
Orchestrating Resource Allocation for Interactive
vs. Batch Services using a Hybrid Controller

Bilal Ahmad∗, Anis Yazidi∗, Hårek Haugerud∗ and Soodeh Farokhi†
∗Oslo and Akershus University College (HiOA), Norway

†C2RO - Collaborative Cloud Robotics, 780 Avenue Brewster, Montreal, Canada

Abstract—Cloud service providers are trying to reduce their
operating costs while offering their services with a higher quality
via resorting to the concept of elasticity. However, the vast
majority of related work focuses solely on guaranteeing the
quality of service (QoS) of interactive applications such as
Web services. Nevertheless, a broad range of applications have
different QoS constraints that do not fall under the same class
of latency-critical applications. For instance, batch processing
possesses QoS requirements that are latency-tolerant and usually
defined in terms of job progress. In this sense, a possible manner
to quantify the performance of a batch processing application
is to estimate its job progress so that to determine if future
deadlines can be met. The novelty of this work is two-fold. First,
we propose a hybrid controller coordinating resource allocation
between interactive and batch applications running at the same
infrastructure. The intuition is to deploy a controller for the
interactive application at a faster time-scale than the batch
application. Second, we bridge the gap between vertical and
horizontal scaling under the same framework. In this perspective,
vertical scaling is used for small fluctuations in the load, while
horizontal scaling handles larger load changes. Comprehensive
experimental results demonstrate the feasibility of our approach
and its efficiency in ensuring a high CPU utilization across
all experiments consisting of 83.70% for the Web service and
89.51% for the batch service, while meeting the respective QoS
requirements of both services.

Index Terms—Resource Allocation, Autonomous Computing,
Control Theory, Web Service, Batch Application, Quality of
Service (QoS), Response Time, Job Progress

I. INTRODUCTION

Cloud computing is an emerging technology and is becoming
more popular, due to advantages such as elasticity and infi-
nite computing resources. Companies are increasingly taking
advantage of the benefits and moving their infrastructure to
the cloud to reduce the operational cost. According to a study
performed by Natural Resources Defense Council in 2014 [1],
the main issue for energy saving is under utilization of data
centers. In addition, data centers have the fastest growing
consumption of electricity in United States [1]. It is estimated
that Google Web search servers often have an idleness of 30%
over a 24 hour period [2]. It means, if we envisage a cluster
of 20,000 servers, the capacity of 6,000 servers would be
wasted. Consequently, maximizing server consolidation would
cut unnecessary energy and operation costs and increase return
on investment.

From a top-down perspective, we can argue that cloud
computing has entangled with the concept of elasticity and
virtualization to address the under-utilization issue of grid
computing or cluster computing. In a nutshell, elasticity is
achieved via horizontal scaling and/or vertical scaling. The
concept of horizontal scaling is the de facto standard because
of its simplicity, as it does not require any extra support from
the hypervisor [3]. Horizontal scaling relies on increasing
the capacity by connecting multiple hardware or VMs and
orchestrating their work as a single entity. While vertical
scaling consists of adding more resources to a single node in
a system. Furthermore, horizontal elasticity is coarse-grained,
which means that a CPU core can dynamically be leased to a
VM for a certain amount of time. While vertical elasticity is
fine-grained, fractions of a CPU core can be leased for as short
as a few seconds [4]. It is worth-mentioning that despite the
clear advantages of vertical elasticity, there is only a limited
amount of research focusing on this subject mainly due to its
increased complexity [5], [6], [7].

Applications hosted on VMs have different demands when
it comes to the quality of service (QoS). Interactive ap-
plications are latency-critical and sensitive to unpredictable
spikes in user access, even a small amount of interference
can cause significant QoS degradation. On the other hand,
batch applications are less sensitive to various instantaneous
resource disturbance conditions. One of the challenges of
cloud infrastructure providers is that they do not know what
kind of applications are running on their infrastructure so they
cannot effectively adjust the resource allocation to achieve a
preferred QoS.

The aim of this paper is to propose and design an autonomic
resource allocation controller using control theoretical ap-
proaches to manage QoS of heterogeneous application types.
Application level metrics of interactive and batch applications
will be used as an indicator of QoS. The contributions of this
paper are twofold:

• It devises an autonomic resource allocation controller
using control theoretical approaches to increase the server
utilization hosting both interactive and batch services,
while allocating sufficient resources to ensure the desired
QoS of both types of applications.

• It bridges the gap between vertical and horizontal scaling
schemes in a designed hybrid controller. The vertical

978-3-901882-89-0 @2017 IFIP 1195

scaling is used to tackle small fluctuations in the input
workload, while the horizontal scaling handles larger
workload changes.

The remaining of this paper are as follows. In Section II,
the state-of-the-art on resource allocation in cloud computing
is reviewed. Section III presents the design of the proposed
hybrid controller. In Section IV, the experimental evaluation
results are discussed. Finally, Section V concludes the paper
and envisions the future work.

II. RELATED RESEARCH

The concept of self-adaptive cloud environments is not new,
it covers a broad area of research fields, where there is still
ongoing extensive research. Because of the increased use of
cloud computing [8], cloud service providers are encountering
new challenges to ensure SLA and QoS requirements. There
is a significant research on achieving increased efficiency
and better resource management. In [7], the authors explore
vertical elasticity features in cloud computing environments.
The focus in the study was completely on scaling memory
using control theory. The decision maker compares the de-
sired and actual response time (RT) of the application and
adjusts the memory allocation accordingly. The results of
the experiments show a significant increase of the memory
efficiency by at least 47%. Since applications in most cases
are dependent of a combination of memory and CPU, a
coordination between the resources is essential for efficient
resource utilization. The study reported in [9] describes the
novelty of the research by using a fuzzy control approach as
a resource coordinator between memory and CPU controller.
The study shows that without having any coordination between
the memory and CPU controller, the VM is in most cases
under- or over-provisioned with resources. The control logic
is based on Fuzzy rules which include; RT, utilization of CPU
and memory as a performance vector. Comparing the results
of using fuzzy controller and non-fuzzy controller shows that
without having any coordination between the controllers most
of the times one of the controller over-provisions resources. By
coordinating the controllers, the right amount of resources is
allocated to meet the desired response time of the application.
In [10], Farokhi addressed the problem of controlling the trade-
off between QoS and cost. This paper investigates models,
algorithms and mechanisms to handle these two perspec-
tives:

• The first approach is concerned with the cloud providers
point of view to offer a distributed infrastructure place-
ment of virtual machines. In this approach the Bayesian
network model is used to perform decision making.

• In the second approach, the author looks at the trade-off
between QoS and cost from the cloud customers point of
view. The concept of Fuzzy controller is used to coordi-
nate the resource controllers to meet the performance in
a cost-effective way.

The results from the study shows that with the trade-off
between QoS and cost for the cloud provider, the proposed
approach managed to decrease the energy cost in the infras-
tructure by up to 69% in comparison to the first state-of-the-
art baseline algorithm, and 45% in comparison to the second
algorithm. The second approach seeks a trade-off between QoS
and cost for the cloud customers. Several experiments were
conducted with real-world workload traces. They managed to
efficiently save at least 47% memory usage while keeping
the desired performance level. By virtue of the coordination
between resources with the Fuzzy controller, the experiments
results showed a reduction of the memory usage by up to
60% in one of the scenarios and up to 56% less CPU usage in
another one, compared to not having any coordination between
the controllers.

The main focus of [11] lies on increasing resource efficiency
by reusing resources of underutilized servers in a production
environment. The authors present a feedback based controller,
named Heracles, which coordinate resources between best-
efforts tasks and latency-critical services (LC). The desired
goal is to keep the service level objectives (SLO), and a
small interference could cause SLO violations for the latency-
critical service. The focus is to maintain and guarantee that
the LC service receives enough amount of shared-resources,
memory, CPU and network I/O. Results from the work showed
that Heracles managed to increase average utilization of 90%
across different scenarios without any SLO violation for LC
tasks in a production environment.

Resource provisioning is typically coarse-grained, this means
that CPU cores are typically leased for periods as long as
one hour. Vertical scaling has improved resource efficiency,
resources can be provisioned for as least a few seconds. An
empirical study uses the mean of response time to measure
QoS of popular cloud applications[4]. The interesting points
made in the study is that response time is not in a linear
relationship with capacity. By presenting a model called Queue
Length Model, the relationship is presented as q = λ ·R where
q is is the average queue length, λ is the arrival rate and R
is the response time. The second model is called the Inverse
Model, where the relationship between an application’s mean
response time R and capacity allocated is represented as R =
β/c. The parameter β is the model parameter and, as in the
queue model, earlier measurements of capacity and response
time is used to calculate β, c is the capacity and R is the
response time. The results showed that both models described
above managed to predict the needed capacity. In the scenario
in which the target response time is low, the Inverse Model
was more stable than Queue Length Model.

Applications in cloud environments are often subject to
varying workloads. A study performed by researchers from
VMware and University of Würzburg [12], developed a so-
lution for proactive scaling of memory on virtualized ap-
plications. The study used statistical forecasting to predict
future workloads and scale precisely based on the needed

IFIP/IEEE IM 2017 Special Track on Autonomic Management1196

resources. By using real-world traces to create real scenarios,
and comparing both a reactive and proactive controller, the
researchers managed to show that performance increased with
more than 80% using a proactive controller.

The aim of the study reported in [13] was to develop a
controller to perform elastic provisioning of resources to prior-
itized VMs and avoid SLA-violations. The paper also evaluates
the benefits of performing vertical scaling of prioritized VMs.
They use real-world workload traces from WorldCup 98 with
the Web application RUBis online auction benchmark. CPU
scaling was performed with CPU cap by using Xen credit-
scheduler to adjust the resources. The results from the paper
show improvement in CPU usage efficiency without having
any major SLA violations. The developed controller achieved
better throughout in comparison to a statistical provisioned
VM. In addition, the approach yielded a stable low response
time for the latency-critical application running on the priori-
tized VM.

III. APPROACH

In this section, we give insights into the design of our hybrid
controller for coordinating resource allocation between two
types of applications: Web service and batch application.
The design of our hybrid controller is driven by two key
observations:

• A Web service has generally real-time requirements and
therefore the controller should able to perform fast elas-
ticity decisions.

• On the other hand, the batch service is less sensitive to
resource starvation over short intervals and can make up
for execution delay in subsequent intervals. Therefore,
the resource allocation to be a batch application can be
"uneven" over time as long as the batch is executed within
its predefined execution deadline.

A. Controller models

At this juncture, we propose to integrate two types of controller
models, a performance-based and a capacity-based controller.
Furthermore, the reason for choosing a combination of the two
controller models as foundation for the prototype will also be
described in more details.

The Capacity-based controller is built upon the concept of
allocating resources based on the level of utilization. Capacity-
based vertical scaling has been widely adopted by cloud
providers because of its simplicity. Utilization of resources
is used to estimate the required resources in interactive appli-
cations. This does not give any indication on the QoS of the
applications, and can in many cases lead to over-provisioning
of resources. It is hard to determine what combination of
resources an application needs to reduce the chances of
violating the SLA, but application level metrics may give a

better understanding of whether the application is suffering or
not.

The Performance-based controller puts emphasis on the QoS
rather than on the utilization of resources to perform decision
making. The performance is gathered from the application
level metrics, such as response time and the metrics give
an indication about the latency of the application. The con-
troller has defined levels of acceptable and non-acceptable
values and those are used when performing decision making.
There are some few research studies that use performance-
based controllers, and the results show that the controller
manages to increase resource efficiency. Figure 1 illustrates the
architecture of the performance- and capacity-based controller.
The model is built upon concepts from control theory. The
red-colored lines illustrate the capacity-based controller. The
controller is fed with the desired capacity, and then performs
collection of utilization metrics, which then are compared to
the desired utilization. The black-colored line illustrates the
decisions which can be to either add or remove single or
multiple resources to meet the desired utilization. However,
if the utilization meets the desired capacity - nothing is done.
For the performance-based controller, the blue-colored dashed
lines illustrate the model. The desired performance of the
application is fed to the controller, then the performance is
measured, and the same decisions as explained above are
made. However, since choosing a capacity- or performance-
based controller does not satisfy the defined criteria, a hybrid
version is needed, which consists of a combination of the mod-
els. The hybrid version consists of first using the performance-
based model to only measure the performance in relation to
the desired capacity, and then the capacity-model is used if
the performance does not meet the SLA-requirements.

Fig. 1: Capacity- and performance-based controller

B. Decision model

Control theory is used as a foundation for the decision making.
The control feedback loop in Figure 2 is based on a feedback
control loop.

The desired QoS can be defined as rtk, and the measured QoS
as rti. The control error (ei) is the difference between these two

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1197

values in each interval. Umemi and Ucpui are equivalent to
utilization of memory and CPU, respectively. While memi and
cpui, is the amount of CPU or memory added. The workload
is observed as disturbance, and since the controller has no
control over the workload, it adjusts the resources in order to
meet the desired QoS.

Fig. 2: The feedback control loop for the hybrid controller

This model is adopted both for the interactive application and
the batch application, with Response time and frames per
second as metrics. As mentioned in the previous section, the
hybrid controller utilizes the performance- and capacity-based
controller models.

C. Controller metrics

The controller metrics used in this paper can be divided
into response time and frames per second. These two SLA-
parameters are defined in table I and II, respectively.

Defining how fast the application should respond is not an easy
task, since there are not any specific industry standards. How-
ever, based on earlier research on human reaction [14]:

• 0.1 second is the limit for the user to feel that the system
is reacting instantaneously.

• 1.0 second is the limit for the user to notice the delay.

Our SLA policy for the Web service aspires to keep the
average response time to be within the interval of 100 and 500
ms. Each time the response time exceeds 500 ms it is recorded
as a SLA-violation. When performing the experiments, the
violations of SLA will be monitored. If the average response
time drops below 100 ms, this means that more resources than
necessary is used and that the allocated resources needs to be
reduced.

The batch job’s SLA policy has a lower priority compared
to the Web server. The desired average frames per second is
defined to be within an interval of 15 and 20. There is a limit
of max FPS set to 23 FPS. However if the average frames per
second drops below 15 there is not any violation. There will
be a need for increased resources to make up for the delay
in encoded frames. Therefore having an average frames per
second which exceeds 20 for some time is not critical. The
target QoS measure for the batch service is finishing the job
approximately within a time-period of 25 minutes. In other
words, the batch job is a task that has a prefixed deadline
for being finished. The informed reader observers that our

controller operates here at two different time-scales, one slow
time-scale and one fast time-scale. In this sense, a fast time
-scale control loop is dedicated to the interactive service (Web
service), while the slow time-scale control loop is dedicated
to the batch computing.

TABLE I: SLA: Web service

Average response time SLA
Fast <100 ms
Medium 100-500 ms
Slow >500 ms

TABLE II: SLA: Batch-job

Average frames per second SLA
Fast >20 FPS
Medium 15-20 FPS
Slow <15 FPS

The two resource metrics that are also taken into considera-
tion by the controller is utilization of CPU and memory, as
illustrated in Figure 2. To reduce the chances of either over-
or under-provisioning, the controller has defined a level con-
taining minimum- and maximum resources, this is illustrated
in table III.

The controller always has the state of the VM monitored,
containing the usage of CPU and memory. Using those met-
rics, when performing vertical down-scaling the minimum
resources is defined as the memory used plus a buffer of 512
MB. When scaling down there will then never be an issue that
used memory is removed causing memory segmentation faults.
The VM will always have a buffer to grow into when needed.
In addition, if there is no load or the load is manageable with
a single vCPU, then that will be the least possible amount of
allocated vCPU.

When performing vertical up-scaling, resources is added when
the utilization reaches 80% of the allocated resources, e.g.
if a VM has 5 vCPUs and the CPU usage is above 400%,
a new vCPU is added. With horizontal up-scaling, the same
concept is used, however it is based on the total usage of the
server. If the total usage exceeds 80% of available resources,
horizontal up-scaling is performed to distribute the load among
the servers.

TABLE III: Utilization of resources

Resources Minimum resources Maximum resources
Memory UsedMemory + 512 MB 80% of available resources
CPU 1 vCPU 80% of available resources

The decision logic for some of the functionality is illustrated in
Figure 3, starting by measuring the response time and making
a decision based on that. Next it checks if the maximum
resources of the PM is reached, if not, vertical scaling is
performed based on utilization of the VM. However, if the
batch VM is not running with the minimum defined resources,

IFIP/IEEE IM 2017 Special Track on Autonomic Management1198

resources are stolen for an amount of time to satisfy QoS-
requirements of the interactive application. However, if there
are no available resources left, horizontal scaling is performed
by booting up a new Web server on the second PM and
distributing the traffic between the two Web servers. This is
done until the simulated traffic comes back to a level where
one Web server is able to handle the traffic load, then down-
scaling is performed.

Fig. 3: An activity diagram that summarizes the decision
logic determining whether or not to scale based on QoS-
requirements.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Experimental setup

The physical equipment where the experiments was conducted
consists of two Dell PowerEdge R610 physical machines
(PMs). Having access to the physical hardware simplifies the
control of the resources and how they are allocated. Both of
the servers have the same specifications and are running the
operating system Ubuntu 12.04.5 LTS. Xen was the only Hy-
pervisor with support for all of the needed features, especially
CPU hot-unplugging, and therefore chosen. The PMs have the
latest available Xen version 4.1.6.1 configured and installed.
Table IV illustrates the specifications of PMs.

TABLE IV: PM specifications

2xR610

CPU 2xQuad-core Xeon E5530 2.40 GHz

Memory 24 GB (1066 MHz)

Disk 2x146 GB (146 GB in RAID 1)

Network 8xEthernet ports

The main resources which will be used for vertical scaling are
CPU and memory. There are in total 16 vCPUs with hyper-
threading enabled and 24 GB of memory. These resources will
be the limitations when performing vertical scaling.

1) Experimental overview: The infrastructure, as illustrated,
can be divided into three components: client, control and
server side.

The Client side is where workload patterns are fed into the
Loader which then simulates the traffic by sending HTTP
requests and meanwhile measures the response time of the
sent requests.

The Control side is where the traffic arrives and is further
distributed to the Web servers. The controller runs at a speci-
fied control interval and collects performance metrics from the
interactive and batch applications. The control interval for the
interactive service has finer granularity than the batch service.
The reason is that the Web service has real-time requirements
and is more prone to instantaneous changes in the traffic
load. On the other hand, the batch service is less sensitive
to resource scariness over short intervals and can make up for
execution delay in subsequent intervals.

Based on the metrics, a decision is made to either increase or
decrease resources through the Xen API. However, the actions
are performed if the utilization is above or less than 80% of the
available resources. The utilization of resources are collected
either directly from the VMs or from the Hypervisor. VM1 is
the Dom0 and provisioned with sufficient resources to avoid
being a bottleneck.

The Server side is where the applications are running, divided
on two PMs. Except the database VM, all of the other VMs
have elastic resources which are adjusted by the controller
in run-time. The second Web server is booted in VM5 in
the second PM. Both of the RUBBoS Web applications
queries the RUBBoS database for each GET request made
by Loader.

Fig. 4: Experimental overview

HAProxy was configured to balance the Web traffic load
between the available Web servers.

For batch processing HandBrakeCLI was configured on a
separate VM. A video file of 3.1 GB was loaded into the
VM and a process of converting the file from .mp4 to .mkv
was launched in the experiments. HandBrakeCLI is a CPU
intensive tool and is able to perform multi-processing with all
of the available CPU cores.

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1199

2) Workload patterns: Two types of workload patterns were
simulated during the experiments, spiky- and trend-based
traffic.

The spiky workload pattern, illustrated in Figure 5 has two
variables which are used as metrics, the number of clients
and requests. The simulation of the traffic consists of sudden
spikes in the number of requests: around 20 most of the time
and suddenly increasing up to 130 after one, three and and
four minutes. There are also some few smaller spikes after
the first large spike. The number of clients increases linearly
from zero and up to 120 simultaneous clients. The simulated
traffic lasts for five minutes.

The trend workload pattern, illustrated in Figure 6, is a traffic
pattern with a linear increase in the number of clients, from
zero and up to 2900 over ten minutes. The number of requests
exhibits a stable increase until six minutes and then stabilizes
around 800 000 requests.

0

20

40

60

80

100

120

140

0

200000

400000

600000

800000

1000000

1200000

0 1 2 3 4 5

C
lie

n
ts

R
eq

u
et

s

Time (minutes)

Spiky - workload pattern

Clients Requests

Fig. 5: Spiky workload pattern

0

500

1000

1500

2000

2500

3000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 1 2 3 4 5 6 7 8 9 10

C
lie

n
ts

R
e

q
u

e
st

s

Time (minutes)

Trend - workload pattern

 Requests Clients

Fig. 6: Workload trend pattern

These two traffic patterns were simulated during the experi-
ments to analyse the behaviour of the controller with different
workload patterns. The simulated traffic arrives from the
internet and is distributed by the load balancer on Dom0 to the
running Web servers. Having a 1 Gbps network link between
the PMs avoided any network congestion while performing
the experiments with high traffic load.

B. Main experiments

The following two main experiments were conducted:

• Resource conflict: Web service and batch, vertical scaling
• Resource conflict: Web service and batch, horizontal

scaling

In the first scenario, a resource conflict between the Web
service and batch-service occurs, and this leads to vertical
scaling. The spiky-based workload pattern was used, starting
from 0 and peaking at 1800 clients during a time-period of
5 minutes. The traffic load was high enough to make the
Web server "steal" resources from the batch-service for a short
amount of time. The autonomic controller measured the QoS
of the applications in intervals of 5 seconds and 5 minutes,
for the Web service and batch-service respectively.

The second experiment where a resource conflict led to
horizontal scaling, was performed with the same settings as
in the previous experiment. In addition, horizontal scaling is
performed when the maximum number of resources is reached
on the PM. In addition horizontal down-scaling is performed
in relation to the traffic load. The workload is trend-based with
increasing number of concurrent clients from 0 to 2700 during
a time-period of 10 minutes.

C. Results

This subsection covers the results of the experiments.

1) Resource conflict: Web service and batch, vertical scaling:
The results from the experiments with a resource conflict
between the Web service and batch-service on a single PM
is illustrated in Figure 7 and 8. The workload pattern for the
experiment was spiky-based from 0 to 1800 clients during 5
minutes, which induces several fluctuation in traffic patterns.
In addition a control interval of 5 seconds is used for the Web
service.

There are two main traffic spikes in the response time, the
first one reaching a peak of 900 ms, and the second spike
rising up to 700 ms. The controller allocates resources within a
short time after the traffic spikes, and manages to decrease the
response time to the desired interval. The number of vCPUs is
allocated based on the increasing response time and reaches a
top of seven vCPUs. Before allocating seven vCPUs, the batch
VM gets its number of vCPUs reduced by one in favor of the
Web server so that it manages to keep the response time low.
After 5 minutes the workload is finished and the Web server
releases the vCPUs, which then are allocated to the batch VM
to make up for the delayed execution of the encoding.

For the batch job, the FPS starts above 40 FPS and drops
slowly to the desired interval. At the beginning there are two
vCPUs allocated and this drops to one which is, as explained
above, allocated in favor of the Web service VM. In the tenth
minute, the control loop for the batch VM is run again and the
FPS is right at the minimum desired FPS and a new vCPU is
allocated. The FPS slowly increases and manages to recover
from the delay in FPS between the fifth and the tenth minute.

IFIP/IEEE IM 2017 Special Track on Autonomic Management1200

0

1

2

3

4

5

6

7

8

0

200

400

600

800

1000

0 1 2 3 4 5

N
u

m
b

e
r

o
f

vC
P

U
s

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (minutes)

Web server 1 [Response time]

Response time Min response time Max response time vCPUs

Fig. 7: Web server: response time in relation to vCPUs

The batch job finishes within the desired time-deadline of 25
minutes.

0

1

2

3

4

0

10

20

30

40

50

N
u

m
b

e
r

o
f

vC
P

U
s

A
ve

ra
ge

 F
P

S

Time (minutes)

Batch-processing [Frames per second]

FPS Min desired FPS Max FPS Max desired FPS CPU cores

Fig. 8: Batch-processing: FPS in relation to vCPUs

2) Resource conflict: Web service and batch, horizontal scal-
ing: In the second main experiment, a resource conflict
between the Web service and the batch-service takes place
leading to horizontal scaling. The trend-based workload pat-
tern is simulated in this experiment from 0 to 2700 clients
during 10 minutes, which means that the traffic increases up
to 2700 simultaneous clients by the end of the test.

As illustrated in Figure 9 and 10, the response time jumps
to 3000 ms and 4000 ms after three minutes, the number
of vCPUs increases as a consequence of the spikes in the
response time. Before allocating seven vCPUs, one core is
removed from the batch VM, but still the response time is high
and a new Web server is created on the second PM. The vCPUs
then gets reduced to the half, and the second Web server is
given the same number of vCPUs. Then the number of vCPUs
increases on both of the Web servers and they manage to
decrease the response time to the desired interval.

The batch VM starts right below 45 FPS, but the number of
FPS is reduced as the Web server takes one vCPU. The core
is allocated back at the next control interval for the batch
job. However the FPS is below the desired value in the tenth
minute and then another vCPU is allocated. The FPS increases
steadily and manages to take back the lost calculated FPS.
The batch job finishes within the desired time-frame of 25
minutes.

0

1

2

3

4

5

6

7

8

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

vC
P

U
s

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

Time (minutes)

Web server 1 and 2 [Response time]

Response time Min response time Max response time

vCPUs - Web-server 1 vCPUs - Web-server 2

Fig. 9: Web server 1 and 2: response time in relation to vCPUs

0

1

2

3

4

0

10

20

30

40

50

N
u

m
b

e
r

o
f

vC
P

U
s

A
ve

ra
ge

 F
P

S

Time (minutes)

Batch-processing [Frames per second]

FPS Min desired FPS Max FPS Max desired FPS CPU cores

Fig. 10: Batch-processing: FPS in relation to vCPUs

D. Analysis

This subsection covers the analysis of the results of the two
main experiments.

1) Resource conflict: Web service and batch, vertical scaling:
In the first experiment with vertical scaling, the average
response time for the Web service was 426 ms and 18.96 FPS
for the batch job during the experiment, as shown in table V.
The amount of requests which received HTTP response code
200 was 627 911, there were no requests that received the
HTTP response code 400 or 500. 136 of the requests received
timeout. Furthermore the amount data sent in the requests was
72.28 MB and received in responses was 1.52 GB.

TABLE V: Web server metrics with vertical scaling

Metrics Web server
Average response time 426 ms
Average FPS 18.96 FPS
Response code: 200 627 911
Response code: 400/500 0
Timeout 136
Bandwidth - Sent 76.28 MB
Bandwidth - Received 1.52 GB

When it comes to the resource utilization, as illustrated in 11,
the Web service had an 60% average utilization of memory,
while the batch had an average memory utilization of 75.61%
during the experiment. The Web service had an average
CPU utilization of 86.32% during the experiments, while the
batch on the other hand had an average CPU utilization of
89.34%.

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1201

86,32 %

60 %

89,34 %

75,61 %

0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

90,00 %

100,00 %

CPU Memory CPU Memory

Web-server Batch

U
ti

liz
at

io
n

 (
%

)

Vertical scaling - Resource utilization (%)

Fig. 11: Vertical scaling experiment: Average utilization of
resources

The average duration of violation of the target response time
was 78.23 ms. The overall amount of responses which violated
the SLA was 27.87%, while 71.67% of the requests were
within the desired interval.

2) Resource conflict: Web service and batch, horizontal scal-
ing: In the horizontal scaling experiment, as shown in table
VI, the average response time during the experiment is 494
ms. The average FPS for the batch job is 18.65 and within the
desired interval of 15- and 20 FPS. There were in total 789
992 requests which received HTTP response code 200, while
there were no requests which revived HTTP response code
400/5000. Of the total amount of requests, 13 023 of them
received timeout, Loader sent 97.83 MB data in requests and
received 1.92 GB data in responses.

TABLE VI: Web server metrics with horizontal scaling

Metrics Web server
Average response time 494 ms
Average FPS 18.65 FPS
Response code: 200 789 992
Response code: 400/500 0
Timeout 13 023
Bandwidth - Sent 97.83 MB
Bandwidth - Received 1.92 GB

The average amount of violations was 2463.94 ms in response
time above the baseline. The amount of requests which vio-
lated the SLA-requirements was 26.23%, and 72.13% of the
requests was within the desired interval. The utilization of
resources is illustrated in Figure 12. The average utilization
of CPU is higher on Web server 2 than Web server 1, the
difference is 3.38%. The Web server 2 had a higher memory
utilization of 73.99%, while the Web server 1 had an average
memory utilization of 64.80%. The batch VM had higher
utilization of both memory and CPU, 84.43% and 89.67%,
respectively.

82,15 %

64,80 %

85,38 %

73,99 %

89,67 %
84,32 %

0,00 %

10,00 %

20,00 %

30,00 %

40,00 %

50,00 %

60,00 %

70,00 %

80,00 %

90,00 %

100,00 %

CPU Memory CPU Memory CPU Memory

Web-server1 Web-server2 Batch

U
ti

liz
at

io
n

 (
%

)

Horizontal scaling - Resource utilization (%)

Fig. 12: Horizontal scaling experiment: Average utilization of
resources

V. CONCLUSION

Due to the different nature of interactive and batch applica-
tions, coordinating their resource allocation is a challenging
task. This paper tackles the problem of coordinating resource
allocation for Web and batch services running under the same
infrastructure. The controller used for the resource allocation
is hybrid in the sense that it uses both resource usage and
application level metrics for elasticity decisions. Moreover,
while most resource allocation approaches solely concentrate
on either vertical scaling or horizontal scaling, the proposed
hybrid controller resorts to both vertical and horizontal scaling,
simultaneously.

For the evaluation, a set of experiments were conducted,
involving both vertical and horizontal scaling to achieve the
desired QoS of the Web and batch applications. The ex-
periments were run on two physical machines running Xen
Hypervisor with the support for hot-plugging to tackle load
bursts of heterogeneous applications. The response time of
the Web service and the job progress of the batch service
were used in decision making in order to efficiently provision
resources to the applications. The results reveals that the
proposed hybrid controller is able to achieve the desired target
QoS for the Web service in all the experiments. Furthermore,
the batch job managed to finish the workload within the
desired deadline. The average utilization of CPU across all
experiments is 83.70% for the Web service and 89.51% for the
batch service, while the average memory utilization is 67.52%
and 74.78%, respectively. Based on the experimental results, a
combination of vertical and horizontal scaling seems effective
in handling different types of load variations.

As a future work, we envision to resort to the theory of
reinforcement learning for coordinating simultaneously the
CPU and memory allocation in a more efficient manner
according to the characteristics of the workload.

REFERENCES

[1] W. Josh and D. Pierre. (2014, aug) Data center efficiency
assessment. [Online]. Available: http://www.nrdc.org/energy/files/
data-center-efficiency-assessment-IP.pdf

IFIP/IEEE IM 2017 Special Track on Autonomic Management1202

http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf
http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf

[2] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014,
pp. 301–312.

[3] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring al-
ternative approaches to implement an elasticity policy,” in 2011 IEEE
International Conference on Cloud Computing (CLOUD). IEEE, 2011,
pp. 716–723.

[4] E. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth, “Towards
faster response time models for vertical elasticity,” in 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing (UCC),
Dec 2014, pp. 560–565.

[5] G. Moltó, M. Caballer, E. Romero, and C. de Alfonso, “Elastic memory
management of virtualized infrastructures for applications with dynamic
memory requirements,” Procedia Computer Science, vol. 18, pp. 159–
168, 2013.

[6] S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic, and E. Elmroth,
“A hybrid cloud controller for vertical memory elasticity: A control-
theoretic approach,” Future Generation Computer Systems, vol. 65, pp.
57–72, 2016.

[7] S. Farokhi, P. Jamshidi, D. Lucanin, and I. Brandic, “Performance-based
vertical memory elasticity,” in 2015 IEEE International Conference on
Autonomic Computing (ICAC), July 2015, pp. 151–152.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation computer
systems, vol. 25, no. 6, pp. 599–616, 2009.

[9] S. Farokhi, E. Lakew, C. Klein, I. Brandic, and E. Elmroth, “Coordinat-
ing cpu and memory elasticity controllers to meet service response time
constraints,” in 2015 International Conference on Cloud and Autonomic
Computing (ICCAC), Sept 2015, pp. 69–80.

[10] S. Farokhi, “Quality of service control mechanism in cloud computing
environments,” Ph.D. dissertation, Vienna University of Technology, dec
2015.

[11] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: improving resource efficiency at scale,” in ACM SIGARCH
Computer Architecture News, vol. 43, no. 3. ACM, 2015, pp. 450–462.

[12] S. Spinner, N. Herbst, S. Kounev, X. Zhu, L. Lu, M. Uysal, and R. Grif-
fith, “Proactive memory scaling of virtualized applications,” in 2015
IEEE 8th International Conference on Cloud Computing (CLOUD), June
2015, pp. 277–284.

[13] L. Yazdanov and C. Fetzer, “Vertical scaling for prioritized vms provi-
sioning,” in 2012 Second International Conference on Cloud and Green
Computing (CGC), Nov 2012, pp. 118–125.

[14] C. James. (2014, may) Forget application re-
sponse time “standards” – it’s all about the hu-
man reaction. [Online]. Available: http://me.riverbed.com/blogs/
human-reaction-drives-application-response-time-standards.html

IFIP/IEEE IM 2017 Special Track on Autonomic Management 1203

http://me.riverbed.com/blogs/human-reaction-drives-application-response-time-standards.html
http://me.riverbed.com/blogs/human-reaction-drives-application-response-time-standards.html

