larger and larger, so the network management has become a
more and more complicated work. To simplify network
management, software-defined networking (SDN) [1] is
proposed. SDN is a new technology that divides the control
plane from the data plane. It relies on a centralized controller
that runs on control plane to manage the network. The controller
has a view of the whole network, and then calculates the flow
tables for each switch, while the switches are just responsible for
forwarding the data packets according to the flow tables.

Obviously, the controller plays a significant role in SDN.
However, when the scale of the network is large, a controller
becomes overloaded and it cannot response to the request from
all switches in the required time. One solution of managing
large-scale network is splitting it into small parts and each part
has a controller. Furthermore, The OpenFlow [2] protocol
version 1.2 [3] provides a controller role change mechanism to
support multiple controllers in multi-domain SDN. Therefore,
we can build multi-domain SDN environment to manage the
large-scale network based on the role mechanism. However,
there are still some problems should be considered. Firstly, it is
difficult to keep the consistency of multiple controllers. Since
there are several controllers, and each controller only knows the
network state of its domain, it is difficult to make each two

controllers communicate as soon as the network changes.
Moreover, when a controller recovers from a failure, it does not
have the current network state of its domain, because this
controller does not know the change of the network during its
failure time and other controllers do not know either.
Additionally, since there are multiple domains in the network,
more than one backup controller is needed. So the number and
the placement of these backup controllers should be considered.

Numerous previous work has been done in SDN resilience
area. Some of them put emphasis on data plane, like [4-6].
Others are related to the consistency guarantees [7], controller
replication [8-11], placement of distributed controllers [12-15]
and so on. However, most existing approaches to improve the
resilience of the control network are focus on controller
replication, which needs communication between controllers.
Besides few researches have been done about the sharing backup
controller placement in multi-domain SDN. Towards addressing
this gap, this paper makes the following contributions:

(1) We propose a sharing data store mechanism to guarantee
the consistency of controllers in different domains and let the
controller, which just recovers from a failure know the present
state of the network. Furthermore, we design the data structure
to store the state of the network.

(2) We propose a sharing backup controller mechanism in
multi-domain SDN to increase the resiliency of the large-scale
network. To make the performance of network optimal with
using as less backup controllers as possible, we calculate the
number of backup controllers based on probabilities and use
multi-objective optimization algorithm to compute the
placement scheme of backup controllers.

(3) We implement and validate our mechanism in a
controlled environment. We conduct simulations to show the
validity of the approach, and evaluate the performance of the
approach in networks of different scales and probabilities of
failure occurrences.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III describes the controller
consistency and backup controller placement problem. Section
IV describes the sharing data store and backup controller
mechanisms. Section V describes our experimental
methodology and evaluates the performance of our approach,
and this paper is concluded in Section VI.

978-3-901882-89-0 @2017 IFIP 476

II. RELATED WORK

In order to improve the resilience and reliability of network.
Many researchers have paid much attention to the controller
replication [8-11] and controller placement problem [12-15].

In general, controller replication approaches can be
classified into two categories: the active replication approaches
and the passive replication approaches. Paulo Fonseca et al. [8]
discussed these two replication approaches. In the case of active
replication, the switch connects with multiple controllers that
process the request. In passive replication, the switch connects
with only one controller that processes the requests and updates
the other controllers. Eros et al. [9-10] explored the OpenFlow
roles for the design of resilient SDN architectures relying on
multi-controllers. In the case of active replication, all controllers
play the equal role and they process the request at the same time.
In passive replication, only one of controllers plays the master
role, the others play the slave role. All the switches connect with
the master controller, and the master controller processes the
requests from the switches, then it sends the updates to other
slave controllers. Besides these two replication approaches,
Paulo Fonseca et al. [11] described a novel mechanism that
provides an increase of resilience in SDN using a CPRecovery
component organization.

However, each replication approach has its own
disadvantage. In active replication, it is difficult to guarantee the
totally ordered delivery of all messages to all controllers; all
controllers keep the entire network view, which may be
undesirable and so on. In order to solve these problems, Eros et
al. [9-10] implemented a strategy of active replication in the Ryu
controller, using the OpenReplica service to ensure consistent
state among the distributed controllers. In passive replication,
the slaves save the processing costs, while it requires all slave
controllers to monitor the master to guarantee the consistency in
case of failures. The replication component proposed by Paulo
Fonseca et al. [11] can replicate the network state to the backup
controller from the primary controller, but this approach does
not consider that replication of the network state after the
primary controller breaks down.

The controller placement problem [12-15] can be classified
into two categories: the propagation delay based and the network
reliability based. The propagation delay based approaches [12]
found the location of the controller and make the total delay
minimum with the least number of controllers. Jimenez et al.
[12] defined a metric to evaluate the candidate nodes that satisfy
the required delay. The network reliability based [13-14]
approaches find the placement of controllers to keep the network
reliable with using as less controllers as possible. Hu et al. [13]
used the expected percentage of control path loss to characterize
the reliability of SDN control networks. Muller et al. [14]
formulated the problem as a binary integer programming to
maximize the average number of disjoint paths between devices
and controllers.

In order to improve the reliability of control network and
satisfy the required propagation delay at the same time,
Qinghong Zhong et al. [15] proposed a min-cover based
controller placement approach. They first proposed two
reliability metrics, which consider how many switches may lose
connection to controllers in case of a single-link failure. Then

they defined the neighborhood of a vertex and the min-cover of
a network, based on which they give the formulation of
controller placement problem. They also proposed a heuristic
method to find the min-cover to improve the efficiency of
calculating the controller placement solution.

However, few researches about backup controller placement
problem in multi-domain SDN have been done, and this paper
focuses on this problem. In order to keep the consistency of
multiple controllers, we propose a sharing data store, to save the
network state at any time. Additionally, we propose a sharing
backup controller placement approach in multi-domain SDN,
which can improve the control network reliability while meeting
the required delay.

III. THE PROPOSED RESILIENT CONTROL PLANE DESIGN

AND IMPLEMENTATION

In this section, we first introduce the architecture of multi-
domain SDN with sharing data store and describe the process of
failure recovery and failure repair with sharing data store. Then,
we provide a sharing backup controller mechanism. Firstly, we
calculate the number of backup controllers based on
probabilities. Then we propose an algorithm to find the backup
controllers placement scheme in multi-domain SDN efficiently.

A. The Sharing Datastore

In order to keep the consistency of the control plane without
the communication of controllers, and increase the resilience of
the whole network at the same time, we propose a sharing data
store to save the whole network state at any time.

Architecture Design. There are multiple domains in
network and each domain has a controller, which acts as master.
In order to make sure each master controller has information of
the whole network, we design a sharing data store. The
architecture is shown as Fig. 1.

Fig. 1. Architecture Design

As Fig.1 shows, the data store has all topologies of each
domain, which means the data store knows the whole network
state. When a master controller needs the whole network

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 477

information, it sends a request message to the data store, and
then the data store replies this request with the whole network
information. When a master controller finds that its network has
changed, the controller updates the information of the new
topology in data store as soon as possible to ensure the data store
has the topology of the current network. There is a calculator
module in data store, which can be used to compute the
placement of backup controllers according to the data of
topology. After calculating the backup controllers of each
domain, data store sends the results to master controllers, and
then controllers send the results to every switch, to make sure
each switch knows the backup controller.

Failure Recovery. After the data store knows the topology
of the whole network, the calculator module will calculate the
backup controllers and send the results to master controllers in
each domain, and then the master controllers send the
information to their switches. Therefore, each switch has a list
of backup controllers. The process of failure recovery can be
summarized by the following steps:

1) As soon as a switch detects the controller failure in
domain A, this switch looks for the first backup controller C in
its backup controller list, and verifies if the controller C is
available. Then informs the controller C that controller C needs
to become the new master controller of domain A.

2) After controller C receives the message that controller C
needs to become a master controller in domain A, it sends a
request message to the data store to get the switches and the
network state in domain A, then it sends a role-request message
to each switch in domain A.

3) Each switch in domain A replies the controller C with
role-reply message after it receives the role-request message
and changes its master controller. From now on, all switches in
domain A have a new controller.

Failure Repair. This occurs when the faulty controller
becomes alive and can be master again. The faulty controller is
available, but it does not know the network state of domain A
during its failure time, so it cannot control the switches in
domain A directly, or it needs to get the network state from the
switches again. In order to avoid unnecessary cost, we use
sharing data store to save the network state. When the controller
becomes alive again, it inquires the current master controller of
domain A in data store and gets the current network state from
the data store.

Fig. 2 depicts the process of failure repair. In this case,
controller C' was the master of domain A, but it failed. Then
controller C becomes the new master as previous mentioned.
When the controller C' is available again, the following steps are
executed:

Phase 1. Controller C' sends a domainID-request message
to data store to get the current network state and database sends
the information of its domain.

Phase 2. Controller C' sends a start-migration message to
controller C to start the migration process. Then controller C
sends a barrier-request message to switches to interrupt these
switches sending requests. The switches reply this request with
a barrier-reply message and stop sending messages. After

controller C processes the request received before, it sends a
flow-mod message to switches, then switches reply it with a
flow-mod-reply message. As soon as controller C has processed
all the requests, it sends an end-migration message to controller
C'.

Fig. 2. Process Failure Repair

Phase 3. Controller C' sends a role-request-master message
to switches to change their master controller, and then the
switches reply with a role-request-reply message. At last,
controller C' sends a domainID-mod message to data store to
save the new network state, and then data store confirms this
message with a domainID-reply message.

B. Implementation of Sharing Backup Controller Placement

In order to construct an effective and reliable control
network in multiple domain SDN, we propose a sharing backup
controller method. Sharing backup controller means these
backup controllers may be used by multiple domains. There are
three main questions to be considered: how many backup
controllers are needed in the network, which domains are these
backup controllers responsible for and where to place them.
Many researches [12-15] have been done in controller
placement area. However, they mainly put emphasis on the
master controller placement in single domain SDN. In this paper,
we focus on backup controller placement in multiple domains.
The sharing backup controller placement can be described as
follows:

Input. Tuple ܫ	 = ,ܰ)ܩ} ;(ܮ ;ܥ ;ܦ ;௖ݐ݈ݑ݂ܽ {ீݕ݈ܽ݁݀
represents the input of the problem. The physical topology is
denoted by an undirected graph G = (N, L), where N denotes the
set of all the switches, L represents the set of all the links
between the switches. ܥ = { ௜ܵ௝} represents the set of master
controllers, where ௜ܵ௝ denotes the switch j in the domain i. The
set of domains is given by D. ݂ܽݐ݈ݑ௖ gives the probability of
controller failure. ݈݀݁ܽீݕ represents the latency of each two
adjacent nodes.

Output. The tuple ܱ	 = 	 {ܰ஻஼; ݇} represents the output of
our implement. The backup controller placements are denoted

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference478

by ܰ஻஼. It is a subset of N. The number of backup controllers is
represented by k.

Objective. There are three goals of the proposed strategy.
The first one is to make sure the cost minimum, in other words,
to make the number of backup controllers minimum. This goal
is modeled as function (1), where x௜௝ means whether the backup
controller connect to the switch S௜௝, if it connects to the switch, x௜௝ = 1, otherwise x௜௝ = 0. S௜௝ means the switch j in the domain
i. The range of i is from 1 to the number of domains |D| and N
means the set of switches. min∑ x௜௝ଵழ௜ழ|஽|,௝∈ே	 (1)

The second one is to make the total delay minimum, as
function (2) shows, where ܵ௫௬ represents the backup controller
placement. min∑)ݕ݈ܽ݁݀ ௜ܵ௝, ܵ௫௬)ଵழ௜ழ|஽|	&	௜	ஷ௫,௝∈ே (2)

Lastly, we should consider the reliability of the network. We
propose a metric reliability factor based on these metrics. First,
we find that taking overlapping link as a factor is not complete.
An instance shown in Fig.3, (a), (b) and (c). In (a), there are two
paths (u, a, b, c, v) and (u, a, d, e, v) between node u and v. The
amount of paths is 2, the average length of paths is 4, and
maximum rate of overlapping link is 1. While in (b), there also
have two paths between node u and v. The number of paths is
also 2, the average length of paths is 4, and the maximum rate of
overlapping link is 1. Obviously, (a) is more reliable than (b).
Based on this, we define the average correlation of all paths
between two nodes as follows: ܿݎ݋௨,௩ = 	 ∑ ∑ ௑೗,ುೠ,ೡ,೔೙ೠ,ೡ೔సభ೗∈ಽ ௡ೠ,ೡ,೗ /݊௨,௩ (3)

 Where ௟ܺ,௉ೠ,ೡ,೔ denotes the link l whether belongs to the path
i between node u and v, and ݊௨,௩,௟ represents the number of links
on all paths between u and v. We can observe that the lower the
average correlation is, the higher reliability is.

(a)

(b)

(c)

Fig. 3. The different paths between node u and v

In addition, when the average length, the amount of paths
and average correlation are equal between two node pairs, like
(a) and (c) in Fig. 3. The average length of their paths is 4, the
amount of paths is 2, and the average correlation is 4/7. But (c)
is more reliable than (a). Because the differences in length of
two paths in (c) is larger than that in (a). Therefore, we define
the difference in length of all paths as follows:

݀݅ ௨݂,௩ = 	 ∑ ቀ೗೐೙ೠ,ೡ,೔ష೗೐೙ೠ,ೡതതതതതതതതതതቁ೙ೠ,ೡ೔సభ ೗೐೙ೠ,ೡതതതതതതതതതത మ
௡ೠ,ೡ (4)

Where ݈݁݊௨,௩തതതതതതതത denotes the average length between node u
and v as formula (5) shows. ݈݁݊௨,௩തതതതതതതത = 	 ∑ ௟௘௡ೠ,ೡ,೔೙ೠ,ೡ೔సభ௡ೠ,ೡ (5)

Based on the metric mentioned above, we proposed
reliability factor to represent the reliability between the two
nodes in network as equation (6) shows. rf୳,୴ = 	 	௡ೠ,ೡ௟௘௡ೠ,ೡതതതതതതതതത∗௖௢௥ೠ,ೡ∗(ଵିௗ௜௙ೠ,ೡ) (6)

The reliability of the whole network can be represented as
formula (7) shows, where ܵ௫௬ represents the backup controller
placement and k means the number of backup controllers. max	(ଵ௞)∑ ݎ ௌ݂ೣ೤,௩௩∈ே (7)

Constraints. The constrains of our model can be divided
into two categories: placement-related and cost-related.

The first three constraints (8 are placement-related. They
ensure correctness for the placement of controller instances in
the topology. Constraint (8) guarantees that the backup
controller is not placed on the master controller node. S୧୨ 	 ∉ ,ܥ ௜௝ݔ∀ = 1 (8)

The cost-related constraint (12) ensures that the number of
backup controllers is in a certain range based on probability. For
a possible fault	F୧, if it happens we denoted 	ܨ௜ = 1 and 	ܨ௜ = 0
otherwise. It is obvious the random variable 	ܨ௜ is with the
Bernoulli distribution. The number of failures can be
represented by equation (9) and the probability of k′ controllers
fail at the same time is as equation (10) shows. Formula (11)
means the probability of k′ concurrent controller fault
occurrences is less than a certain value to guarantee the number
of backup controllers is enough to responsible for the whole
network. |F| = 	∑ F୧ (9) p(|F| = k′) = 	 ൫|஼|௞ ൯	fୡ௞ᇱ(1 െ fୡ)|஼|ି௞ᇱ (10) p(|F| = k′) ൏ ε (11) kᇱ 	൑ 	݇	 ൑ (12) |ܥ|

C. Algorithm design of Sharing Backup Controller Placement

Since there are three optimization objectives in our model,
we use Particle Swarm Optimization (PSO) algorithm to solve
our problem. PSO algorithm is proposed by Kennedy J et al. [16].

c u a vb

e d

c u a vb

d

c u a vb

e

d

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 479

In this algorithm, the entity is abstracted as particles, and the
position of particle is the solution of the problem. PSO uses an
archive to save the non-dominated set during searching process,
and uses adaptive mesh method to choose global guidance from
the archive. Additionally, in order to enhance the local search
ability of this algorithm, we use mutation operator.

This algorithm mainly has three parts: the archive and
pruning of non-dominated set, global guidance strategies and
keeping diversity. The archive and pruning of non-dominated set
is used to keep the elite solution and control the quantity of
solutions, the global guidance strategies are used to control the
direction and speed of particle swarm evolutionary, and the
diversity keeping is used to find global optimal solution based
on genetic algorithm.

The procedure of calculating the position of sharing backup
controller placement is shown in algorithm 1, where PopSize
means the size of particle swarm, X denotes the position matrix
of particle, V represents the speed matrix, F denotes the faulty
probability matrix, pm means the probability of mutation and pc
means the probability of crossover. We get these information
from input tuple. Pୠୣୱ୲ represents the output tuple.

Algorithm 1 Algorithm of SBC

Input: PopSize, X, V, F, L
Output: Pୠୣୱ୲
Procedure:
1: loop=0;
2: (X,V)=InitPop(PopSize);
3: FN = EvaluateFitness(X,L,F);
4: ND = getNonDominatedResult(X,FN);
5: Archive = saveToArchive(X,Archive);
6: Pୠୣୱ୲ = ܺ;
7: gୠୣୱ୲ = ;GBest(Archive)ݐ݁݃
8: while (loop < MaxLoop) do
9: loop = loop + 1;
10: V = UpdateSpeed(X,V);
11: X = UpdatePosition(X,V);
12: FN = EvaluateFitness(X,L,F);
13: CO = crossover(X,Archive,pc);
14: TEMP = CO + X;
15: FNT = EvaluateFitness(TEMP,L,F);
16: ND = getNonDominatedResult(TEMP,FNT);
17: Archive = saveToArchive(ND,Archive);
18: X = mutate(X,pm);
19: Pୠୣୱ୲ =)ݐݏ݁ܤܲ݁ݐܽ݀݌ݑ ௕ܲ௘௦௧, ܺ);
20: gୠୣୱ୲ = ;(݁ݒℎ݅ܿݎܣ)ݐݏ݁ܤܩݐ݁݃
21: end while

IV. PERFORMANCE EVALUATION

 In this section, we conduct simulations to verify the validity
of our approach. We first introduce our experimental
environment, and then we discuss the metrics we used to
evaluate our approach. Last, we show the results of the
evaluation performance of our method, and the results of the
comparison with other approaches.

A. Experimental Environment

We use the network topology from Brite topology generator
[17], which can generate multi-domain network randomly. We
assume that the failure probability of each link is the same, and
the propagation delay of each edge in the same domain is lower
than the latency of edges across different domains. Additionally,
for simplicity, we assume that there are 10 nodes in each domain.

We evaluate our approach in two aspects. First, we evaluate
the performance of our approach. We compare the number of
backup controllers and the average responsibility factor with the
approach, which designs backup controllers for each domain,
denoted as BED. Second, we compare our approach with the
existing approaches of controller placement. One approach is
based on the shortest path, that means this method put the
backup controllers where can make the paths shortest between
the backup controller and switches. This approach is denoted as
Shortest. The other approach put the backup controllers
randomly, without considering the delay and reliability of the
network, which denoted as Random.

B. Evaluation Metrics

In this evaluation, we use two metrics to compare our
approach with BED. One is the number of backup controllers in
different network scales. The other one is the average reliability
factor, as formula (7) shows, to represent the reliability of the
network.

C. The Results of Evaluating Performance

We evaluate our approach in networks of different scales and
failure probabilities. We generate networks of 1, 3, 5, 7, 9, and
11 domains randomly and each domain has 10 nodes. The results
are shown in Fig.4 and Fig.5. When the number of domains
increases, the number of needed backup controllers increases too.
We also find that as the faulty probability of master controller
gets larger, more backup controllers are needed to manage the
whole network. Because when the faulty probability of master
controller gets larger, more controllers will get down, more
backup controllers are needed to cover the whole network.

Fig. 4. The number of backup controllers in different networks

Additionally, we can find with the increasing of the domain
number, the reliability of the network gets lower. It also can be
seen in Fig. 5 that the larger the faulty probability of master
controller is, the lower the reliability is.

0
1
2
3
4
5
6

1 3 5 7 9 11
Number of domains

0.4 0.6 0.8

N
um

be
r o

f b
ac

ku
p

co
nt

ro
lle

rs

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference480

Fig. 5. The reliability of different networks

D. The Results of Comparision With Other Approaches

 Fig. 6 shows the result of the proposed approach compared
with Shortest and Random approach. We can find that reliability
of our approach is higher than other approaches and has a
steadily good performance in networks of different link failure
probability.

Fig. 6. The reliability factor of different approaches with different faultc

Then we compare these approaches based on metric
reliability factor in different number of domains. We generate
networks of 3, 5, 7, 9, and 11 domains randomly and each
domain has 10 nodes, and the faulty probability of master
controller is 0.4. Then we observe the reliability of the network
based on the metric reliability factor. The result is given by Fig.
7. We can find that reliability of our approach is higher than
other approaches and has steadily good performance in networks
of different scales.

Fig. 7. The reliability factor of different approaches in different scales

Last, we compare our approach with BED based on the
number of backup controller and the reliability in the network of
different scales. We generate networks of 1, 3, 5, 7, 9, and 11
domains randomly, each domain has 10 nodes, and the faulty
probability of master controller is 0.4. Fig. 8 shows the number
of backup controllers in different approaches. We can find the
number of backup controllers our approach needs is less than
single backup approach. Fig. 9 shows the reliability of these two
approaches. We can find that reliability of our approach is nearly
equal to the BED approach.

Fig. 8. The number of backup controllers in different approaches

Fig. 9. The reliability of different approaches

V. CONCLUSION

In this paper, we have investigated the failure recovery
problem and the backup controller placement problem in multi-
domain SDN. In order to improve the resilience and reliability
of control network in multi-domain SDN, we propose a sharing
data store and backup controllers based approach. We first
design the data store to save the network state for failure
recovery without communication between two controllers. Then
we discuss how to decide the number and the placement of
backup controllers. We calculate the number of the backup
controllers based on probability. In order to find the backup
controller placement to improve the efficiency of calculating we
also propose a method, which combines PSO and genetic
algorithm. Simulations show that our approach can ensure the
control network resilience and reliability in multi-domain SDN
environment.

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11
Number of domains

0.4 0.6 0.8

Av
er

ag
e

of
 R

el
ia

bi
lit

y
fa

ct
or

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
faultc

SBC Shortest Random

Av
er

ag
e

of
 R

el
ia

bi
lit

y
fa

ct
or

0.6

0.7

0.8

0.9

1

3 5 7 9 11
Number of domains

SBC Shortest Random

Av
er

ag
e

of
 R

el
ia

bi
lit

y
fa

ct
or

0
1
2
3
4
5
6
7
8
9

10
11
12

1 3 5 7 9 11
Number of domains

SBC BED

N
um

be
r o

f b
ac

ku
p

co
nt

ro
lle

rs

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11
Number of domains

SBC BED
Av

er
ag

e
of

 R
el

ia
bi

lit
y

fa
ct

or

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 481

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (61501044).

REFERENCES
[1] Hyojoon Kim, Feamster N. “Improving network management with

software defined networking.” In: Communications Magazine, IEEE.
2013, 51(2), pp.114-119.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: enabling
innovation in campus networks,” Computer Communication Review, vol.
38, no. 2, pp. 69–74, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746.

[3] O. N. Foundation. (2011) Openflow switch specification version 1.2.0
(wire protocol 0x04). Website.
https://www.opennetworking.org/images/stories/downloads/sdnresource
s/

[4] Sgambelluri A, Giorgetti A, Cugini F, et al. OpenFlow-Based Segment
Protection in Ethernet Networks[J]. Journal of Optical Communications
& Networking, 2013, 5(9):1066-1075.

[5] Capone, A, Cascone, C, Nguyen, A.Q.T, et al. Detour planning for fast
and reliable failure recovery in SDN with OpenState[C]// Design of
Reliable Communication Networks. IEEE, 2014:25-32.

[6] Cascone C, Pollini L, Sanvito D, et al. SPIDER: Fault Resilient SDN
Pipeline with Recovery Delay Guarantees[J]. Computer Science, 2015.

[7] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On the
feasibility of a consistent and fault-tolerant data store for sdns,” in
Software Defined Networks (EWSDN), 2013 Second European
Workshop on. IEEE, 2013, pp. 38–43.

[8] Fonseca P, Bennesby R, Mota E, et al. Resilience of SDNs based On
active and passive replication mechanisms[C]// IEEE Global
Communications Conference. 2013:2188-2193.

[9] Spalla E S, Mafioletti D R, Liberato A B, et al. Resilient Strategies to
SDN: An Approach Focused on Actively Replicated Controllers[C]//
Brazilian Symposium on Computer Networks & Distributed Systems.
IEEE, 2015:246-259.

[10] Spalla E S, Mafioletti D R, Liberato A B, et al. AR2C2: Actively
replicated controllers for SDN resilient control plane[C]// NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium. 2016.

[11] Fonseca, P, Bennesby, R, Mota, E, et al. A replication component for
resilient OpenFlow-based networking[C]// Network Operations and
Management Symposium. IEEE, 2012:933-939.

[12] Jimenez, Y. Cervello-Pastor, C. Garcia, A. J. “On the controller
placement for designing distributed SDN control layer.” In: Networking
Conference, IFIP. Trondheim, 2-4 June 2014, pp. 1-9.

[13] Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, Shiduan
Cheng. “On reliability-optimized controller placement for Software-
Defined Networks.” In: Communications, China, vol. 11(2), Feb. 2014,
pp. 38-54.

[14] Muller, L.F; Oliveira, R. R. Luizelli, M. C. “Survivor: An enhanced
controller placement strategy for improving SDN survivability.” In:
GLOBECOM , Austin, TX. 8-12 Dec. 2014, pp. 1909-1915.

[15] Qinghong Zhong, Ying Wang, Wenjing Li, et al. A min-cover based
controller placement approach to build reliable control network in
SDN[C]// NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium. 2016.

[16] Kennedy J，Eberhart R C．Particle swarlll optimization．Proceedings
of International Conference on Neural Networks，Perth，Australia，
1995：1942-1948.

[17] [Online]. Available: http://www.cs.bu.edu/brite/

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference482

