
Using SDN Congestion Controls to Ensure Zero

Packet Loss in Storage Area Networks

Shie-Yuan Wang, Li-Min Chen, Shih-Kai Lin, and Liang-Chi Tseng

Department of Computer Science

National Chiao Tung University

Hsinchu, Taiwan

shieyuan@cs.nctu.edu.tw

Abstract—Today, storage area networks (SAN) are widely used
in data center networks to connect servers to data storage devices.
In such a network, ensuring zero packet loss is very important
for a server’s network file system (NFS) to quickly access data
across the network. Otherwise, the time spent on detecting packet
losses and then retransmitting the lost data will severely harm the
data access throughput and delay performance of the network
file system.

Recently, the SDN technology has been widely used in data
center networks. In an SDN network, the SDN controller has
a global view of the states of the overall network. Exploiting
this capability, we designed SDN-assisted rate-based and credit-
based congestion control schemes to ensure zero packet loss
in the network. We used both greedy traffic and bursty NFS
traffic to compare the performances of the two schemes under
many different situations. In this paper, we report their relative
strength and weakness and show that the SDN-assisted credit-
based scheme can ensure zero packet loss while maintaining a
high link utilization.

I. INTRODUCTION

Today, storage area networks (SAN) are widely used in data

center networks to connect servers to data storage devices. To

increase the efficiency of data transmission over SAN, Fiber

Channel over Ethernet (FCoE) [2] [3], a modern technology

used in SAN, transmits data directly over Ethernet without

using the IP and TCP headers [4]. Because TCP is not used

in FCoE to detect packet losses and retransmit them, FCoE

assumes a lossless Ethernet. To guarantee zero packet loss,

Data-Center-Bridging-capable (DCB) switches [5] [6] need

to be used in SAN to support FCoE. SAN can use other

technologies such as iSCSI [7] to transport data. Since iSCSI

uses IP and TCP protocols, TCP can be used to detect packet

losses and then retransmit the lost data without assuming a

lossless Ethernet. However, detecting packet loss and retrans-

mitting take much time, which severely harm the data access

throughput and delay performance of the network file system.

For the above reasons, providing zero packet loss in the

network is very important for SAN. Although DCB-capable

switches can achieve this goal by sending a PAUSE control

packet to a sending switch to ask it to stop forwarding

packets, they can only support class-of-service-based flow

control between a sending switch and a receiving switch.

Flow control is employed upon a class queue rather than a

flow queue in the switch. Since there are only eight class

queues supported and no flow queues are supported in a DCB-

capable switch, stopping the packet forwarding of a class

queue may cause the head-of-line blocking problem for some

flows belonging to that class. (That is, packets of the flows that

are not congested in the receiving switch are unnecessarily

blocked in the sending switch from being forwarded to the

receiving switch.)

To overcome this DCB problem, we designed SDN-assisted

rate-based and credit-based congestion control schemes. The

emerging SDN technology [8] is being used in data center

networks. In an SDN network, the SDN controller has a

global view of the states of the overall network. The controller

knows how many flows are contending for the bandwidth of a

bottleneck link and thus can appropriately allocate bandwidth

to avoid congestion. The controller also knows the current

buffer usage of a port, thus can temporarily stop some hosts

from sending more packets to avoid buffer overflow. In the two

propsed SDN-assisted schemes, the SDN controller controls

the rates of the sending hosts or the credits (number of bytes)

that a sending host can use to send data to ensure zero packet

loss. Since the control is employed on the sending hosts rather

than between neighboring switches (which is used in the DCB

approach), our proposed schemes do not suffer from the head-

of-line blocking problem with DCB-capable switches.

In the two proposed schemes, we assume that each host

has a virtual OpenFlow switch, which is OpenVswitch (OVS)

in our case [9], running to implement the control from the

SDN controller. Currently, it is very common to run a virtual

OpenFlow switch on a host to enable multiple virtual machines

(VMs) running on the host to connect to the physical network.

Therefore, this assumption can be easily fulfilled. To support

the rate-based control, the OVS running on a sending host

periodically receives commands from the SDN controller to

adjust the sending rates of flows on that host. To support

the credit-based control, the OVS running on a sending host

requests credits from the SDN controller when it has data to

send. Only when it receives enough credits can it send out its

data. Effectively, our credit-based control scheme functions

like a window-based control scheme that limits the amount of

data that can be sent into the network at any moment.

In this paper, we evaluated the performance of the rate-

based and credit-based schemes using greedy NFS traffic and

bursty NFS traffic (both are transported over UDP). Greedy

978-3-901882-89-0 @2017 IFIP 490



NFS traffic is used to represent sending a very large file to the

NFS server. Bursty NFS traffic is used to represent sending a

directory with many small files to the NFS server. We logged

the real NFS traffic between a NFS server and a NFS client

to obtain the distributions of disk I/O time on the NFS server.

The disk I/O time is the elapsed time from when the NFS

server receives a NFS read/write command to when it has

finished the command and sends back a NFS reply. We used

the obtained realistic NFS traffic patterns in our experiments

to make our evaluation results more realistic.

In the rest of paper, Section II discusses related work.

Section III presents the design and implementation of the

two proposed schemes. Realistic NFS traffic patterns are

presented in Section IV. Experimental settings are explained

in Section V. Section VI evaluates the performance of the two

schemes. Lastly, the paper concludes in Section VII.

II. RELATED WORK

Data Center Bridging (DCB) is a set of standards designed

for data center environments to avoid packet losses due to

buffer overflow. In IEEE 802.1Qbb, it defines Priority Flow

Control (PFC) based on the PAUSE frame defined in IEEE

802.3x. PFC provides a link-level flow control mechanism that

can be used to independently control the packet forwarding

of each traffic class. This mechanism ensures zero packet

loss under congestion in data center networks. Its pause

frame mechanism allows the traffic of a specific class to be

stopped without affecting other classes. However, because only

eight traffic classes are allowed, flows belonging to the same

class may suffer from the head-of-line (HOL) blocking. In

our proposed SDN-assisted schemes, we eliminate this HOL

problem.

In [11] [12], the authors proposed rate-based control

schemes to control network congestion. In [13], the authors

proposed a credit-based control scheme to avoid network con-

gestion. In addition to these papers, in the past, several papers

have proposed rate-based or credit-based control schemes.

However, few of them are assisted by the SDN controller as

the SDN technology emerged in just a few years.

There is a recent work [14] that used the SDN technology

to deal with congestion in data centers. They used a rerouting

mechanism to avoid transferring packets through bottleneck

links. However, the direction of their work is different from

ours. Although many related work also try to avoid network

congestion, reduce queuing delay, and increase link utilization,

they do not put “zero-packet-loss“ as theie most important

goal. In contrast, our SDN-assisted rate-based and credit-based

control schemes strictly enforce “zero-packet-loss“ in the

network. While most related work were proposed for general

networks where packet losses are acceptable, our schemes are

specifically proposed for SAN, where packet losses should not

occur.

III. DESIGN AND IMPLEMENTATION

In SAN, because multiple servers may access the storage

device simultaneously, the single bottleneck scenario is the

most common problem (i.e., all traffic merges at the switch

connecting to the storage device.) Our credit-based scheme is

designed for this kind of problem. Our design of rate-based

and credit-based schemes involve three different entities —

end hosts, switches, and the SDN controller. In the following,

we present each of them in detail.

A. End Host

There are two kinds of end hosts: client and server. In

our evaluations, multiple clients sent their data to the server

simultaneously. The server measured the aggregate throughput

and counted how many packets were lost (if there was any).

On each client, we run a OVS. To support the rate-based

control, the SDN controller periodically sends this OVS a

message to adjust the sending rates of all flows originating

from that host. To support the credit-based control, when the

OVS has accumulated enough data, it requests credits from

the SDN controller to send out the data. Only when the OVS

receives enough credits can it send out the data.

B. Switch

We assume that all switches are OpenFlow-enabled

switches. The SDN controller gathers and computes informa-

tion of every traffic flows such as their recent bandwidth usage,

bandwidth usage of each flow on the bottleneck link and the

current buffer occupancy of output ports. Such information is

used to adjust the sending rates of traffic flows or control the

number of credits that can be allocated to sending hosts.

C. SDN Controller

There are different ways to avoid network congestion. If

there are multiple paths in a network, one can apply a rerouting

mechanism [14]. However, when there is a bottleneck link that

cannot be bypassed, how to avoid packet losses caused by

buffer overflow on that link is important and it is the main

topic in this paper.

The SDN controller knows the global state of the network

and thus has the capability to ensure zero packet loss in the

network. We proposed two kinds of SDN-assisted congestion

control schemes: rate-based and credit-based.

1) Rate-based SDN Controller : In this design, each end

host needs to use the transmission rates assigned from the

SDN controller to send packets. The maximum sending rate

cannot be higher than the assigned bandwidth at any moment.

The SDN controller ensures that the total of all assigned rates

on each link does not exceed the link bandwidth, so that no

packets will be dropped due to buffer overflow.

Receiving PacketIn [1] messages sent from SDN switches

for new arriving flows, the SDN controller knows how many

traffic flows are contending for the bandwidth of each output

port. By periodically collecting packet counter statistics, the

SDN controller knows the current bandwidth usage and buffer

occupancy of each output port. With this information, it

computes the available link bandwidth along the path of the

new flow. The controller then assigns the transmission rate

to the sending host of the new flow. After that, the sending

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 491



host can start sending the data based on the rate. The SDN

controller maintains the rates of every traffic flows. Thus it

can quickly computes an initial sending rate for a new flow

without causing network congestion.

Using a period of 100 ms, the controller periodically mon-

itors the buffer occupancy of all output ports and adjusts the

current assigned rates. If the buffer occupancy is less than

a threshold (50 packets in our experiments), to maintain a

high link utilization, the traffic flows passing the output port

increase their transmission rates by an equal amount of 10

packets per period. On the other hand, if the buffer occupancy

exceeds a threshold (100 packets in our experiments), to

avoid buffer overflow, the traffic flows passing that output port

decrease their transmission rates by 10 packets per period.

When a flow finishes its transmission, the sending host

will notify the SDN controller so that the controller can

equally allocate the released bandwidth to remaining flows.

On the other hand, if a new flow’s rate needs to be greatly

increased from its initial sending rate to its fair share, the

rates of existing flows should be decreased. In our scheme,

the rate adjustment is based on the current bandwidth sharing

percentages of existing flows. Suppose that existing flows

should totally release a certain rate Y packet/sec to the new

flow and a specific flow is responsible for x% of the total

bandwidth usage of all existing flows, then this flow should

decrease its current rate by Y*x%. Based on these designs,

the link bandwidth can be dynamically re-allocated among a

new set of flows.

2) Credit-based SDN Controller: The credit-based SDN

controller strictly controls the number of packets in the net-

work. End hosts must acquire credits from the SDN controller

before they can send out data. One credit allows 1.4 KB of

data to be sent into the network. The controller ensures that the

total number of credits does not exceed the maximum buffer

space of the bottleneck output port. Therefore, no packets

will be dropped due to buffer overflow. For fairness, the SDN

controller limits the maximum number of credits that a host

can acquire.

Credits are one-time use only. When a sending host wants

to send a data block, it must obtain enough credits first. For

example, to send a 256 KB data block, about 183 credits

should be acquired first. If a sending host runs out of credits,

it must acquire enough credits from the SDN controller so

that it can continue to transmit data. The number of credits

in the SDN controller is limited. It is close to the maximum

buffer space of the bottleneck output port. In our experiments,

because the maximum buffer space of the bottleneck output

port is set to 1,000 packets, the number of credits in the SDN

controller is set to 950 in our experiments.

When there are no more credits to dispatch to sending hosts,

the SDN controller will block all credit requests from hosts.

Only after the bottleneck switch returns free credits to the

SDN controller, can those blocked requests be granted. The

time to return free credits is when packets leave the output

ports of the switch. Our scheme uses the switch’s de-queue

counters, which count the number of packets forwarded so far,

to calculate when and how many free credits can be returned

to the SDN controller. In our design, every 10 ms, if there

are free credits, the switch will send a message to the SDN

controller to tell it how many free credits can be returned to

it in the message. If no free credits can be released in this 10

ms period, no message needs to be sent to the SDN controller

to save network bandwidth.

A drawback of credit-based scheme is that the flow sending

rate is limited by how fast the sending host can get credits

(i.e., credit delay). If the credit delay is too long, the sending

rate may be affected. One reason for long credit delays is the

long link RTT from the sending host to the SDN controller

(i.e., control delay). Later on, we will show the relationship

between the control delay and the maximum rate a sending

host can obtain in the credit-based scheme.

IV. NFS TRAFFIC PATTERNS

To make our experimental results realistic, we evaluated

the performance of our SDN-assisted rate-based and credit-

based schemes using NFS traffic patterns. Our end hosts are

either NFS server or NFS clients. We obtained the NFS traffic

patterns from real NFS traffic measured on the network of

our department. There are two kinds of NFS traffic: the first

one is transferring a large file (called “greedy NFS transfer”

in the experiments) while the second one is transferring an

entire directory with many small files (called “bursty NFS

transfer” in the experiments). To derive the traffic patterns,

when transferring files from a NFS client to the NFS server,

we used tcpdump [15] to log packets. Then, we calculated the

elapsed time between when the NFS server receives a NFS

write command and when it sends back a NFS ACK packet.

This elapsed time is the disk I/O time that the NFS server

must wait before writing the received data into the disk.

The distributions of the disk I/O time of the two kinds of

NFS traffic are different. If the NFS client transfers only one

large file, the data of the file will be divided into many 256 KB

large data blocks and the client will issue a write command for

each of these blocks. In this case, most disk I/O time are very

small and pretty much the same. This is because most data of

a file are continuously placed on the disk. In contrast, when

the NFS client transfers an entire directory with many small

files to the NFS server, because the directory has many small

files and sub-directories in it and they are not continuously

placed on the disk, the disk I/O time varies a lot — some are

up to 1,000 times larger than the others.

According to our NFS traffic measurements, the distribution

of the disk I/O time when transferring a large file has the fol-

lowing characteristics: mean=0.13 ms, std=0.02 ms, max=11.7

ms, and min=0.000001 ms. On the other hand, the distribution

of the disk I/O time when transferring a directory with many

small files has the following characteristics: mean=30.5 ms,

std=0.34 ms, max=134 ms, and min=0.003 ms. The distribu-

tion of the data block sizes when transferring a directory with

many small files has the following characteristics: mean=8,818

bytes, std=13,047 bytes, max=263,065 bytes, and min=1 byte.

In our experiments, we used these distributions to model the

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference492



disk I/O time of the NFS server and the transferred data block

sizes when evaluating the performance of SDN-assisted rate-

based and credit-based control schemes.

V. EXPERIMENTAL SETTINGS

We used Mininet [16] as the SDN network emulator to

emulate all hosts and OpenFlow switches. We ran Mininet

emulations on a PC equipped with a 2.3 GHZ CPU and

4 GB RAM. Our SDN-assisted rate-based and credit-based

controllers are implemented on the Floodlight [17] SDN

controller. The network topology used in the experiments is

shown in Figure 1. The bandwidth and delay of each link are

set to 100 Mbps and 0.05 ms, respectively. At first, we set the

bandwidth of each link to 1 Gbps. However, we found that at 1

Gbps link bandwidth Mininet generated incorrect performance

results due to CPU overload. Therefore, we lowered the link

bandwidth to 100 Mbps to enable Mininet to generate correct

performance results.

Fig. 1: The network topology used in experiments

In our experiments, there are two different cases: single-

server and multi-server. In the single-server case, we used

h1 as the server and h6, h8, h9 and h10 as the clients. In

the multiple-server case, there are two groups of servers and

clients and h1 and h2 are used as the server in these groups,

respectively. The used traffic patterns in the experiments are

of two kinds. The first kind is greedy NFS transfer and the

second kind is bursty NFS transfer. Their characteristics have

been presented in Section IV.

VI. PERFORMANCE EVALUATION

A. Single-Server Case

We considered the setup with h1 as the server and h6, h8,

h9 and h10 as the clients. Under this setup, we measured

the performance when multiple clients contended for the

bandwidth of the bottleneck link, which is between s1 and

h1. In all of our experiments, we found that no packet losses

ever occurred due to buffer overflow in the switch. That is,

both of our rate-based scheme and our credit-based scheme

achieved the goal of zero packet loss in the network.

1) All Greedy NFS Traffic: In this experiment, each of

the four clients launched a greedy NFS transfer to the server

(without disk I/O time on the NFS server). Each client have

different start time. From client 1 to client 4, every client starts

transmitting data at a 5-second spacing and transfers 500 MB

(greedy), 200 MB (greedy), 100 MB (greedy) and 50 MB

(greedy) data, respectively.

We measured the achieved bandwidth of each client and

their summation over time. Figure 2 shows the results when

the rate-based controller was used. One can see that 1) later

arriving flows gradually increased their sending rates until they

reached their fair share with existing flows. The speed to reach

their fair shares was low due to the used additive-increase

design to strictly avoid buffer overflow. 2) when existing flows

finished their transfers at around 50th and 60th second, the

bandwidth used by them was released and used by other

existing flows, and 3) the total achieved bandwidth remained

high when flows entered or left the network.

Time (s)

l

Fig. 2: Rate-based controller with greedy NFS traffic

Figure 3 shows the results when the credit-based controller

was used. One can see that link bandwidth was allocated

fairly between competing flows and the competing flows

reached their fair shares more quickly than in the rate-based

scheme. Besides, the total achieved bandwidth also remained

high when flows entered or left the network. Comparing the

two figures, one can see that under the greedy NFS traffic,

the credit-based scheme performs better than the rate-based

scheme in the speed of bandwidth re-allocation.

Time (s)

l

Fig. 3: Credit-based controller with greedy NFS traffic

2) Greedy and Bursty NFS Traffic: In this experiment, one

client launched a greedy NFS transfer (without disk I/O time

on the server) and each of the remaining three clients launched

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 493



a bursty NFS transfer (with disk I/O time on the server). Every

client, from client 1 to client 4, also starts transmitting at a 5-

second spacing and has a transfer size of 750 MB (greedy), 12

MB (bursty), 10 MB (bursty) and 5 MB (bursty), respectively.

Figure 4 shows the results for the rate-based controller.

Initially, when there was only one greedy NFS transfer, the link

utilization was high. However, when bursty transfers started to

emerge, the link utilization dropped dramatically. The reason is

that the rate-based scheme allocated bandwidth equally to the

four competing flows. However, due to the disk I/O time on the

NFS server, the clients launching bursty transfers cannot send

their data fast enough to fully utilize their assigned bandwidth.

As a result, they were idle most of the time and greatly wasted

their assigned bandwidth.

Time (s)

Fig. 4: Rate-based controller with greedy & bursty traffic

In contrast, Figure 5 shows the results for the credit-based

controller. As can be seen, the most significant difference

compared with the rate-based scheme is that the link utilization

remained high when bursty NFS transfers were present in

the network. The reason is that the credit-based controller

allocated credits (chances to send packets, i.e., bandwidth) to

a client only when the client has data to send. As a result,

clients launching bursty transfers will not waste bandwidth.

This explains why the credit-based scheme performed much

better than the rate-based scheme in the link utilization.

Time (s)

Fig. 5: Credit-based controller with greedy & bursty traffic

3) All Bursty NFS Traffic: In this experiment, each client

launched 5 bursty NFS transfers (with disk I/O time on

the NFS server). Figure 6 and Figure 7 show the achieved

bandwidth of each client under the rate-based scheme and the

credit-based scheme, respectively. Comparing the two figures,

one can see that the credit-based scheme allocated bandwidth

to NFS bursty clients very quickly. As a result, they finished

their transfers more quickly. In contrast, NFS bursty clients

obtained bandwidth more slowly in the rate-based scheme and

the finish time of their transfers were postponed to a later time.

Time (s)

Fig. 6: Rate-based controller with bursty NFS traffic

Time (s)

Fig. 7: Credit-based controller with bursty NFS traffic

In the experiment, we recorded the time that each client

needed to finish its transfers and sum up their transfer time.

We also varied the number of clients to compare their total

transfer time between the rate-based and credit-based schemes.

Figure 8(a) shows the total transfer time under different

schemes. One can see that the total transfer time in the credit-

based scheme was smaller than in the rate-based scheme. This

shows that the credit-based scheme could more efficiently use

the bandwidth than the rate-based scheme.

4) Effects of Different Control Delays: The control delay

between a switch and the SDN controller is a key factor of

performance in an SDN network. The control delay is the

RTT between them, which depends on the link delay. In this

experiment, we evaluated how different control delays would

affect the performance of the two schemes. We let four clients

launched bursty NFS transmission and set the extra one-way

control delay to 1 ms, 2.5 ms and 5 ms, respectively. (Note: the

default one-way link delay introduced by Mininet is tiny and is

only 0.05 ms.) As shown in Figure 8(b), the total transfer time

in both the rate-based scheme and the credit-based scheme

increased as the control delay increased.

In the following experiment, we let a client launch a

greedy NFS transmission to the server. Figure 8(c) shows the

maximum bandwidth achieved by the client in the credit-based

scheme, under different control delays. We can find that the

maximum bandwidth the client can achieve decreases as the

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference494



90

80

70

60

50

40

30
1 2 3

Number of clients

credit-basedclient-basedcredit-basedclient-basedcreditcredit
rate-based

credit-based-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-ba-basedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsedsed

4

(a)

95

90

85

80

75

70

65

0 1 2 3 4 5

Delay to controller (ms)

credit-based

rate-based

(b)

95

90

85

80

75

70

65

0 2 4 6 8 10

Delay to controller (ms)

(c)

Fig. 8: 8(a) Sum of transfer time under different number of

clients 8(b) Relationship between control delay and sum of

transfer time. 8(c) Relationship between control delay and

maximum bandwidth in the credit-based scheme.

control delay increases. The reason is that the time to acquire

credits for the client to send data is increased under higher

RTT situations.

B. Multiple-Server Case

Here we evaluate the performance of the two groups in

a multi-server environment. As stated before, there are two

groups of clients and servers. The server of the first group is

h1. The start time and transfer sizes of its clients are:

• h9 : starts at 1st sec, 500 MB, greedy

• h8 : starts at 8th sec, 500 MB, greedy

• h6 : starts at 55th sec, 250 MB, greedy

The second group uses h2 as the server and the start time and

transfer sizes of its clients are:

• h4 : starts at 5th sec, 500 MB, greedy

• h3 : starts at 10th sec, 500 MB, greedy

• h7 : starts at 30th sec, 500 MB, greedy

Figure 9(a) and Figure 9(b) show each client’s achieved

bandwidth over time in the two groups respectively when using

the rate-based controller. On the other hand, Figure 9(c) and

Figure 9(d) show the results of the credit-based controller.

Compared to the evaluations of the single-server case, a new

performance metric, “global”, is added into the graph. This

metric is the summation of the achieved bandwidth of all

clients from the two groups. With this metric, we can compare

the overall bandwidth utilization of the rate-based controller to

that of the credit-based controller. Comparing the four figures,

we can see that both control schemes achieve almost the same

overall bandwidth utilization.

In this test, the crucial bottleneck link is the link from

switch s3 to switch s2, where four flows competed for the

link bandwidth. The four flows were from h3 to h2, from h4

to h2, from h8 to h1, and from h9 to h1. From the four figures,

we can see that each flow eventually obtained a fair share

of the bottleneck link bandwidth. However, as can be seen,

the rate-based controller adjusted the bandwidth allocation of

these competing flows much more slowly than the credit-based

controller.

200

150

100

50

0

Time (s)

0 20 40 80 100 120 14060 160

Time (s)

(a)

200

150

100

50

0

Time (s)

0 20 40 80 100 120 14060 160

h3
h4
h7

server-h2

Time (s)

(b)

200

150

100

50

0

Time (s)

0 20 40 80 100 120 14060 160 180

Time (s)

(c)

200

150

100

50

0

Time (s)

0 20 40 80 100 120 14060 160 180

Time (s)

(d)

Fig. 9: 9(a) The first group with the rate-based controller

9(b) The second group with the rate-based controller

9(c) The first group with the credit-based controller

9(d) The second group with the credit-based controller

From the results above, one can see the relative strength

and weakness of the two control schemes. The credit-based

controller can handle bursty NFS traffic very well. It achieves

a high bandwidth utilization and good fairness. However, the

achieved bandwidth may slightly decrease when the control

delay increases. On the other hand, although the rate-based

controller cannot promptly achieve the maximum bandwidth

utilization under bursty traffic load, the control delay does

not affect its performance much. Despite these problems,

both types control schemes can successfully meet the most

important goal in SAN — zero packet loss in the network.

VII. CONCLUSION

In this paper, we proposed SDN-assisted rate-based and

credit-based control schemes for storage area networks (SAN).

An important requirement of SAN is ensuring zero packet loss

in the network to provide high data access performance. To

ensure zero packet loss, we implemented the two schemes in

the Floodlight SDN controller and evaluated their performance

with realistic NFS traffic patterns.

We found that the credit-based scheme outperforms the

rate-based scheme under NFS traffic patterns in allocating

bandwidth and maintaining a high link utilization. Although

the performance of the credit-based scheme may suffer from a

large RTT to the SDN controller, since a SAN is a local area

network with small link delays, this problem is not serious.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 495



REFERENCES

[1] Open Networking Foundation, “OpenFlow Switch Specification Version
1.5.0”, https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf,
Dec. 2014

[2] Claudio DeSanti and Joy Jiang, “FCoE in Perspective,” ACM ICAIT
(International Conference on Advanced Infocomm Technology), July
2008, Shenzhen, China

[3] Yueping Cai, Yao Yan, Z. Zhang and Yuanyuan Yang, “Survey on
Converged Data Center Networks with DCB and FCoE: Standards and
Protocols,” IEEE Network Vol. 27, Issue 4, Page 27-32, July-August 2013.

[4] Joy Jiang and Claudio DeSanti, “The Role of FCoE in I/O Consolida-
tion,” ACM ICAIT (International Conference on Advanced Infocomm
Technology), July 2008, Shenzhen, China

[5] Brent Stephens, Alan L. Cox, Ankit Singla, John Carter, Colin Dixon
and Wesley Felter, “Practical DCB for Improved Data Center Networks,”
IEEE INFOCOM, April 2014, Toronto, Canada.

[6] “IEEE. 802.1 - Data Center Bridging Task Group,” available:
http://www.ieee802.org/1/pages/dcbridges.html.

[7] ‘Internet Small Computer Systems Interface (iSCSI),” RFC 3720.
[8] “Software-Defined Networking: The New Norm for Networks,” a white

paper of Open Networking Foundation, April 13, 2012.
[9] “Extending Networking into the Virtualization Layer,” B. Pfaff, J. Pettit,

T. Koponen, K. Amidon, M. Casado, and S. Shenker. Proc. of workshop
on Hot Topics in Networks (HotNets-VIII), 2009

[10] “IEEE. 802.3x,” available: https://standards.ieee.org/findstds/standard/802.3x-
1997.html.

[11] Douglas E. Comer and Rajendra S. Yavatkar, “A Rate-Based Congestion
Avoidance and Control Scheme for Packet Switched Networks,” IEEE
Distributed Computing Systems, May 1990, Paris, France

[12] S. R. Subramanya, Mingsheng Peng and J. Sarangapani, “Rate-Based
End-to-End Congestion Control of Multimedia Traffic in Packet Switched
Networks,” IEEE ITCC (International Conference on Information Tech-
nology: Coding and Computing [Computers and Communications]), April
2003, Las Vegas, USA

[13] Shu-juan Wang and Man-gui Liang, “A Credibility-based Congestion
Control Method,” IEEE WiCom (Wireless Communications, Networking
and Mobile Computing), September 2009, Beijing, China

[14] Masoumeh Gholami and Behzad Akbari, “Congestion Control in Soft-
ware Defined Data Center Networks through Flow Rerouting,” IEEE
ICEE (International Conference on Electrical Engineering ), May 2015,
Boumerdes, Algeria

[15] “Tcpdump,” available: http://www.tcpdump.org.
[16] “Mininet,” available: http://mininet.org.
[17] “Floodlight,” available: http://www.projectfloodlight.org/floodlight.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference496




