
A Decentralized Approach for Adaptive Workload

Estimation in Virtualized Environments

Nisrine Ghadban

ICD - STMR - UMR 6281 CNRS

Autonomous Network

Environment Team

Troyes University of Technology

France

Email: nesrine.ghadban@gmail.com

Rémi Cogranne

ICD - STMR - UMR 6281 CNRS

Laboratory of Systems Modelling

and Dependability

Troyes University of Technology

France

Email: remi.cogranne@utt.fr

Guillaume Doyen

ICD - STMR - UMR 6281 CNRS

Autonomous Network

Environment Team

Troyes University of Technology

France

Email: guillaume.doyen@utt.fr

Abstract—Cloud computing is gaining an important role in
providing high quality IT services. However, the heterogeneous
and dynamic nature of the activities it hosts makes the related
management operations, serving performance or security pur-
poses, complexes. Leveraging the autonomic paradigm, repre-
sents a promising solution but it requires efficient grounded
monitoring and analysis functions which can in turn implement
advanced control algorithms. In this effort, this paper presents
a robust and cost effective solution to monitor and estimate the
workload in a virtualized environment. It consists in a decentral-
ized algorithm leveraging an incremental Principal Component
Analysis (PCA) featuring the system activity of multi-tenants
execution environments. To evaluate the relevance of our proposal
in terms of both performance and cost, we consider real execution
traces of more than one thousand PlanetLab containers hosted
on more than forty servers belonging to more than one hundred
tenants.

I. INTRODUCTION

For a decade, cloud computing, which refers to the Infor-

mation Technology (IT) and network services and resources

that can be deployed quickly and on a large scale through

virtualization means, has emerged. Large companies such as

Google, Amazon and Microsoft strive to provide more reliable,

powerful and cost-efficient cloud platforms. Cloud providers

deliver different service levels (Infrastructure, Platform or

Software as a Service, all known as IaaS, PaaS and SaaS)

to different consumers which can reduce both of their capital

and operational expenditures by outsourcing part of their

previous activity on mutualized platforms leveraging multi-

tenancy. These services are made available as subscription-

based services in a usage-based payment model, thus bringing

high flexibility for their consumers.

From a cloud provider perspective, being able to accurately

estimate the workload of its infrastructure is a key element

toward the implementation of any subsequent management and

control mechanism. According to traditional functional area of

network and service management, the latter can serve for (1)

performance purposes [1], for instance to deploy and balance

Virtual Machines (VM) on appropriate servers, (2) accounting,

for an accurate counting of resource usage, and (3) security

for the detection of abnormal behaviors and threats [2], [3],

within the operated infrastructure.

However, accurately monitoring and estimating the work-

load in a cloud environment is challenging for the following

reasons. Firstly, the workload is highly heterogenous and

dynamic. The hosted services have complex and individual

composition, provisioning, configuration, and deployment fea-

tures which also vary over the time according to the tenant

activity and requirements. Secondly, a cloud provider cannot

use intrusive probes to monitor the tenants’ activities in a fine-

grained manner. Indeed, in most clouds’ infrastructures, and

especially public IaaS solutions, the tenant-related space is

private, since leased by the provider. Consequently, monitoring

solutions can only operate in a black-box way, by leveraging

the sole metrics available at the virtualization layer, to ensure

the tenant’s privacy. Finally, given the large scale of cloud

solutions which can host hundreds of thousands of servers all

hosting millions of virtual machines, the workload monitoring

system must support a large volume and velocity of monitoring

data while still providing a sufficient level of accuracy against

a reasonable computation and communication costs.

In this paper, we propose a solution which aims at es-

timating the global workload of a cloud infrastructure in

a decentralized manner. Such a solution aims at providing

a basic ground that any subsequent management or control

framework can leverage to provide advanced functionality.

The system metrics we consider in our approach are the

processing time, the memory consumption and the network

input/outputs (I/O) which stands for the three main resources

a cloud provider offers to its customers while being easily

monitored at a virtualization level without breaking the tenant

privacy. In order to feature accurately such a footprint, we

consider a Principal Component Analysis (PCA) [4], [5].

The broad scope of the PCA makes it one of the most

widely used methods used in machine learning [6], pattern

recognition [7], multi-label classification [8], detection [9],

[10] and quality control [11], [12], thus being a good candidate

for any advanced management function. It is also a relevant

solution within the scope of scalable workload estimation

since PCA allows the characterization of behavior regardless

the volume of the activity, thus motivating its choice as a

ground system footprint abstraction. Since the computational

978-3-901882-89-0 @2017 IFIP 1186



complexity of eigen-decomposition, at the core of the PCA

computation, is cubic with the size of the dataset, we advocate

in this paper an in-network processing to estimate the most

relevant principal components without computing the sample

covariance matrix and its eigen-decomposition. This approach,

based on the CCIPCA proposal [32], greatly reduces the

computational complexity, the memory storage capacity and

the cost of communication. Finally, in order to make our

solution scalable and compliant with autonomic management

requirements, we consider a decentralized collaboration be-

tween local monitoring probes which can thus intrinsically

scale with the system size, while enabling all of them to get

the workload estimation at any time.

In order to validate our workload model algorithms, we

considered a dataset collected over more than 40 PlanetLab

servers hosting over a thousand LXC containers belonging

to more than a hundred tenants, thus providing an amount

of more than 2,5 million system traces. In this context, we

demonstrate to what extent our approach allows the accurate

estimating of workload from the original noisy dataset at

reasonable cost.

The rest of paper is organized as follows. In Section

II, we describe the related work. Section III presents our

decentralized method of PCA. We evaluate our approach in

Section IV. Conclusion and future works are presented in

Section V.

II. RELATED WORK

Our work lies at the intersection of three research areas

which are (1) workload estimation in cloud environments (2)

PCA in Big Data contexts, and (3) decentralized PCA. We

survey all of them below and also provide some background

on PCA which our contribution relies on.

A. Cloud Workload Estimation

The problem of workload characterization and prediction

has been widely studied [13], [14], [15]. Among them, some

research focus on creating mathematical and statistical models

to characterize the workload in a cloud environment. The

classification of tasks based on CPU and memory usage

in [16] relies on the statistical identification of qualitative

coordinates (i.e., small, medium, large). A similar approach

is applied in [17] to study the CPU and memory usage of

tasks and jobs and discover task shapes and durations. In

[18], periodicities and patterns with homogeneous behaviors

are identified with spectral and autocorrelation analyses. The

work which is the closest to ours lies in a decentralized

clustering approach presented in [19] for a dynamic mix

of heterogeneous applications in cloud environments. The

presented autonomic mechanisms handle VMs provisioning

in order to improve resource utilization, which is achieved by

reducing overprovisioning at two levels. In comparison, our

work does not aim at classifying activities but rather provides

the best average estimation of the global activity. Besides, our

method does not rely on a priori knowledge or model but is

fully data-driven for high adaptivity while being completely

decentralized.

B. PCA for Large Datasets

1) Background: Principal component analysis (PCA) is a

powerful technique for analyzing and identifying patterns in

data. It finds the most important axis to express the scattering

of data by determining the subspace which holds the largest

variance. This subspace is spanned by the principal axes and

the projection of data in this subspace constitutes the principal

components, which reflects the approximate distribution of

data.

PCA applied on the data matrix X of V observations (in

column), also called individuals, composed of p variables,

solves the eigenvectors decomposition problem:

Cwi = λiwi, i = 1, 2, · · · , p, (1)

where C is the covariance matrix of the matrix X , calculated

when the observations have zero means by C = 1

V
X

⊤
X with

X
⊤ the transpose of X . The values λ1 ≥ λ2 ≥ · · · ≥ λp

represent the eigenvalues sorted in descending order and

W = [w1,w2, · · · ,wp] is the corresponding eigenvector

matrix, where wi is the ith-axis direction. The mapping of the

data to principal axis wi, which refers to as the ith principal

axis, whose variance is λi , is given by the projection onto wi:

Y i = w
⊤
i X . In other words, Y i represents the contribution

of i-th axis wi.

The computational complexity of calculating the covariance

matrix isO(V p2), and it requiresO(p2) memory storage units.

The computational complexity of the eigen-decomposition

problem is O(p3) [20]. To these costs, one should also include

the communication cost, which is O(V p) over a distance

O(1). In the following, we propose a strategy that avoids

the computation of the sample covariance matrix and its

eigen-decomposition, thus allowing to significantly reduce the

computational complexity.

2) PCA in Big Data: PCA is widely used in Big Data

context [21], [12] since it is usually leveraged as a first

step in data mining. However, because of the complexity of

the covariance matrix computation, PCA still appears as a

challenging problem when dealing with large datasets, and

hence an active research topic. In this area, the main strategies

to make PCA scalable, consists in reducing the dataset in order

to allow the computing of PCA. In [22] for instance, coresets

are defined as small sets that provably approximate the original

data. This method is based on merge-and-reduce that permits

the solving of computational problems such as PCA in parallel.

In [23], a model based on PCA is built on a small subset of a

large network producing a large amount of data. The principal

components of this smaller subgraph allow the out-of-sample

extension property.

C. Distributed PCA Approaches

Several attempts have been made to alleviate the problem

of scalability of PCA in networking contexts by mainly

distributing the computation. This was proposed for instance

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1187



in [24], [25] where algorithms are investigated to compute the

eigenspace, but still with high computational cost. Recently, in

[26], collective-PCA technique was proposed in which a fusion

center only receives the principal components, instead of the

whole time series. In [27], [28], the most relevant principal

axis is estimated by the power iteration method. However,

this method requires the computation of the sample covariance

matrix and since the latter can only be achieved by gathering

all the dataset on one single node, it is inappropriate for large-

scale data. In [28], the power iteration method is used but with

sparse matrices in order to reduce computational complexity.

The PCA-based distributed approach (PCADID) proposed

in [29] operates through a “divide-to-conquer” scheme in

order to reduce the computational complexity of the eigen-

decomposition problem. In [30], the covariance matrix is first

estimated by means of a consensus averaging algorithm, then

each node performs a local eigenvector decomposition. The

distribute adaptive covariance matrix eigenvector estimation

(DACMEE) algorithm, presented in [31], recursively updates

the eigenvector estimates without explicitly constructing the

full covariance matrix that defines them. Nodes share only the

first fused observation and compute compressed covariance

matrices. However, they still require the eigen-decomposition

of several matrices which does not fit the context of large-

scale networks. Candid covariance-free fast incremental PCA

(CCIPCA) [32] algorithm offers a very good compromise

between statistical accuracy and computational speed. It also

has the advantage of not having major dependence on tuning

parameters. However, this incremental algorithm is central-

ized and not adapted for solutions built on decentralized

approaches.

To conclude, to the best of our knowledge, there is currently

no appropriate method exhibiting a low computation and

communication cost and operating in a decentralized way for

computing principal components incrementally in the context

of large datasets while the latter is necessary to enable any

autonomic management function to operate. Consequently, in

this paper, we propose a novel framework based on CCIPCA

for estimating the principal axes that stand for the footprint of

VMs in a cloud environment, iteratively and in a distributed in-

network scheme, without the need to estimate the covariance

matrix.

III. WORKLOAD ESTIMATION WITH DECENTRALIZED AND

LOW COMPUTATIONAL COST PCA

We propose to estimate the workload of VMs by introducing

a method for computing the principal components of system

activities that is both simple and decentralized. The principal

components represent the different possible behaviors, regard-

less of the amount of activity. Relying on this decentralized

estimation of PCA, each novel observation of a VM activity

is compared with the first principal axes in order to find the

most relevant behaviors and only the contribution onto the

closest axes are kept. The novel observations are also used in

the decentralized computation of the PCA in order to update

the previous estimations.

Server 1

Virtualization layer

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

Probe

xxxxxxxx

VM

Server 2

Virtualization layer

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

x
x
x
x
x
x
x

xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

Probe

xxxxxxxxxx

VM

Server S

Virtualization layer
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x

xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x

Probe

xxxxxx
xxxxxx

VM

xxxxxxxxxxxx

Physical level

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxxxxx

Tenant 1

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x

xxxxx

Tenant 2

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x

xxxxx

Tenant T

xxxxxxxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

xxxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

Logical level

xxxxxxxxxx

Computation level

Combine Adapt
(Gossip)

iterative

ψ

φ

x

xi

η

Fig. 1. Experimental environment

This approach offers the advantages of (1) allowing a good

adaptivity with respect to dynamic variations of activities in

time, (2) separating the heterogenous behavior within differ-

ent similar activities and (3) representing the activities with

axes gathering similar activities regardless of the volume of

those activities. For clarity purposes, all notations used in the

following are provided in Table I.

A. Decentralized CCIPCA

We introduce a decentralized version of candid covariance-

free fast incremental PCA (CCIPCA) algorithm [32], to com-

pute principal components incrementally without estimating

the covariance matrix. This method is divided at each step

into two phases: the combine phase and the adapt phase. The

combine-then-adapt strategy has been investigated in linear

adaptive filtering literature in [33], and recently in unsuper-

vised learning in [6]. In the context of cloud computing,

and with respect to Fig. 1, this strategy is based on the

separation between the physical deployment of VMs among

servers and the logical level of tenants to whom those VMs

belong. The probes are implemented on the servers at the

level of virtualization layer. First, a combine step averages

the estimates, denoted φ, of all the servers that host the same

tenant, resulting in an intermediate estimate denoted ψ. Then,

each probe gathers the estimates ψ of the VMs it hosts, thus

gathering the estimation from several tenants. This adapts step

lead to update estimations of PCA φ.

Fig. 1 describes an illustrative environment where a set of

physical servers represent the physical infrastructure of a cloud

operator. Each physical server hosts different VMs belonging

to different tenants. In order to understand the communication

between probes, the scheme shows the logical level where

a tenant is able to see only its own VMs. Communication

is held between these VM using the gossip [34] protocol.

This type of communication needs to define the neighborhood

between nodes and in our work, we define the neighborhood

randomly with a maximum number of neighbors. Note that

from a practical point of view, the communications between

VMs belonging to the same tenant are insured by the probes.

IFIP/IEEE IM 2017 Special Track on Autonomic Management1188



Symbol Denotation

T Number of tenants

S Number of servers

V Number of VMs

C Covariance matrix

w Principal axis

λ Eigen value

η Estimate of λw
φ Intermediate estimate of w at servers level

ψ⋆ Ideal estimation of w at tenants level

ψ Approximation of ψ⋆;

intermediate estimate of w at tenant level

t Iteration index

ǫ Convergence error threshold

l Amnesic parameter

θ Time of data extraction

Θ Angle between the ith

estimated and real principal axis

TABLE I
NOTATIONS USED TO DESCRIBE OUR ALGORITHM

B. A Method for Principal Components Estimation

Working in a decentralized manner, the probes update their

estimates using cooperation between each other. We recall

(see Equation (1)), that the principal components are given as

the eigen vectors of the covariance matrix C = 1

V
XX

⊤ =
1

V

∑V

v=1
xvx

⊤
v . In the proposed cooperative method for each

VM, with index v, each probe replaces the covariance matrix

C by a local estimate xvx
⊤
v . Thus, at iteration step t, the VM

v is associated with the estimation of principal components

denoted ηv(t) with, at initialization ηv(0) = xv.

The first step consists in combining the estimation of

principal components ηv(t) from all VMs. Because this is not

possible at a large scale, we start by gathering data estimated at

the infrastructure level, by a simple averaging of the estimates

from all the VMs it hosts:

φs(t) =
1

nv

∑

v∈s

ηv(t). (2)

In Equation (2), s represents the index of a server, v ∈ s
represents the index of VMs hosted on server s and nv denotes

the number of VMs on server s.

The second step for combining all the estimations ηv(t)
is carried out by leveraging the fact the VMs that belong to

one tenant t are distributed among several physical servers, as

depicted in Fig.1. However, once again, in a large-scale context

the tenant may have a high number of VMs making the sharing

of their estimations between all of them unrealistic because of

the prohibitive communication cost. Ideally, we would thus

like to approximate the average of all the VMs belonging to

the tenant T :

ψ⋆
T (t) =

1

ns

∑

s∈sT

φs(t) (3)

=
1

ns × nv

∑

s∈sT

∑

v∈s

ηv(t). (4)

with ns the number of servers in the set sT .

While in Equation (2), φs(t) represents the estimates at

the probe of server level, the estimate ψT (t) in Equation (4)

represents the estimates at the tenant level which is in fact the

average of the estimate from all the VMs deployed over all

the server in the set sT .

In order to carry out the computation of the estimate ψ⋆
T (t)

at a reasonable communication cost, we propose to replace

it with the approximation obtained using a symmetric gossip

described [37]. In detail, at iteration t, the probe associated

with VM v randomly selects one of its neighbors (belonging

to the same tenant), say u, and they both exchange estimations,

obtained at the server level, to perform an update as follows:

ψv(t) = (1− ν)× φv(t) + ν × φu(t), (5)

ψu(t) = ν × φv(t) + (1− ν)× φu(t), (6)

with ν ∈ [0, 1] a mixing parameter that defines the rate of

update. It is important to note that the estimations at tenant

level may differ from VMs to VMs due to the random selection

of a neighbor. Hence we adopted the notation ψv(t) instead

of ψT . However, because the principal axes update described

in Equations (5)-(6) is performed by all the probes, at the end

of this gossip process, the VMs of each tenant should share

similar estimations ψ that approximate ψ⋆
T (4).

At the end of the combine step, the very last step consists

in adapting the estimations at the VMs level, by taking into

account the combined estimations obtained at the tenant level.

To this end, we propose not to use the original CCIPCA

method [35]. The reason is that CCIPCA has been investigated

in the context of computing a PCA only once in a centralized

manner with a dataset that does not change. Here, we must

take into account the fact that the activity is dynamic by

incorporating an amnesic factor [32] to forget the oldest

estimates. Adapting the CCIPCA to the case of dynamic lead

us to redefine the update as follows:

ηv(t) =
t−1−l

t
ψv(t−1) +

1+l

t
x
⊤
v xv

ψv(t−1)

‖ψv(t−1)‖
, (7)

where the positive parameter l is referred to as the amnesic

parameter. Note that the two modified weights still sum to 1.

With the presence of l, larger weight is given to new samples

and the effect of old samples will fade out gradually. Typically,

l ranges from 2 to 4.

The second improvement we proposed is simple and ob-

vious but greatly speed up the computation of the principal

components estimations. When new data are received and the

process has not started over, instead of initializing the method

with ηv(0) = xv, we allow the use of estimations obtained

with the previous data. The idea is that though activity is

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1189



dynamic, it is not likely to change abruptly very often.

Finally, it is important to note that the estimation of other

principal components, associated with smaller eigenvalues,

can be computed using the fact that the eigenvectors are

orthogonal. It is thus possible, by using the Gram-Schmidt

process, to subtract from the data contribution from the first

axis η1,v(t) with the following projection:

x2,v(t) = x1,v(t)− η1,v(t)
x1,v(t)

⊤η1,v(t)

‖η1,v(t)‖2
, (8)

where x1,v(t) = xv. The obtained residual, x2,v(t), which

is in the complementary space of η1,v(t), serves as the input

data to the iteration step. In this way, the first r dominant

eigenvectors are obtained sequentially. One can also note that

through this iterative of computing principal components, the

computational complexity and the communication costs are

both linear with respect to the number of components it is

aimed at computing.

C. Using the Estimated Principal Components for Workload

Estimation

After several iterations, the method described in the previous

subsection allows all the VM to share the same principal

components. In other words, we have ηi,v(t) ≈ λiwi for all

VM v and for all eigenvector wi.

Once those estimates are shared by all the VM, the workload

estimation is obtained by simply keeping only the part of

activity measurements that lies within the subspace spanned

by the principal components that contribute the most to the

activity. From a practical perspective, the idea is that though

tenants may have very different usage, they can likely be

classified within a few main global behaviors (e.g. computing,

storage, etc.). Thus, the principal components should reveal

those global behavior and by selecting, for each VM data xv

the few components that are the most significant, we are likely

to select what characterizes its type of behavior.

In practice, this is implemented as follows. Since the prin-

cipal components are orthonormal, it is thus straightforward

to get an estimation of wi from ηi,v(t) via the normalization:

ŵi,v =
ηi,v
‖ηi,v‖2

. (9)

The contribution due to each axis is simply computed as the

projection of the activity measurements xv onto each axis :

yi,v = ŵ
⊤

i,vxv. (10)

The final estimation of the activity is obtained by keeping

the r greatest contributions among y1,v, . . . , yi,v. For the sake

of clarity, let us denote W v the matrix that contains only those

most relevant axes to characterize activity measurements xv.

The estimation of the workload can be written as:

x̂v = W iW
⊤

i xv. (11)

To conclude, it is worth noting that the proposed method

allows the dynamic adaptation of the workload estimation

to the change that may happen as the principal components

estimation are recomputed prior to all workload estimations.

Second, the proposed method leverages the computation of

principal components over all the VMs to cluster the main

activity profiles and adapt this analysis to each VM by using

only the most relevant.

The proposed method thus allows the online and decentralized

estimating of all containers workload. However, we must also

acknowledge that the proposed method estimated the workload

globally, over all the containers. Though this estimation has

a global overall good accuracy, it may performs worse for

individual container or tenants with very small number of

containers.

D. Algorithm

In the following, we describe the pseudo-code of our

approach. For clarity purpose, we show a global algorithm

which considers all servers, tenants and VMs. Basic operations

of a probe are given in Algorithm 2, while Algorithm 1

shows the decentralized CCIPCA algorithm. In this algorithm,

line 2 to line 8 represent the initialization phase. Then, the

Combine phase is performed between line 10 and line 12. In

this phase, estimations of the servers on which the same tenant

is deployed are averaged using the gossip protocol described

in Equations (5)-(6). Finally, the Adapt phase is highlighted

between line 13 and line 18, where each probe adapts its

estimation according to Equations (2)-(7)-(8). Finally, line

21 to line 23 normalize ηi to attain the eigenvectors and

eigenvalues.

Note that the estimation of every VM v converge to the

same eigenvector wi, in other words, wi(v)→ wi ∀ v.

IV. EVALUATION OF THE PROPOSED APPROACH

In order to evaluate the performance and cost of our

approach, we have considered real execution traces of Linux

containers provided by the dataset presented in [39]. We have

then implemented our algorithm in Matlab to simulate the case

of a decentralized management system aiming at computing

a global workload estimation and make it available to any

upper management function. In this section we first present

our dataset, then we present some intermediate results required

to parameter our algorithm and finally we demonstrate to

what extend (1) our approach is able to accurately follow the

evolution of the workload while (2) exhibiting a reasonable

computation cost, expressed as the number of algorithm itera-

tions required to reach the convergence of the estimated axes,

according to the number of tenants, servers and containers.

A. Dataset and Parameters

The dataset we consider to validate our approach consists

in all the legitimate activity captured in the measurement

campaign presented in [39]. The latter consists in real con-

tainer execution traces monitored in the PlanetLab platform

[40] which leverages LXC [41] as a lightweight virtualization

technology. More precisely, we consider here 14 sets of 3-

hour traces of system activities captured each second, from

IFIP/IEEE IM 2017 Special Track on Autonomic Management1190



Algorithm 1 Decentralized CCIPCA Compute the first r
dominant eigenvectors

Require: X = [x(1),x(2), · · · ,x(V )]
Ensure: wi, λi

1: repeat

2: X1,t ←X

3: for i = 1 : min{r, t} do

4: if i = t then

5: INITIALISE ηi,1(t), ηi,2(t), · · · , ηi,V (t)
6: for s = 1, 2, · · · , S do

7: φi,s(t)← MEAN (ηi,v(t))
8: end for

9: else

10: for v = 1 : V do

11: ψi,v(t− 1)← GOSSIP AVERAGE(φi,s(t− 1))
12: end for

13: for s = 1 : S do

14: for v ∈ s do

15: [ηi,v(t),xi+1,v(t)]←ADAPT(xi,v(t),ψi,v(t−1))
16: end for

17: φi,s(t)← MEAN (ηi,v(t))
18: end for

19: end if

20: end for

21: for i = 1 : min{r, t} do

22: wi,v ← ηi,v(t)/‖ηi,v(t)‖, λi,v ← ‖ηi,v(t)‖
23: end for

24: until ‖ηi,v(t)− ηi,v(t− 1)‖ < ǫ

Algorithm 2 Basic operations of a probe

1: real[] : INITIALISE

2: real[] : GOSSIP AVERAGE(real[][])

3: real[], real[]: ADAPT(real[],real[])

4: real[] : MEAN(real[][])

2014, April to June, and measured with the Slicestat1 server

monitoring tool. In total, an amount of 48 servers traces have

been considered, thus leading to the capture of more than 2,5

million of individual traces featuring 1 625 containers belong-

ing to 128 tenants. TABLE II shows the set of raw information

provided by Slicestat. In the following, we consider the sole

CPU, memory and I/O related information, thus leading to

10 metrics to feature the overall system activity. Finally, one

can note that for all subsequent results, simulations have been

performed 240 times, and all depicted results are averaged and

bounded with 95% confidence intervals.

The workload estimation algorithm, at time θ, is performed

every 15 second on data averaged to remove noise and outliers

from raw Slicestat measurements. In order to evaluate the

convergence time of our approach, we consider the number

of steps required to reach a difference lower than ǫ = 0.001
between two consecutive estimations and we limit this number

1http://codeen.cs.princeton.edu/slicestat/

Name Denotation

SLICE Slice name

ID Slice context id

CPU CPU consumption (%)
MEM% Physical memory consumption (%)

MEM Physical memory consumption (Ko)

MEM V Virtual memory consumption (Ko)

PRCS Number of processes

TX1 Average sending bandwidth (Kbps)

for last 1 min

TX5 Average sending bandwidth (Kbps)

for last 5 min

TX15 Average sending bandwidth (Kbps)

for last 15 min

RX1 Average receiving bandwidth (Kbps)

for last 1 min

RX5 Average receiving bandwidth (Kbps

for last 5 min

RX15 Average receiving bandwidth (Kbps)

for last 15 min

IP Local IP address of this node

PRCS A Number of active processes

- that is, processes using the

CPU cycle at the moment

TABLE II
RAW INFORMATION COLLECTED FOR EACH CONTAINER

of steps to 100 in order to keep the convergence time lower

than two consecutive measurements.

B. Estimation Performance

In order to highlight the estimation performance of our

approach, we consider in the following the results obtained

for all the container activities at a given time θ. One can note

that similar results have been obtained for any other θ.

The first estimation parameter we consider to setup the ac-

curacy of our approach is the number of principal components

required to feature the system workload in a satisfying way

while maintaining a reasonable computation cost, as referred

to Equation (8). The latter is depicted by the scree plot in

Fig. 2.a which stands for the relationship between the relative

magnitude of the eigenvalues and the number of factors. The

number of principal components is traditionally determined

by the abscissa value where the line stops descending precip-

itously and levels out. In our case, despite the fact that the

curve exhibits a smooth decrease, it appears numerically that

2 principal components are enough since they restore about

two thirds of the total variance of the original data while the

8 remaining only restore the last third. Consequently, we limit

in the following of our study the workload estimation to the

two first principal components.

In order to feature to what extent the decentralized CCIPCA

approach we propose is able to accurately feature the two first

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1191



0 2 4 6 8 10 12
−1000

0

1000

2000

3000

4000

5000
T

T
T

E
ig

en
v
al

u
e

Factor number

(a)

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

Iteration number

A
v
er

ag
e

an
g
le

Θ1

Θ2

(b)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Distance

D
en

si
ty

(c)

Fig. 2. Overall estimation performance: (a) Relationship between the relative magnitude of the eigenvalues and the number of factors; (b) Convergence of
the proposed strategy, measured by the average angle Θ1 and Θ2; (c) Density of the distances between real data and its estimate

components as compared to a complete PCA computation,

performed in a centralized way and considering the eigen-

decomposition of the covariance matrix, we consider the

estimation error as the angle between (1) the ith principal axis

w
∗
i , obtained from the complete PCA and (2) the ith estimate

wi,l at probe l, namely

Θi = arccos

(
w

⊤
i,lw

∗
i

‖wi,l‖‖w∗
i ‖

)
. (12)

The results, depicted in Fig. 2.b, are averaged over all

the probes hosted on monitored servers and they show the

evolution of this estimation error according to the number of

iteration of our algorithm with respect to Algorithm 1. For

both components, after a few iterations where the error is

large, one can see that they clearly converge toward a quasi-

null error. From 28 iterations, the error is below 0.01 and 65

iterations are required to reach the ǫ = 0.001 threshold, which

stands for a satisfying performance result. One can remark

that the confidence intervals of the second axis during the first

iterations are larger than those of the first. The reason lies in

the need for an accurate first axis to compute the second one

in our algorithm, as stated in Equation (8).

Finally, in order to evaluate the overall estimation accuracy

of our approach to feature the system workload, we consider

the residual distance between the monitoring data projected

into the two-dimensional axis space and the real data. Such a

distance can be computed as follows:

d = ‖W (W⊤
W )−1

Y −X‖, (13)

where Y is the matrix of the principal components. Fig. 2.c

shows the density of the obtained results. It demonstrates the

relevance of our method in representing the data, since 80% of

all errors are clearly located below 1 and greater values only

contain a insignificant part of the errors.

C. Scalability Support

In order to evaluate to what extend our approach supports

scalability, we have considered two criteria which are the

amount of variance restored by our estimation over the real

data and the number of steps required to reach the algorithm

convergence. The two latter respectively stand for the overall

performance and cost indicators. As scalability factors, and

with respect to realistic multi-tenant virtualized environments,

we have selected subset of the whole dataset in order to

change the number of tenants, varying from 1 to 100, the

number of servers, from 10 to 1000 and finally the number

of containers, varying from 100 to 10000, thus bringing two

orders of magnitude for all the factors. The collected results

are shown respectively in Fig. 3 and Fig. 4 for all the above

mentioned indicators and factors. The overall result clearly

shows that whatever the scale of the overall system, the

estimation accuracy is almost constant with in average 70% of

the data variance restored, thus leading us to the independence

of our approach from the system size. Then, concerning the

cost, it appears that the two decades highlight a linear cost of

the approach according to the different scaling factors, thus

here also demonstrating the acceptable cost of our approach

under different scales. A logarithmic shape tends to appear

but further results would be necessary to confirm that result.

One can note that in case of small systems, our approach

still needs a large number of iterations. This phenomenon can

be explained by the difficulty of the method to compute its

principal axes when the set of input data is too small making

it useless for such environment.

V. CONCLUSION

Being able to estimate the workload of a virtualized in-

frastructure in a cost-effective and accurate way is a manda-

tory step toward the design and implementation of advanced

management and control functions related to performance

or security. However, the large scale of these infrastructures

which may count millions of virtual machines, the heteroge-

nous nature of the activities they host and their dynamics in

terms of operations and migrations, makes such an estimation

hard to perform. In this paper, we have presented a novel

estimation approach which proposes to incrementally compute

the principal components of a workload in a decentralized

IFIP/IEEE IM 2017 Special Track on Autonomic Management1192



10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

 

 

♯ tenants

D
at

a
re

st
o
re

d

(a)

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

 

 

♯ servers

D
at

a
re

st
o
re

d

(b)

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

 

 

♯ containers

D
at

a
re

st
o
re

d

(c)

Fig. 3. Workload estimation accuracy featured by the percentage of data that lies within restored data according to the number of (a) tenants, (b) servers and
(c) containers

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

♯ tenants

♯
it

er
at

io
n
s

(a) Impact of tenants number on PCA convergence

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

♯ servers

♯
it

er
at

io
n
s

(b) Impact of server number

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

 

 

♯ containers

♯
it

er
at

io
n
s

(c) Impact of container number

Fig. 4. Evolution of the number of iterations required to achieve the convergence in the proposed principal components estimation when increasing the
number of (a) tenants, (b) servers and (c) containers

way, this way enabling any management element to get this

information at any time. We have especially extended the

CCIPCA [32] approach to allow it to (1) integrate the multi-

tenancy of a virtualized infrastructure and (2) operate in a

fully decentralized way. In order to validate our work, we have

considered a large-scale dataset of Linux container activities.

By implementing our approach in a simulation environment,

we have demonstrated that (1) considering two principal com-

ponents is enough to feature around two thirds of the workload

variance of a virtualized infrastructure while maintaining a

reasonable cost, given by the number of iterations required to

reach the algorithm convergence; (2) the estimation accuracy

is independent from the system scale in terms of number

of tenants, servers and containers; (3) around 70 iterations

are enough at worst to compute a precise estimation of a

workload at the scale of 100 tenants, 1000 servers and 10000

containers and such a cost tends to grow in a linear way

with the system scale, thus highlighting a constant cost for

an individual element.

From the results we obtained in this work, the research

perspectives are numerous. Firstly, our ongoing work consists

in an in depth study of the computing cost of each iteration of

our algorithm and the associated communication cost induced

by gossip exchanges. We are also considering to what extent

our workload estimation solution can automatically detect

outliers activities related to malware execution in virtual ma-

chines. The first case we address concerns Botnets with highly

diluted attacks mixed into a legitimate activity. Secondly, we

plan to address other types of malicious activities such as

data leakage. Lastly, in a long term perspective, we plan to

compare the performance of such a decentralized approach

to that of standard solution for big data computing such as

Hadoop/Mahout.

ACKNOWLEDGEMENT

This work is co-funded by (1) the French Investment for

Future (Développement de l’Economie Numérique), Request

(REcursive QUEry and Scalable Technologies) project, started

in 01/02/2014 and (2) the CRCA and FEDER CyberSec

Platform < D201304601 >.

REFERENCES

[1] S. Krompass, A. Scholz, M. Albutiu, H. A. Kuno, J. L. Wiener, U. Dayal,
and A. Kemper, “Quality of service-enabled management of database
workloads,” IEEE Data Eng. Bull., vol. 31, no. 1, pp. 20–27, 2008.

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1193



[2] V. R. Kebande and H. S. Venter, “A cognitive approach for botnet
detection using artificial immune system in the cloud,” in Cyber Security,

Cyber Warfare and Digital Forensic (CyberSec), 2014 Third Intl’ Conf.

on, April 2014, pp. 52–57.

[3] M. R. Memarian, M. Conti, and V. Leppanen, “Eyecloud: A botcloud
detection system,” in Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1, Aug
2015, pp. 1067–1072.

[4] I. T. Jolliffe, Principal Component Analysis. Springer Verlag, 1986.

[5] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley

Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp.
433–459, 2010.

[6] N. Ghadban, P. Honeine, F. Mourad-Chehade, C. Francis, and J. Farah,
“In-network principal component analysis with diffusion strategies,”
Intl’ Journal of Wireless Information Networks, vol. 23, no. 2, pp.
97–111, 2016.

[7] S. Wold, “Pattern recognition by means of disjoint principal components
models,” Pattern recognition, vol. 8, no. 3, pp. 127–139, 1976.

[8] C. Ding and X. He, “K-means clustering via principal component anal-
ysis,” in Proc. of the twenty-first international conference on Machine

learning. ACM, 2004, p. 29.

[9] K. Tout, R. Cogranne, and F. Retraint, “Fully automatic detection of
anomalies on wheels surface using an adaptive accurate model and
hypothesis testing theory,” in Signal Processing Conf. (EUSIPCO).
IEEE, 2016, pp. 508–512.

[10] K. Tout, R. Cogranne, F. Retraint, “Fully automatic detection of anoma-
lies using an adaptive statistical model and testing theory: Application
to wheel surface inspection.” (submitted), 2017.

[11] B. M. Wise, N. L. Ricker, and D. J. Veltkamp, “Upset and sensor failure
detection in multivariable processes,” AlChE Meeting, San Francisco,
1989.

[12] J. MacGregor, “Multivariate statistical methods for monitoring large data
sets from chemical processes,” AlChE Meeting, San Francisco, 1989.

[13] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” SIGMETRICS Perform.

Eval. Rev., vol. 26, no. 1, pp. 151–160, Jun. 1998.

[14] A. B. Downey and D. G. Feitelson, “The elusive goal of workload
characterization,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 4, pp.
14–29, Mar. 1999.

[15] M. C. Calzarossa, L. Massari, and D. Tessera, “Workload
characterization: A survey revisited,” ACM Comput. Surv., vol. 48,
no. 3, pp. 48:1–48:43, Feb. 2016.

[16] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: Insights from google compute
clusters,” SIGMETRICS Perform. Eval. Rev., vol. 37, no. 4, pp. 34–41,
Mar. 2010.

[17] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis
and lessons from a publicly available google cluster trace,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2010-95, Jun 2010.

[18] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload analysis
and demand prediction of enterprise data center applications,” in Proc.

of the 2007 IEEE 10th Intl’ Symposium on Workload Characterization,
ser. IISWC ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 171–180.

[19] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and
clouds,” in 2009 10th IEEE/ACM Intl’ Conf. on Grid Computing, Oct
2009, pp. 50–57.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[21] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for
big data: Scalable, randomized, and parallel algorithms for big data
analytics,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 32–43,
Sept 2014.

[22] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny
data: Constant-size coresets for k-means, pca and projective clustering,”
in Proc. of the Twenty-fourth Annual ACM-SIAM Symposium on

Discrete Algorithms, ser. SODA ’13. Philadelphia, PA, USA: SIAM,
2013, pp. 1434–1453.

[23] C. Alzate and J. A. K. Suykens, “Multiway spectral clustering with
out-of-sample extensions through weighted kernel pca.” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 32, no. 2, pp. 335–347, 2010.

[24] J. R. Bunch and C. P. Nielsen, “Updating the singular value decompo-
sition,” Numerische Mathematik, vol. 31, pp. 111–129, 1978.

[25] P. M. Hall, A. D. Marshall, and R. R. Martin, “Merging and splitting
eigenspace models.” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 9, pp. 1042–1049, 2000.

[26] H. Kargupta, W. Huang, K. Sivakumar, B. Park, and S. Wang, “Collec-
tive principal component analysis from distributed, heterogeneous data,”
in Proc. of the 4th European Conf. on Principles of Data Mining and

Knowledge Discovery. London, UK, UK: Springer-Verlag, 2000, pp.
452–457.

[27] Y. Le Borgne, S. Raybaud, and G. Bontempi, “Distributed principal
component analysis for wireless sensor networks,” Sensors, vol. 8, no. 8,
pp. 4821–4850, 2008.

[28] S. B. Korada, A. Montanari, and S. Oh, “Gossip PCA,” in Proc. of

the ACM SIGMETRICS Joint Intl’ Conf. on Measurement and Modeling

of Computer Systems, ser. SIGMETRICS ’11. New York, NY, USA:
ACM, 2011, pp. 209–220.

[29] M. Ahmadi Livani and M. Abadi, “A pca-based distributed approach for
intrusion detection in wireless sensor networks,” in Computer Networks

and Distributed Systems (CNDS), Intl’ Symposium on, Feb 2011, pp.
55–60.

[30] S. V. Macua, P. Belanovic, and S. Zazo, “Consensus-based distributed
principal component analysis in wireless sensor networks,” in IEEE Intl’

Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), June 2010, pp. 1–5.
[31] A. Bertrand and M. Moonen, “Distributed adaptive estimation of

covariance matrix eigenvectors in wireless sensor networks with
application to distributed {PCA},” Signal Processing, vol. 104, pp. 120
– 135, 2014.

[32] W.-S. Hwang, J. Weng, and Y. Zhang, “Candid covariance-free incre-
mental principal component analysis,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1034–1040, 2003.
[33] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion

strategies for adaptation and learning over networks: an examination of
distributed strategies and network behavior,” Signal Processing Maga-

zine, IEEE, vol. 30, no. 3, pp. 155–171, May 2013.
[34] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based

aggregation in large dynamic networks,” ACM Trans. Comput.

Syst., vol. 23, no. 3, pp. 219–252, Aug 2005. [Online]. Available:
http://doi.acm.org/10.1145/1082469.1082470

[35] Y. Zhang and J. Weng, “Convergence analysis of complementary candid
incremental principal component analysis,” Comput. Sci. Eng., Michigan
State Univ., East, Tech. Rep., 2001.

[36] F. Fagnani and S. Zampieri, “Asymmetric randomized gossip algorithms
for consensus,” in IFAC World Conf., 2008, pp. 9052–9056.

[37] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” Information Theory, IEEE Transactions on, vol. 52, no. 6,
pp. 2508–2530, June 2006.

[38] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over
large scale networks,” Selected Areas in Communications, IEEE Journal

on, vol. 26, no. 4, pp. 634–649, May 2008.
[39] H. Badis, G. Doyen, and R. Khatoun, “Understanding botclouds from

a system perspective: A principal component analysis,” in 2014 IEEE

Network Operations and Management Symposium (NOMS), May 2014,
pp. 1–9.

[40] O. Babaoglu, M. Marzolla, and M. Tamburini, “Design and
implementation of a p2p cloud system,” in Proc. of the 27th Annual

ACM Symposium on Applied Computing, ser. SAC ’12. New York,
NY, USA: ACM, 2012, pp. 412–417.

[41] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: An overlay testbed for broad-coverage
services,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12,
Jul. 2003.

IFIP/IEEE IM 2017 Special Track on Autonomic Management1194




