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Abstract—software-defined networking (SDN) uses a 
centralized control plane to manage the whole network. If the scale 
of the network is large, it is necessary to divide it into multiple 
domains. Since the network scale becomes larger, the probability 
of failure occurrences is higher. Therefore, it is important to 
guarantee the control plane resilience in multi-domain SDN. 
However, the existing approaches cannot store the network state 
in real time, and do not consider the backup controllers placement 
problem in multi-domain SDN. In order to ensure the resilience of 
the control plane in multi-domain SDN, we propose a sharing data 
store and backup controllers based approach. Sharing data store 
is used to ensure that each master controller has a view of the 
whole network and data store can save the network state during 
the failure time. The sharing backup controllers are used to 
guarantee the resilience of control plane with minimum cost. 
Simulations show that our approach can use as less backup 
controllers as possible to ensure the resilience of control plane.  

Keywords—multi-domain SDN; resilient; control plane; sharing 
data store; sharing backup controller placement;  

I. INTRODUCTION 

With the development of the network, the scale of network 
is larger and larger, so the network management has become a 
more and more complicated work. To simplify network 
management, software-defined networking (SDN) [1] is 
proposed. SDN is a new technology that divides the control 
plane from the data plane. It relies on a centralized controller 
that runs on control plane to manage the network. The controller 
has a view of the whole network, and then calculates the flow 
tables for each switch, while the switches are just responsible for 
forwarding the data packets according to the flow tables. 

Obviously, the controller plays a significant role in SDN. 
However, when the scale of the network is large, a controller 
becomes overloaded and it cannot response to the request from 
all switches in the required time. One solution of managing 
large-scale network is splitting it into small parts and each part 
has a controller. Furthermore, The OpenFlow [2] protocol 
version 1.2 [3] provides a controller role change mechanism to 
support multiple controllers in multi-domain SDN. Therefore, 
we can build multi-domain SDN environment to manage the 
large-scale network based on the role mechanism. However, 
there are still some problems should be considered. Firstly, it is 
difficult to keep the consistency of multiple controllers. Since 
there are several controllers, and each controller only knows the 
network state of its domain, it is difficult to make each two 

controllers communicate as soon as the network changes. 
Moreover, when a controller recovers from a failure, it does not 
have the current network state of its domain, because this 
controller does not know the change of the network during its 
failure time and other controllers do not know either. 
Additionally, since there are multiple domains in the network, 
more than one backup controller is needed. So the number and 
the placement of these backup controllers should be considered. 

Numerous previous work has been done in SDN resilience 
area. Some of them put emphasis on data plane, like [4-6]. 
Others are related to the consistency guarantees [7], controller 
replication [8-11], placement of distributed controllers [12-15] 
and so on. However, most existing approaches to improve the 
resilience of the control network are focus on controller 
replication, which needs communication between controllers. 
Besides few researches have been done about the sharing backup 
controller placement in multi-domain SDN. Towards addressing 
this gap, this paper makes the following contributions: 

(1) We propose a sharing data store mechanism to guarantee 
the consistency of controllers in different domains and let the 
controller, which just recovers from a failure know the present 
state of the network. Furthermore, we design the data structure 
to store the state of the network. 

(2) We propose a sharing backup controller mechanism in 
multi-domain SDN to increase the resiliency of the large-scale 
network. To make the performance of network optimal with 
using as less backup controllers as possible, we calculate the 
number of backup controllers based on probabilities and use 
multi-objective optimization algorithm to compute the 
placement scheme of backup controllers.  

(3) We implement and validate our mechanism in a 
controlled environment. We conduct simulations to show the 
validity of the approach, and evaluate the performance of the 
approach in networks of different scales and probabilities of 
failure occurrences.  

The rest of this paper is organized as follows. Section II 
discusses the related work. Section III describes the controller 
consistency and backup controller placement problem. Section 
IV describes the sharing data store and backup controller 
mechanisms. Section V  describes our experimental 
methodology and evaluates the performance of our approach, 
and this paper is concluded in Section VI. 
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II. RELATED WORK 

In order to improve the resilience and reliability of network. 
Many researchers have paid much attention to the controller 
replication [8-11] and controller placement problem [12-15].  

In general, controller replication approaches can be 
classified into two categories: the active replication approaches 
and the passive replication approaches. Paulo Fonseca et al. [8] 
discussed these two replication approaches. In the case of active 
replication, the switch connects with multiple controllers that 
process the request. In passive replication, the switch connects 
with only one controller that processes the requests and updates 
the other controllers. Eros et al. [9-10] explored the OpenFlow 
roles for the design of resilient SDN architectures relying on 
multi-controllers. In the case of active replication, all controllers 
play the equal role and they process the request at the same time. 
In passive replication, only one of controllers plays the master 
role, the others play the slave role. All the switches connect with 
the master controller, and the master controller processes the 
requests from the switches, then it sends the updates to other 
slave controllers. Besides these two replication approaches, 
Paulo Fonseca et al. [11] described a novel mechanism that 
provides an increase of resilience in SDN using a CPRecovery 
component organization.  

However, each replication approach has its own 
disadvantage. In active replication, it is difficult to guarantee the 
totally ordered delivery of all messages to all controllers; all 
controllers keep the entire network view, which may be 
undesirable and so on. In order to solve these problems, Eros et 
al. [9-10] implemented a strategy of active replication in the Ryu 
controller, using the OpenReplica service to ensure consistent 
state among the distributed controllers. In passive replication, 
the slaves save the processing costs, while it requires all slave 
controllers to monitor the master to guarantee the consistency in 
case of failures. The replication component proposed by Paulo 
Fonseca et al. [11] can replicate the network state to the backup 
controller from the primary controller, but this approach does 
not consider that replication of the network state after the 
primary controller breaks down.  

The controller placement problem [12-15] can be classified 
into two categories: the propagation delay based and the network 
reliability based. The propagation delay based approaches [12] 
found the location of the controller and make the total delay 
minimum with the least number of controllers. Jimenez et al. 
[12] defined a metric to evaluate the candidate nodes that satisfy 
the required delay. The network reliability based [13-14] 
approaches find the placement of controllers to keep the network 
reliable with using as less controllers as possible. Hu et al. [13] 
used the expected percentage of control path loss to characterize 
the reliability of SDN control networks. Muller et al. [14] 
formulated the problem as a binary integer programming to 
maximize the average number of disjoint paths between devices 
and controllers.  

In order to improve the reliability of control network and 
satisfy the required propagation delay at the same time, 
Qinghong Zhong et al. [15] proposed a min-cover based 
controller placement approach. They first proposed two 
reliability metrics, which consider how many switches may lose 
connection to controllers in case of a single-link failure. Then 

they defined the neighborhood of a vertex and the min-cover of 
a network, based on which they give the formulation of 
controller placement problem. They also proposed a heuristic 
method to find the min-cover to improve the efficiency of 
calculating the controller placement solution. 

However, few researches about backup controller placement 
problem in multi-domain SDN have been done, and this paper 
focuses on this problem. In order to keep the consistency of 
multiple controllers, we propose a sharing data store, to save the 
network state at any time. Additionally, we propose a sharing 
backup controller placement approach in multi-domain SDN, 
which can improve the control network reliability while meeting 
the required delay. 

III. THE PROPOSED RESILIENT CONTROL PLANE DESIGN 

AND IMPLEMENTATION 

In this section, we first introduce the architecture of multi-
domain SDN with sharing data store and describe the process of 
failure recovery and failure repair with sharing data store. Then, 
we provide a sharing backup controller mechanism. Firstly, we 
calculate the number of backup controllers based on 
probabilities. Then we propose an algorithm to find the backup 
controllers placement scheme in multi-domain SDN efficiently.  

A. The Sharing Datastore 

In order to keep the consistency of the control plane without 
the communication of controllers, and increase the resilience of 
the whole network at the same time, we propose a sharing data 
store to save the whole network state at any time.  

Architecture Design. There are multiple domains in 
network and each domain has a controller, which acts as master. 
In order to make sure each master controller has information of 
the whole network, we design a sharing data store. The 
architecture is shown as Fig. 1.  

 
Fig. 1. Architecture Design 

As Fig.1 shows, the data store has all topologies of each 
domain, which means the data store knows the whole network 
state. When a master controller needs the whole network 
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information, it sends a request message to the data store, and 
then the data store replies this request with the whole network 
information. When a master controller finds that its network has 
changed, the controller updates the information of the new 
topology in data store as soon as possible to ensure the data store 
has the topology of the current network. There is a calculator 
module in data store, which can be used to compute the 
placement of backup controllers according to the data of 
topology. After calculating the backup controllers of each 
domain, data store sends the results to master controllers, and 
then controllers send the results to every switch, to make sure 
each switch knows the backup controller. 

Failure Recovery. After the data store knows the topology 
of the whole network, the calculator module will calculate the 
backup controllers and send the results to master controllers in 
each domain, and then the master controllers send the 
information to their switches. Therefore, each switch has a list 
of backup controllers. The process of failure recovery can be 
summarized by the following steps: 

1) As soon as a switch detects the controller failure in 
domain A, this switch looks for the first backup controller C in 
its backup controller list, and verifies if the controller C is 
available. Then informs the controller C that controller C needs 
to become the new master controller of domain A. 

2) After controller C receives the message that controller C 
needs to become a master controller in domain A, it sends a 
request message to the data store to get the switches and the 
network state in domain A, then it sends a role-request message 
to each switch in domain A.  

3) Each switch in domain A replies the controller C with 
role-reply message after it receives the role-request message 
and changes its master controller. From now on, all switches in 
domain A have a new controller. 

Failure Repair. This occurs when the faulty controller 
becomes alive and can be master again. The faulty controller is 
available, but it does not know the network state of domain A 
during its failure time, so it cannot control the switches in 
domain A directly, or it needs to get the network state from the 
switches again. In order to avoid unnecessary cost, we use 
sharing data store to save the network state. When the controller 
becomes alive again, it inquires the current master controller of 
domain A in data store and gets the current network state from 
the data store. 

Fig. 2 depicts the process of failure repair. In this case, 
controller C' was the master of domain A, but it failed. Then 
controller C becomes the new master as previous mentioned. 
When the controller C' is available again, the following steps are 
executed:  

Phase 1. Controller C' sends a domainID-request message 
to data store to get the current network state and database sends 
the information of its domain. 

Phase 2. Controller C' sends a start-migration message to 
controller C to start the migration process. Then controller C 
sends a barrier-request message to switches to interrupt these 
switches sending requests. The switches reply this request with 
a barrier-reply message and stop sending messages. After 

controller C processes the request received before, it sends a 
flow-mod message to switches, then switches reply it with a 
flow-mod-reply message. As soon as controller C has processed 
all the requests, it sends an end-migration message to controller 
C'.  

 
Fig. 2. Process Failure Repair 

Phase 3. Controller C' sends a role-request-master message 
to switches to change their master controller, and then the 
switches reply with a role-request-reply message. At last, 
controller C' sends a domainID-mod message to data store to 
save the new network state, and then data store confirms this 
message with a domainID-reply message.  

B. Implementation of Sharing Backup Controller Placement 

In order to construct an effective and reliable control 
network in multiple domain SDN, we propose a sharing backup 
controller method. Sharing backup controller means these 
backup controllers may be used by multiple domains. There are 
three main questions to be considered: how many backup 
controllers are needed in the network, which domains are these 
backup controllers responsible for and where to place them. 
Many researches [12-15] have been done in controller 
placement area. However, they mainly put emphasis on the 
master controller placement in single domain SDN. In this paper, 
we focus on backup controller placement in multiple domains. 
The sharing backup controller placement can be described as 
follows: 

Input. Tuple ܫ	 = ,ܰ)ܩ} ;(ܮ ;ܥ ;ܦ ;௖ݐ݈ݑ݂ܽ  {ீݕ݈ܽ݁݀
represents the input of the problem. The physical topology is 
denoted by an undirected graph G = (N, L), where N denotes the 
set of all the switches, L represents the set of all the links 
between the switches. ܥ = { ௜ܵ௝}  represents the set of master 
controllers, where ௜ܵ௝ denotes the switch j in the domain i. The 
set of domains is given by D. ݂ܽݐ݈ݑ௖ gives the probability of 
controller failure. ݈݀݁ܽீݕ  represents the latency of each two 
adjacent nodes.  

Output. The tuple ܱ	 = 	 {ܰ஻஼; ݇} represents the output of 
our implement. The backup controller placements are denoted 
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by ܰ஻஼. It is a subset of N. The number of backup controllers is 
represented by k.  

Objective. There are three goals of the proposed strategy. 
The first one is to make sure the cost minimum, in other words, 
to make the number of backup controllers minimum. This goal 
is modeled as function (1), where x௜௝ means whether the backup 
controller connect to the switch S௜௝, if it connects to the switch, x௜௝ = 1, otherwise x௜௝ = 0. S௜௝ means the switch j in the domain 
i. The range of i is from 1 to the number of domains |D| and N 
means the set of switches. min∑ x௜௝ଵழ௜ழ|஽|,௝∈ே	                      (1) 

The second one is to make the total delay minimum, as 
function (2) shows, where ܵ௫௬ represents the backup controller 
placement.  min∑ )ݕ݈ܽ݁݀ ௜ܵ௝, ܵ௫௬)ଵழ௜ழ|஽|	&	௜	ஷ௫,௝∈ே  (2) 

Lastly, we should consider the reliability of the network. We 
propose a metric reliability factor based on these metrics. First, 
we find that taking overlapping link as a factor is not complete. 
An instance shown in Fig.3, (a), (b) and (c). In (a), there are two 
paths (u, a, b, c, v) and (u, a, d, e, v) between node u and v. The 
amount of paths is 2, the average length of paths is 4, and 
maximum rate of overlapping link is 1. While in (b), there also 
have two paths between node u and v. The number of paths is 
also 2, the average length of paths is 4, and the maximum rate of 
overlapping link is 1. Obviously, (a) is more reliable than (b). 
Based on this, we define the average correlation of all paths 
between two nodes as follows:  ܿݎ݋௨,௩ = 	 ∑ ∑ ௑೗,ುೠ,ೡ,೔೙ೠ,ೡ೔సభ೗∈ಽ ௡ೠ,ೡ,೗ /݊௨,௩           (3) 

 Where ௟ܺ,௉ೠ,ೡ,೔ denotes the link l whether belongs to the path 
i between node u and v, and ݊௨,௩,௟ represents the number of links 
on all paths between u and v. We can observe that the lower the 
average correlation is, the higher reliability is. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. The different paths between node u and v 

In addition, when the average length, the amount of paths 
and average correlation are equal between two node pairs, like 
(a) and (c) in Fig. 3. The average length of their paths is 4, the 
amount of paths is 2, and the average correlation is 4/7. But (c) 
is more reliable than (a). Because the differences in length of 
two paths in (c) is larger than that in (a). Therefore, we define 
the difference in length of all paths as follows: 

݀݅ ௨݂,௩ = 	 ∑ ቀ೗೐೙ೠ,ೡ,೔ష೗೐೙ೠ,ೡതതതതതതതതതതቁ೙ೠ,ೡ೔సభ ೗೐೙ೠ,ೡതതതതതതതതതത మ
௡ೠ,ೡ           (4) 

Where  ݈݁݊௨,௩തതതതതതതത denotes the average length between node u 
and v as formula (5) shows. ݈݁݊௨,௩തതതതതതതത = 	 ∑ ௟௘௡ೠ,ೡ,೔೙ೠ,ೡ೔సభ௡ೠ,ೡ         (5) 

Based on the metric mentioned above, we proposed 
reliability factor to represent the reliability between the two 
nodes in network as equation (6) shows. rf୳,୴ = 	 	௡ೠ,ೡ௟௘௡ೠ,ೡതതതതതതതതത∗௖௢௥ೠ,ೡ∗(ଵିௗ௜௙ೠ,ೡ)          (6) 

The reliability of the whole network can be represented as 
formula (7) shows, where ܵ௫௬ represents the backup controller 
placement and k means the number of backup controllers.  max	(ଵ௞)∑ ݎ ௌ݂ೣ೤,௩௩∈ே                         (7) 

Constraints. The constrains of our model can be divided 
into two categories: placement-related and cost-related.  

The first three constraints (8 are placement-related. They 
ensure correctness for the placement of controller instances in 
the topology. Constraint (8) guarantees that the backup 
controller is not placed on the master controller node.  S୧୨ 	 ∉ ,ܥ ௜௝ݔ∀ = 1      (8) 

The cost-related constraint (12) ensures that the number of 
backup controllers is in a certain range based on probability. For 
a possible fault	F୧, if it happens we denoted 	ܨ௜ = 1 and 	ܨ௜ = 0 
otherwise. It is obvious the random variable 	ܨ௜  is with the 
Bernoulli distribution. The number of failures can be 
represented by equation (9) and the probability of k′ controllers 
fail at the same time is as equation (10) shows. Formula (11) 
means the probability of k′ concurrent controller fault 
occurrences is less than a certain value to guarantee the number 
of backup controllers is enough to responsible for the whole 
network.  |F| = 	∑ F୧          (9) p(|F| = k′	) = 	 ൫|஼|௞ ൯	fୡ௞ᇱ(1 െ fୡ)|஼|ି௞ᇱ    (10) p(|F| = k′	) ൏ ε         (11) kᇱ 	൑ 	݇	 ൑  (12)     |ܥ|

C. Algorithm design of Sharing Backup Controller Placement 

Since there are three optimization objectives in our model, 
we use Particle Swarm Optimization (PSO) algorithm to solve 
our problem. PSO algorithm is proposed by Kennedy J et al. [16]. 

c u a vb 

e d 

c u a vb 

d 

c u a vb 

e 

d 
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In this algorithm, the entity is abstracted as particles, and the 
position of particle is the solution of the problem. PSO uses an 
archive to save the non-dominated set during searching process, 
and uses adaptive mesh method to choose global guidance from 
the archive. Additionally, in order to enhance the local search 
ability of this algorithm, we use mutation operator.  

This algorithm mainly has three parts: the archive and 
pruning of non-dominated set, global guidance strategies and 
keeping diversity. The archive and pruning of non-dominated set 
is used to keep the elite solution and control the quantity of 
solutions, the global guidance strategies are used to control the 
direction and speed of particle swarm evolutionary, and the 
diversity keeping is used to find global optimal solution based 
on genetic algorithm.  

The procedure of calculating the position of sharing backup 
controller placement is shown in algorithm 1, where PopSize 
means the size of particle swarm, X denotes the position matrix 
of particle, V represents the speed matrix, F denotes the faulty 
probability matrix, pm means the probability of mutation and pc 
means the probability of crossover. We get these information 
from input tuple. Pୠୣୱ୲ represents the output tuple. 

Algorithm 1 Algorithm of SBC 

Input: PopSize, X, V, F, L 
Output: Pୠୣୱ୲ 
Procedure: 
1: loop=0; 
2: (X,V)=InitPop(PopSize); 
3: FN = EvaluateFitness(X,L,F); 
4: ND = getNonDominatedResult(X,FN); 
5: Archive = saveToArchive(X,Archive); 
6: Pୠୣୱ୲ = ܺ; 
7: gୠୣୱ୲ =  ;GBest(Archive)ݐ݁݃
8: while (loop < MaxLoop)  do 
9:     loop = loop + 1; 
10:   V = UpdateSpeed(X,V); 
11:   X = UpdatePosition(X,V); 
12:   FN = EvaluateFitness(X,L,F); 
13:   CO = crossover(X,Archive,pc); 
14:   TEMP = CO + X; 
15:   FNT = EvaluateFitness(TEMP,L,F); 
16:   ND = getNonDominatedResult(TEMP,FNT); 
17:   Archive = saveToArchive(ND,Archive); 
18:   X = mutate(X,pm); 
19:   Pୠୣୱ୲ = )ݐݏ݁ܤܲ݁ݐܽ݀݌ݑ ௕ܲ௘௦௧, ܺ); 
20:    gୠୣୱ୲ =  ;(݁ݒℎ݅ܿݎܣ)ݐݏ݁ܤܩݐ݁݃
21: end while 

IV. PERFORMANCE EVALUATION 

 In this section, we conduct simulations to verify the validity 
of our approach. We first introduce our experimental 
environment, and then we discuss the metrics we used to 
evaluate our approach. Last, we show the results of the 
evaluation performance of our method, and the results of the 
comparison with other approaches. 

A. Experimental Environment 

We use the network topology from Brite topology generator 
[17], which can generate multi-domain network randomly. We 
assume that the failure probability of each link is the same, and 
the propagation delay of each edge in the same domain is lower 
than the latency of edges across different domains. Additionally, 
for simplicity, we assume that there are 10 nodes in each domain. 

We evaluate our approach in two aspects. First, we evaluate 
the performance of our approach. We compare the number of 
backup controllers and the average responsibility factor with the 
approach, which designs backup controllers for each domain, 
denoted as BED. Second, we compare our approach with the 
existing approaches of controller placement. One approach is 
based on the shortest path, that means this method put the 
backup controllers where can make the paths shortest between 
the backup controller and switches. This approach is denoted as 
Shortest. The other approach put the backup controllers 
randomly, without considering the delay and reliability of the 
network, which denoted as Random. 

B. Evaluation Metrics 

In this evaluation, we use two metrics to compare our 
approach with BED. One is the number of backup controllers in 
different network scales. The other one is the average reliability 
factor, as formula (7) shows, to represent the reliability of the 
network. 

C. The Results of Evaluating Performance 

We evaluate our approach in networks of different scales and 
failure probabilities. We generate networks of 1, 3, 5, 7, 9, and 
11 domains randomly and each domain has 10 nodes. The results 
are shown in Fig.4 and Fig.5. When the number of domains 
increases, the number of needed backup controllers increases too. 
We also find that as the faulty probability of master controller 
gets larger, more backup controllers are needed to manage the 
whole network. Because when the faulty probability of master 
controller gets larger, more controllers will get down, more 
backup controllers are needed to cover the whole network.  

 
Fig. 4. The number of  backup controllers in different networks 

Additionally, we can find with the increasing of the domain 
number, the reliability of the network gets lower. It also can be 
seen in Fig. 5 that the larger the faulty probability of master 
controller is, the lower the reliability is. 
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Fig. 5. The reliability of different networks 

D. The Results of Comparision With Other Approaches 

 Fig. 6 shows the result of the proposed approach compared 
with Shortest and Random approach. We can find that reliability 
of our approach is higher than other approaches and has a 
steadily good performance in networks of different link failure 
probability. 

 
Fig. 6. The reliability factor of different approaches with different faultc 

Then we compare these approaches based on metric 
reliability factor in different number of domains. We generate 
networks of 3, 5, 7, 9, and 11 domains randomly and each 
domain has 10 nodes, and the faulty probability of master 
controller is 0.4. Then we observe the reliability of the network 
based on the metric reliability factor. The result is given by Fig. 
7. We can find that reliability of our approach is higher than 
other approaches and has steadily good performance in networks 
of different scales. 

 
Fig. 7. The reliability factor of different approaches in different scales 

Last, we compare our approach with BED based on the 
number of backup controller and the reliability in the network of 
different scales. We generate networks of 1, 3, 5, 7, 9, and 11 
domains randomly, each domain has 10 nodes, and the faulty 
probability of master controller is 0.4. Fig. 8 shows the number 
of backup controllers in different approaches. We can find the 
number of backup controllers our approach needs is less than 
single backup approach. Fig. 9 shows the reliability of these two 
approaches. We can find that reliability of our approach is nearly 
equal to the BED approach. 

 
Fig. 8. The number of backup controllers in different approaches 

 
Fig. 9. The reliability of different approaches 

 

V. CONCLUSION 

In this paper, we have investigated the failure recovery 
problem and the backup controller placement problem in multi-
domain SDN. In order to improve the resilience and reliability 
of control network in multi-domain SDN, we propose a sharing 
data store and backup controllers based approach. We first 
design the data store to save the network state for failure 
recovery without communication between two controllers. Then 
we discuss how to decide the number and the placement of 
backup controllers. We calculate the number of the backup 
controllers based on probability. In order to find the backup 
controller placement to improve the efficiency of calculating we 
also propose a method, which combines PSO and genetic 
algorithm. Simulations show that our approach can ensure the 
control network resilience and reliability in multi-domain SDN 
environment. 
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