
State-machine driven Collaborative Mobile Sensing
Serving Multiple Internet-of-Things Applications

Radhika Loomba∗, Lei Shi†, Brendan Jennings†
∗Intel Labs Europe, Ireland

†TSSG, Waterford Institute of Technology, Ireland

Abstract—The myriad of sensor information that can be
collected using smartphones, wearables and other IoT devices
greatly benefits context-aware applications. These applications
rely heavily on mobile devices, present in locations of interest,
to offload raw or processed sensor data in order to accurately
capture, recognize and classify the surrounding real-time context.
However, continuous sensing and offloading of large volumes
of mainly redundant sensor data significantly impacts energy-
constrained mobile devices. This results in a trade-off between
sensing accuracy and the energy consumed by these devices. We
propose the use of application-specific state machines that encode
the context of interest to determine when sensed data should
be offloaded to the cloud. Our control algorithm, ‘Assisted-
Aggregation’ applies frequent pattern mining to reduce the
number of active devices by sharing sensed data between multiple
applications. Our evaluation shows an improvement in terms of
the residual energy of the mobile devices, the number of devices
actively offloading and the volume of the offloaded data.

I. INTRODUCTION

Nowadays embedded sensors in mobile devices have a
rich set of sensing capabilities, and have become increasingly
more sophisticated. These sensors include specialized envi-
ronmental sensors (ambient light, barometers, photometers,
and thermometers), motion sensors (accelerometers, gravity
sensors and gyroscopes), positional sensors (compasses and
magnetometers) as well as general purpose sensors (micro-
phones, proximity sensors and cameras). This has led to a
proliferation of applications that rely on mobile devices to
collect sensed data from their embedded sensors and/or from
the heterogeneous Internet-of-Things (IoT) devices present
in the physical environment, providing a personalized and
context-aware experience to the users.

Minimizing energy consumed during sensing and report-
ing of such sensed data continues to be an important chal-
lenge. However, the most commonly used continuous sensing
mechanism has been reported to reduce the standby time of
mobile devices from 20 hours to 6 hours [25]. To overcome
the inefficiency of this energy consumption, recent studies
of mobile sensing systems have proposed a combination of
hardware and software based energy-saving methods including
energy-accuracy trade-offs [19], low-power processors [29]
and sensing pipelines [24]. An important factor of energy
efficiency is the volume of offloaded data [14], [35]. But
few research studies assess the trade-off between the volume
of data offloaded into the cloud and the energy consumed
during sensor data collection, aggregation and dissemination.
Harnessing the ability of a mobile device to act as a travelling

corresponding agent to interact with the IoT sensors, and with
the added benefits of mobile cloud computing techniques, we
present a collaborative mobile sensing approach with a central-
ized middleware architecture. By identifying the event-driven
nature of most mobile applications, we propose an algorithm
that dynamically alters the reporting rates of mobile devices
to save energy. In contrast to continuous offloading, our
approach encodes application requirements into application-
specific state machines with reporting thresholds for different
sensors.

Our main contribution is the ‘Assisted-Aggregation’ algo-
rithm, which creates novel consolidated state machines for
each sensor in an identified physical area of internet, em-
bodying the thresholds specified by multiple applications. For
reducing redundancy due to overlapping streams of sensor data
from similar environments, it applies frequent pattern mining
to identify the best combination of embedded sensors in
mobile devices and available IoT sensors (within transmission
range of the mobile devices) to simultaneously satisfy the re-
quests of multiple applications, whilst reducing the volume of
offloaded data and the number of devices that actively offload
information. Additionally, depending on the size of the consol-
idated state machine, the algorithm factors it into independent
smaller state machines in order to improve scalability. This
work extends our previous work [22] where we presented the
‘Info-Aggregation’ algorithm, which exploited the embedded-
sensors in a mobile device to satisfy requirements of multiple
applications but assumed continuous sensing and reporting of
sensed data. Other previous work [20] explored the use of
state-machines to reduce energy consumption, but did so on
an application-by-application basis, without employing state-
machine consolidation as done here. Moreover, our previous
work assumed all sensors were embedded in the mobile device
itself, whilst here we consider the augmentation of the sensing
capabilities of the mobile device with the heterogeneous IoT
sensors, as it moves through the environment. Thus, the set of
sensor types available to a mobile device typically varies over
time.

This paper is structured as follows. §II describes the related
work in the area of energy-efficient mobile sensing techniques
and collaborative sensing approaches. §III specifies our prob-
lem scenario and provides a mathematical formulation. §IV
discusses the algorithm design while §V details the experi-
mental setup and presents our results. Finally, §VI summarizes
the paper.

978-3-901882-89-0 @2017 IFIP 1229

II. RELATED WORK

The increase of sophisticated embedded sensors has pro-
vided an attractive platform for the development of two
mobile sensing paradigms, namely participatory (involving
active user participation) and opportunistic sensing (involving
automatic collection of sensor data) [4], [5]. Several mobile
applications such as StressSense [23], CenceMe [25], Noise-
Tube and MobiShop [13] use these approaches to provide
situational awareness feedback to users. The integration of
sensors surrounding the user, other than those embedded in
mobile devices, has been presented in the OPPORTUNITY
framework [15]. However, as mobile applications become
increasingly dependent on sensed information, it becomes im-
portant to reduce the energy consumption during this process.
Ranging from system-level designs during continuous sens-
ing to include low-power processors [18], [29], bidirectional
feedback pipelines [12], context correlation with association
rules [27] and sensing pipelines [24], multiple techniques
have been presented by researchers for this purpose. Fur-
thermore, energy-accuracy trade-offs using adaptive sampling
intervals and dynamic sampling frequencies [3], [19], [32],
[36] have also been investigated. In contrast, we consider
energy-saving by adopting a state-machine driven approach
to leverage application-specific knowledge that dynamically
alters the reporting rate for the mobile device and reduces
number of cloud transmissions. Additionally, we consolidate
application-specific state machines so that sensed information
can be simultaneously provided to multiple applications as
required, reducing the volume of sensed data that is offloaded.

Other collaborative sensing techniques include iCoMe [37],
an incentive-based cooperative resource management approach
to increase service provider revenue, a broker-based mobile
cloud to present a double-sided bidding mechanism for re-
source sharing [40], Transient Clouds [28] a cloud-on-the-
fly approach for collaboration and AnonySense [6], [39]
considering privacy and threats in such systems. Additional
methods include taking advantage of computational resources
of nearby mobile devices [26], [38] and multiple access links
for collaborative downloading and gateways [1]. In contrast,
our collaborative middleware focuses on satisfying multiple
application requirements by aggregating sensor data streams
and offloading the information into the cloud for processing
by using a small number of mobile devices.

III. PROBLEM DEFINITION

A. Scenario

We present a smart-city scenario, similar to [17], [33],
with connected infrastructure components and services like
education, healthcare, transportation etc. along with secure
smart housing. The city is modelled as a collection of interest
areas that need to be actively monitored to provide a range
of user-oriented services. This task is fulfilled by several
context-aware applications by either tracking environmental
factors like temperature, humidity, pressure and the presence

Centralized Middleware

Mobile Devices with
embedded sensors

Static IoT
Sensors

Application Cloud Servers

Fig. 1. Representation of our smart city scenario showing the interaction of
the application cloud with static IoT sensors and mobile devices using WiFi
to connect to a trustworthy collaborative sensing coordination middleware.

Centralized Middleware

(a)

50𝑑𝑏20𝑑𝑏 80𝑑𝑏

1. Consolidated State Machine for Temperature:

100𝑑𝑏

7℃−2℃ 18℃ 40℃

2. Consolidated State Machine for Noise:

(b)

Fig. 2. (a) shows how one request location is covered by an active mobile
device using its own embedded sensors and available static IoT sensors in
the request location whilst offloading the collected sensor-data to the cloud
for processing using WiFi, when required; (b) shows two consolidated state
machines for sensor-types temperature and noise present for a request location.

of unwanted gases, or reacting to rising noise levels for traffic
management or promoting social interactions [13].

In this setting, as presented in Fig. 1, we identify the benefit
of installing a trusted, centralized intelligent middleware that
supports collaborative sensing, ensures content-integrity and
privacy, and provides a platform for applications with im-
proved real-time analytics. The middleware is responsible for
receiving requests from the applications, interacting with the
applications clients and simultaneously connecting to the hun-
dreds of embedded sensors of the mobile devices and accessi-
ble static sensors present within the interest areas. Leveraging
the ability of mobile devices to act as travelling agents, the
middleware creates an aggregation and transmission schedule
that instructs the devices to collect sensor data either from
its own sensors or from the nearby static sensors using
Bluetooth, ZigBee, or similar technologies. Depending on the
reporting constraints for the applications available within the
middleware, sensor data is transmitted as anonymous data
streams to the application cloud for further processing and
storage. Such an architecture supports both participatory and
opportunistic sensing [16] as mobile devices are able to tag
which sensors can be accessed by the middleware and adapt
to the availability of the static sensors surrounding the device.

B. Mathematical Formulation

The problem is formulated for a physical sensing area L,
composed of a set of square interest areas or request locations
for which sensed data is requested by the applications over a
duration of T seconds. An individual request location Li ∈ L

IFIP/IEEE IM 2017 Special Track on Management of IoT1230

is a set of all 2D coordinates that define the ith location in
the sensing area. After every ∆t seconds, pre-processing of the
collected sensor data is done to ensure that all requirements of
the applications have been met. For t ∈ T and k ∈ [1,T/∆t],
these time intervals are denoted by (k − 1)∆t < t < k∆t. Two
kinds of sensors have been modelled in this study that cover
a range of different sensor-types denoted by set H , namely
embedded sensors within the mobile device and static sensors
that have been installed in the request locations. We assume
that the sensed information present for any sensor does not
vary much during a time interval and does not affect how we
address the application requirements.

For each mobile device n ∈ N , we define Mn ⊆ H as
the set of unique sensor-types embedded within the device.
The individual sensor-type m ∈ Mn can sense data with
accuracy ρnm and accumulate vnm volume of data (if activated)
in every time interval. The request location covered by the
mobile device is determined by the 2D position coordinates
of the device (xn(k), yn(k)), defined as a function of the time
interval k. Additionally, we also define the set N k

i such that
∀n ∈ N k

i , (xn(k), yn(k)) ∈ Li ∈ L for time interval k.
Each static sensor, s ∈ Si for request location Li ∈ L

contains Ms ⊆ H unique sensor-types. Each individual static
sensor-type m ∈ Ms can sense with accuracy ρsm and accumu-
late vsm volume of data (if activated) for every time interval.
These static sensors do not directly connect to the middleware
and only interact with the mobile devices present in the
request location for security reasons. This implies that only
those request locations which have at least one mobile device
present for the entire duration of the kth time interval can be
sensed for any application. For simplicity of presentation, we
assume that each request location meets this constraint and
we will cover more complex scenarios in our future work.
Fig. 2a depicts how one mobile device covers the request
location (for e.g. a house) by using its own embedded sensors
and the surrounding static sensors via Bluetooth or ZigBee
communication technologies whilst offloading the collected
sensor-data to the cloud for processing using WiFi, as needed.

The sensor-types requested by application a ∈ A are defined
by the set Ma ⊆ H for which sensing is required for every
request location in the set La ⊂ L. Applications also specify
minimum accuracy requirements ρ∗aM and a constant sensing
time-interval which can be translated into a set of time-points
τaM for each sensor-type M ∈ Ma. The time interval k then
contains all the sensing time-points for all applications: thus⋃

a∈A,M ∈Ma
(k − 1)∆t < t ∈ τaM < k∆t indicates the applica-

tions and the sensor-types for which sensed data is requested
in the time interval k. However, we determine that applications
do not require updated sensor-information at every time-point
in τaM . This is due to our understanding that most applications
make decisions based on the information derived regarding
the context of a particular location, which is composed of
individual raw sensor readings and as such, continuous offload-
ing of sensor data does not serve a useful purpose. Thus, we
model application-specific state machines, where the context is
encoded in each state along with a reporting threshold required

for that sensor-type. This is beneficial as it supports seamless
identification of the information required by the application.
This instructs the middleware to collect and pre-process the
data according to time-points in set τaM and to transmit updated
sensor data to the cloud only when it crosses a reporting
threshold. For example, an application requests for temperature
readings to be sensed at a time-interval of 10 minutes, but
reported only when the temperature value crosses 7 ◦C or
18 ◦C. Since multiple applications request for sensed data for
the same sensor-type, individually maintaining and accessing
each state-machine in the energy-constrained mobile device
can be infeasible. Thus, the middleware creates a consolidated
state machine from all application requirements requesting
for sensor information from a particular location. We denote
the state machine for sensor-type h ∈ H from location Li

by a set of states Zi
h

where each state is composed of the
threshold value for that state, the state-transition rules and the
transmission rules for offloading data into the cloud. Currently,
we assume that these state machines are simplistic in nature
and only allow neighbouring state transitions. Fig. 2b depicts
two consolidated state-machines for sensor-type temperature
and noise maintained for a request location by the middleware.
At the end of each time interval k, the reporting mobile device
pre-processes the data and checks with the state machine to
decide whether it should offload the data or not.

Given the assumptions outlined above, this optimization
problem focuses on creating a trade-off between a) the se-
lection of mobile devices offloading sensed information into
the cloud, b) the global energy consumption of the mobile
devices and c) the volume of data being offloaded into the
cloud.

1) Decision Variables: Since the number of sensors avail-
able for getting one particular sensor-type data are more than
one, we define two decision variables to identify which sensor
is being used for accessing the data for one sensor-type m
within a time-interval k. These are denoted by pkmn ∈ {0, 1}
for every mobile device n and qk

ms ∈ {0, 1} for every static
sensor-type s. Additionally, for fairness and scalability, we
model the system to ensure that a single mobile device is
not always reporting and storing the entire consolidated state
machine for each request location. As such, the middleware
needs to decide a set of candidate reporting devices and factor
the state machine, so that each candidate reporting device has
a part of the state machine. For this purpose, a mobile device is
considered active if it is responsible for reporting the sensed
data to the application for one or more sensor-types during
time interval k. This is indicated by the decision variable
ykn ∈ {0, 1} which is equal to one if the device is a candidate
reporting device.

2) Constraints: We define constraints relating to the sensor
coverage area, accuracy and minimum device battery level as
follows.
Coverage Constraint: As stated above, each application a
has specified sensor-types Ma for request locations La that
need be covered for time interval k. This constraint ensures
that these areas have the specified sensors and at least one

IFIP/IEEE IM 2017 Special Track on Management of IoT 1231

mobile device that can offload sensed data if required:

∀k ∈ [1,T/∆t], ∀a ∈ A, ∀Li ∈ La, ∀M ∈ Ma ∩ (Ms ∪Mn),
∀n ∈ N k

i , ∀s ∈ Si :
N k

i , ∅∑
Nk

i
ykn ≥ 1

(1)
Accuracy Constraint: The accuracy constraint for each ap-
plication must be met by either the embedded sensors on
the mobile device or the available static sensors that can be
accessed by the mobile device for each request location. Thus,
we have:

∀k ∈ [1,T/∆t], ∀a ∈ A, ∀Li ∈ La,

∀n ∈ N k
i : ykn = 1, ∀s ∈ Si, ∀M ∈ Ma ∩ (Ms ∪Mn) :

ρ∗aM ≤ max({ρnM } ∪ {ρsM })
pkmn = 1 =⇒ ∃k : ρ∗aM = ρnM
qk
ms = 1 =⇒ ∃k : ρ∗aM = ρsM

(2)

Battery Life Constraint: Energy costs are incurred by a
mobile device n related to its monitoring and sensing activities.
We denote Ek

n as the energy consumed to collect sensor data
from all the embedded-sensors and from the surrounding static
sensors during time interval k. Additionally, the device loses
further energy if it is selected as a candidate reporting device
for request location Li and needs to pre-process sensed data
whose volume Vk

n =
∑

m∈Mn
vnm ·pkmn+

∑
s∈Si

∑
m∈Ms

vsm ·qk
ms .

First, it consumes energy to store and access a factored
state machine or part of the consolidated state machine for
each of the sensor-types, which is represented by Fk

n =

φ1 ·
(∑

m∈Mn
pkmn +

∑
s∈Si

∑
m∈Ms

qk
ms · ykn

)
· |Zi

m |∑
∀n∈Nk

i
ykn

. Next, it

consumes energy to locally pre-process the data, identify the
state which might involve communication with surrounding
devices and offload the collected sensor data which is repre-
sented by Gk

n = β2 · Vk
n . The battery constraint below thus

states that the battery level of the mobile device n at the start
of time interval k, denoted bkn, is below θ of the full battery
level Bn. This restriction is imposed on all mobile nodes to
ensure battery availability for monitoring, sensing, local data
pre-processing and information offload into the cloud.

∀n ∈ N, ∀k ∈ [0,T/∆t] :
bkn >= θBn

bkn − Ek
n − Fk

n − Gk
n = bk+1

n

(3)

C. Objective Function

During each time interval k, a deployment has a set of
possible mobile devices with embedded sensors and static-
sensors installed within a location that are activated to pro-
vide information at different accuracies for applications. Our
objective function uses summation summation to balance three
terms within each time interval. These are:
• Energy consumption due to sensing, local data processing

and information offload into the mobile cloud;
• Number of active mobile devices in the sensing

environment—A weight and normalizing factor denoted
by γ is attached to this term;

• Volume of data offloaded into the cloud—A weight and
normalizing factor denoted by δ is attached to this term.

These can be expressed formally as:

minimize
T/∆t∑
k=1

©­«
∑
n∈N
(Ek

n + Fk
n + Gk

n) + γ
∑
n∈N

ykn + δ
∑

n∈N:ykn=1

Vk
n
ª®¬ (4)

IV. ALGORITHM SPECIFICATION

The ‘Assisted-Aggregation’ algorithm, detailed in Algo-
rithm 1, focuses on aggregating the sensed data, by multi-
tasking the capabilities of one mobile device, whilst ensuring
that the consolidated state machine of the various sensor-types
is factored and distributed between a set of reporting devices.
This leads to a reduction in redundancy of offloaded streams
of data and supports dynamic altering of the reporting rate of
mobile devices for better energy management.

We now describe some terminology which helps us explain
the flow of our algorithm. As stated before in §III, every
application requires sensed information from specific sensor-
types for request locations La at a minimum accuracy level
of ρ∗aM , at sensing time-points τaM with reporting thresholds
based on an application-specific state machine. We use the
term Application-Sensor pair < a, M > to uniquely identify
this relationship. Additionally, multiple mobile devices can
collect sensor-data either from the embedded sensors or from
the surrounding static sensors for one sensor-type for a par-
ticular location. This helps us create multiple combinations
of mobile devices which, combined together, cover all the
coverage constraints as specified by the Application-Sensor
pair. We term this as a NodeSet, which refers to one such
set of mobile devices that can be used for the Application-
Sensor pair. We define the energy consumed for sensing by the
NodeSet as a summation of the individual energy consumed
by the mobile devices in the set and ensure that each mobile
device satisfies the accuracy constraint.

The algorithm then works in the following way. First, for
every time interval k, we predict the mobility pattern of the
mobile devices in a look-ahead manner. We assume that the
starting position can be retrieved by the middleware using
GPS, WiFi Positioning or some similar technology. Using the
function predictLocOfMobileDevice(n,t.start, t .end) in line
5 and an instance of the mobility model, we determine the
location which is covered by the mobile device n for the
specified time interval. Next, by using the set τaM , those
Application-Sensor pairs are determined in line 7 for which
sensing needs to be done within that time-interval. When
calculating NodeSets to satisfy the pair in line 10, a NodeSet
is only considered if each mobile device in the set covers
its current location for entire time interval k. We make an
assumption that the variance in the movement of the mobile
device within the interval does not affect the sensing readings
if it is still in a position to cover the location. Additionally,
the ability of a mobile device to communicate with all static
sensors in its surrounding area is exploited. This determines
which sensor (embedded or static) should be used for every

IFIP/IEEE IM 2017 Special Track on Management of IoT1232

sensor-type according to the requested accuracy ρ∗aM . We
make a trade-off between the cost involved in communicating
with the static sensors and accuracy of the sensor data provided
to the Application-Sensor. As such, mobile devices will access
the static sensors only if the embedded sensors in the mobile
device are unable to satisfy the accuracy constraints. The
selection of one NodeSet for every pair is made only after
calculation the frequency of every subset of mobile devices
amongst all NodeSets present in the time interval. This is
done to ensure that subsets containing devices which can sense
and report for more than one application are selected. For
this, the FP-Growth algorithm [9] is deployed, with output
available in the variable P in line 13. This widely studied
pattern mining technique [10], [11] is chosen as it enables
unsupervised learning and allows patterns to be found for
all kinds of data and large-datasets. The pseudo-code and
algorithmic descriptions for these functions are present in
[22].

Next, a base subset termed as f Set is created by concate-
nating all the subsets of mobile devices whose size is equal to
the largest or second largest most frequently-occurring set with
available battery (in contrast to our previous approach [22] of
selecting one such subset) in line 17. Iteratively, one NodeSet
is selected for each Application-Sensor pair that utilizes the
maximum number of mobile devices in the base subset as
defined in Function calcAppSensor in line 24. Each mobile
device in this set is then designated as a candidate reporting
device for the sensor-types that are either embedded in it
or whose data can be collected from the surrounding static
sensors. In line 28 and 29, the candidate reporting device
receives a factored state machine with a range of reporting
threshold stored in array reportT hreshold[] along with a list
of the neighbouring reporting candidates stored in array list[].
Currently, a simple parallel factoring technique is used by the
middleware to split the state machines and more complicated
techniques like those defined by Devadas et al. [7] will be
explored in our future work. After minimal pre-processing
of sensor data for its location in line 30, the device checks
whether the raw value lies within the reporting thresholds of its
factored state machine. In case the value lies outside the range
of the reporting thresholds, the device starts a one-2-many
connection with its neighbouring reporting devices in line 34
to determine whether the data needs to be offloaded. The
sensor data is offloaded using the function offloadAccToState
accordingly. Finally, the energy consumed and the volume
offloaded by each mobile device for the time interval k is
calculated using functions calcEnergyConsumption (k) and
calcVolumeOffloaded (k).
Time Complexity Analysis: We now present the worst case
running time analysis for our algorithm when each application
requests for sensed data from all sensor-types. Assuming that
the maximum number of request locations to be covered by
one application is l which contains a maximum d < |N |
mobile devices for the time interval k, the number of NodeSets
for each Application-Sensor pair will be dl . The complexity of
the Algorithm depends on the complexity of the FP-Growth

Algorithm 1 Assisted-Aggregation
1: for k=1 to T/∆t do
2: t .start=(k − 1)∆t;
3: t .end=k∆t;
4: for n =1 to N do
5: predictLocOfMobileDevice(n, t .start, t.end);
6: end for
7: AppSensorPairs[]=getAllAppSensorPairs(k);
8: for AppSensor ∈AppSensorPairs[] do
9: loc l[]=getLocs(AppSensor,k);

10: NodeSets=CALCNODESETFORLOC(l[],k);
11: end for
12: Tree T=FP-TREE(NodeSets);
13: FP P=FP-GROWTH(T .root, null)
14: maxSizes[]= calcTwoHighestForMostFrequent(P)
15: for Set pinP do
16: if p.size ∈ maxSizes[] & hasBattery(p)=true then
17: f Set= f Set ∪ p
18: end if
19: end for
20: CALCAPPSENSOR(f Set, AppSensorPairs[]);
21: end for
22: Run calcEnergyConsumption();
23: Run calcVolumeOffloaded();
24: function CALCAPPSENSOR(f Set, AppSensorPairs[])
25: for AppSensor ∈ AppSensorPairs[] do
26: NodeSet=getSetWithMinDist(AppSensor, f Set);
27: for all n ∈ NodeSet do
28: reportT hreshold[]= setReportingDevice(n)
29: list = getNeighbours(n)
30: rawValue= preProcess(n)
31: if rawValue ∈ reportT hreshold[] then
32: offloadAcctoState()
33: else
34: getStateFromNeighbours(list)
35: offloadAcctoState()
36: end if
37: end for
38: end for
39: end function

algorithm is which is proportional to the number of unique
elements d · l present in the header table and the depth of the
FP-Tree. In the worst case, the tree is an unbalanced tree and
its depth is upper-bounded by d · l. Thus the complexity of
the algorithm is O(d2 · l2). Using the FP tree ensures that the
complexity is much less than searching through all possible
combinations which is 2dl .

V. EVALUATION

This section describes the performance assessment of our
algorithm, ‘Assisted-Aggregation’. The previously modelled
and studied ‘Info-Aggregation’ algorithm [21], [22] had also
identified the scope of aggregating and serving sensor data
to multiple applications from one device but the ability to

IFIP/IEEE IM 2017 Special Track on Management of IoT 1233

 75

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

Lo
ss

 in
 N

o.
 A

ct
iv

e
D

ev
ic

es
 (

%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(a) 50 apps, mobile devices

 75

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

Lo
ss

 in
 N

o.
 A

ct
iv

e
D

ev
ic

es
 (

%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(b) 100 apps, mobile devices

 75

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

Lo
ss

 in
 N

o.
 A

ct
iv

e
D

ev
ic

es
 (

%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(c) 150 apps, mobile devices

 75

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

Lo
ss

 in
 N

o.
 A

ct
iv

e
D

ev
ic

es
 (

%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(d) 200 apps, mobile devices

Fig. 3. Comparative percentage difference in the number of active mobile devices between Info-Aggregation and Assisted-Aggregation vs. the total number
of mobile devices in the sensing environment for four cases using 50, 100, 150 and 200 applications. We see that in all cases Assisted-Aggregation requires
the activation of significantly fewer mobile devices.

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 200 300 400 500 600 700 800 900 1000

G
ai

n
in

 R
es

id
ua

l E
ne

rg
y

(%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(a) 50 apps, mobile devices

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 200 300 400 500 600 700 800 900 1000

G
ai

n
in

 R
es

id
ua

l E
ne

rg
y

(%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(b) 100 app, mobile devices

 0

 20

 40

 60

 80

 100

100 200 300 400 500 600 700 800 900 1000

G
ai

n
in

 R
es

id
ua

l E
ne

rg
y

(%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(c) 150 apps, mobile devices

 0

 20

 40

 60

 80

 100

100 200 300 400 500 600 700 800 900 1000

G
ai

n
in

 R
es

id
ua

l E
ne

rg
y

(%
)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(d) 200 apps, mobile devices

Fig. 4. Comparative percentage difference in the cumulative residual energy held in mobile device batteries between Info-Aggregation and Assisted-Aggregation
vs. the total number of mobile devices in the sensing environment for four cases using 50, 100, 150 and 200 applications. We see that Assisted-Aggregation
results in a lower level of cumulative energy use by mobile devices, due both to the lesser reporting mobile devices and to a lower number of messages with
sensed data being transmitted due to the use of aggregation.

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

D
iff

.
in

 v
ol

um
e

of
flo

ad
ed

 d
at

a
(%

)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(a) 50 apps, mobile devices

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

D
iff

.
in

 v
ol

um
e

of
flo

ad
ed

 d
at

a
(%

)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(b) 100 apps, mobile devices

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

D
iff

.
in

 v
ol

um
e

of
flo

ad
ed

 d
at

a
(%

)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(c) 150 apps, mobile devices

 80

 85

 90

 95

 100

100 200 300 400 500 600 700 800 900 1000

D
iff

.
in

 v
ol

um
e

of
flo

ad
ed

 d
at

a
(%

)

Number of Mobile Devices

10 Sensors
15 Sensors
20 Sensors
25 Sensors

(d) 200 apps, mobile devices

Fig. 5. Comparative mean percentage difference in the volume of data offloaded by two algorithms, Info-Aggregation and Assisted-Aggregation vs. total
number of mobile devices in the sensing environment over four cases using 50, 100, 150 and 200 applications. The use of aggregation and state machines
means that the Assisted-Aggregation algorithm offloads a lower volume of data than does Info-Aggregation.

tailor reporting needs of the application had not been ex-
plored. By updating the parameters for the IoT scenario, a
comparison with this algorithm enables us to quantify the
‘Assisted-Aggregation’ algorithm, which exploits the multi-
tasking capability of a device and uses application-specific
state-machines for reporting.

A. Simulation Model

The values/parameters used to define the simulation model
are based on the scenario outlined above. The physical sensing
area is modelled using a grid (100m × 100m) subdivided into
request locations (10m × 10m), considering the dimensions of
an average house in Ireland/United Kingdom1. This represents
our simulation study area and bounds the trajectory of each
mobile device. We have chosen the Truncated Levy-Walk
mobility model [34], represented by the tuple (l, θ, t f , tp) to
determine the path of a mobile device. Here, l is the flight

1How Big is a House? http://shrinkthatfootprint.com/how-big-is-a-house

length randomly picked up from a Levy distribution with
coefficient α = 1.5, θ is the angle of flight which follows
a uniform distribution, t f is the flight time, and tp is the pause
time which is Levy distributed with coefficient β = 0.5. The
truncation factors are defined as 100m and 1000s respectively
for the flight length and pause times. One instance of the
model is used to define the real path taken by the mobile
device during the simulation study while another instance is
used to predict the path taken by the mobile device for the next
time-interval. These values are motivated by the fact that the
mobile devices are within a mean value of one metre from their
original position when a time interval has elapsed. These time-
intervals of ∆t = 2 minutes represent time progression within
the simulation over a total simulated duration of T = 240
minutes.

An individual run is identified by a fixed number of ap-
plications |A|, mobile devices |N | and the maximum sensor-
types in a location/mobile device H , which is taken to be
equal to the maximum number of sensor-types requested by

IFIP/IEEE IM 2017 Special Track on Management of IoT1234

an application. It is further assumed that each location has
at most two static sensors with the same sensor-type. Each
of these applications, mobile devices and sensor-types are
identified by using a unique integer id and the sensor-types in a
location/mobile-device are randomly selected using a uniform
distribution.

At the beginning of every simulation run, a mobile device
is assigned a maximum energy of 5Wh2 which decreases over
time, attributed to energy for general usage, for accessing the
embedded sensors and static sensors, and for transmission
of offloaded sensed data. Every embedded sensor-type that
is accessed from this mobile-device contributes to the loss
of battery which is specific to the sensor-type. Sensirion
offers environmental sensors for mobile devices with energy
consumption as low as 2µW3 while LittleRock [29] presents
a table on power consumed by different sensor-types. We
randomly select the energy consumption for the sensor-type
in the range 0.002mW to 2.24mW [29] to cover the different
sensor-types. The percentage of decrease for general usage
of the mobile device is randomly selected. Another variable
associated with the sensor-type is the volume of sensed data
that it collects over time, this is randomly selected between 8
bits/second4 to 50 bits/second.

The static sensors in the location are accessed by the mobile
device using Bluetooth, only if the embedded sensors cannot
provide sensor data with the accuracy needed by an applica-
tion. The collected data is then processed by the mobile device.
For our ‘Assisted-Aggregation’ algorithm, the reporting device
first accesses its factored state machine for that sensor to
determine whether the data needs to be offloaded. In case,
the pre-processed data is found to be beyond the reporting
thresholds saved in the device, it starts a simultaneous dialogue
with the other candidate reporting devices for the location
using WiFi-Direct [30], [31]. This supports one-2-one and
one-2-many operations over WiFi-enabled mobile devices but
does not require a WiFi access point, allowing peer-2-peer
transmissions between the mobile devices. For energy trans-
mission calculations, the mobile device loses 0.05W [2] to
maintain WiFi connections. For accessing static sensors over
Bluetooth, interacting with the candidate reporting devices
using WiFi direct or transferring sensed data to the cloud,
we use the transmission energy as presented by Friedman et
al. [8] across Bluetooth, WiFi (ad-hoc and with access-points)
to send/receive data. We randomly select one of the commu-
nication protocols for WiFi networks(ad-hoc or access-points)
to cover different transmission channels.

Each Application-Sensor pair defines different request loca-
tions within the grid, dependant on location constraints, that
need to be covered by mobile devices. We have limited the
number of request locations to a maximum of four locations
for each pair in our study. The sensing time period and mini-

2Apple iPhone: https://www.apple.com/iphone/
3Sensirion- New Dimensions in Environmental Sensing: http://www.

sensirion.com/en/mobile-solutions/environmental-sensing/
4SHT2x - Digital Humidity & Temperature Sensor (RH/T) by Sensirion:

http://www.sensirion.com/en/mobile-solutions/environmental-sensing/

mum accuracy for the pair are randomly picked from uniform
distributions. Each request location contains a consolidated
state machine for every sensor-type and it is assumed that
the probability of offloading sensor-data for an Application-
Sensor pair in a time-interval, is 20%. This assumption helps
in defining the reporting thresholds for the Application-Sensor
pair.

B. Results and Analysis

With the advent of the Internet of Things, the number of
sensors that can provide useful data and the number of context-
aware applications that make use of this data is increasing.
Considering this, we varied the number of applications be-
tween 50, 100, 150 and 200 applications, requesting for sensed
data between 10, 15, 20 and 25 unique sensor-types. The num-
ber of mobile devices in our experiments that sense, collect,
pre-process and offload this sensor data is also varied in the
range of 100 to 1,000. Each experiment was run 30 times using
different random number generator seeds and the performance
of the Assisted-Aggregation algorithm in comparison with
the Info-Aggregation algorithm was recorded. The results are
presented as the percentage difference in the values for the two
algorithms in terms of the gain in residual battery values of
all mobile devices, the difference in volume of data offloaded
and the difference in the mean number of mobile devices that
report the sensed data during the planning horizon, in each
case. The boxplot representations of these results allow us to
visualize the confidence intervals as well as the distribution of
our experimentation.

Fig. 3 shows the mean reduction in the number of mobile
device reporting sensed data to the cloud while Fig. 5 shows
the mean percentage difference in the cumulative volume of
data offloaded for for the Assisted-Aggregation algorithm in
comparison to the Info-Aggregation algorithm. These results
show that more than 80% reduction can be achieved by
aggregating sensed data from mobile devices for multiple
applications and by incorporating state-machines to determine
reporting needs of these applications, for both parameters.
Additionally, this also highlights how the mean cumulative
residual energy present in mobile devices can be saved as
depicted in Fig. 4. This is attributed to the decreased number
of reporting mobile devices as well as to the fewer message
transmissions due to the use of state-machines. The effect is
amplified as the number of applications increase. Additionally,
it can also be observed that the cumulative energy gain
decreases as the number of mobile devices in the sensing
area increase. This relates to the increase in the number of
mobile devices capable of covering one location. For improved
global energy-efficiency, both algorithms select a larger set of
active mobile devices to cover application requirements, which
decreases the energy gain for Algorithm Assisted-Aggregation,
despite the difference in the number of active mobile devices
offloading sensed data between the two algorithms. Further
data analysis and model implementation for improved energy-
efficiency will be done as part of future work.

IFIP/IEEE IM 2017 Special Track on Management of IoT 1235

VI. CONCLUSION

The diverse collection of sensors embedded within mobile
devices or present in surrounding IoT devices is gaining
increasing interest with researchers for developing innova-
tive context-aware applications and collaborative sensing plat-
forms. The design of such systems highlights the important
technical challenge of optimally selecting mobile devices for
accurately satisfying application constraints in an energy-
efficient manner, whilst ensuring proper emulation of mobile
device movements. Our approach of using application-specific
state machines to determine reporting constraints of applica-
tions and using a revised frequent pattern mining algorithm,
‘Assisted-Aggregation’ succeeds in delivering a significant im-
provement in terms of energy utilisation and reducing volume
of offloaded sensed data.

A natural extension to this work is the integration of dynam-
ically adapting sensing rates embedded into the application-
specific state-machines for further energy improvements. Ad-
ditionally, we will also study how the collaborative frame-
work can respond and adapt to more complex state machine
diagrams, along with considering additional performance met-
rics apart from energy-utilization. Furthermore, enhanced data
analysis and model improvement is required to completely
understand the decrease that is noticed with cumulative energy
gain and the trends observed with the number of active devices
and volume of offloaded data, when the Info-Aggregation al-
gorithm is compared with the Assisted-Aggregation algorithm.
Lastly, future work would include comparison with other
alternative solutions, study of network issues relating to de-
lay/congestion and adoption of security/privacy features. This
includes, but is not limited to the identification of malicious
devices in the network, maintenance of precision of sensed
data delivered to the applications, restriction on a device to
join the network when posing a threat and ensuring encryption
techniques to ensure sensitive data is not leaked. Lastly, we
will work on machine learning strategies that understand the
application needs to automatically create/improve the state
machines along with real-data analysis.

ACKNOWLEDGEMENTS

This work was funded by: 1) the Irish Research Council
Enterprise Partnership Scheme Postgraduate Research Schol-
arship, co-funded by Intel Labs Europe (grant no. EP-
SPG/2012/407); 2) by the Irish Research Council via the
ELEVATE Fellowship 2013 (grant no. ELEVATEPD/2013/26);
and 3) by Science Foundation Ireland (SFI) via the CONNECT
Research Centre (grant no. 13/RC/2077).

REFERENCES

[1] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath, and C. A.
Thekkath. COMBINE: Leveraging the power of wireless peers through
collaborative downloading. In Proceedings of the 5th International
Conference on Mobile Systems, Applications and Services, MobiSys ’07,
pages 286–298. ACM, 2007.

[2] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy Consumption in Mobile Phones: A Measurement Study and Im-
plications for Network Applications. In Proceddings of the 9th ACM
SIGCOMM Conference on Internet Measurements Confernce, IMC,
pages 280–293, 2009.

[3] F. Ben Abdesslem, A. Phillips, and T. Henderson. Less is More: Energy-
efficient Mobile Sensing with Senseless. In Proceedings of the 1st
ACM Workshop on Networking, Systems, and Applications for Mobile
Handhelds, MobiHeld ’09, pages 61–62. ACM, 2009.

[4] A. Campbell, S. Eisenman, N. Lane, E. Miluzzo, R. Peterson, H. Lu,
X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The Rise of People-
Centric Sensing. IEEE Internet Computing, 12(4):12–21, July 2008.

[5] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A.
Peterson. People-centric urban sensing. In Proceedings of the 2nd
Annual International Workshop on Wireless Internet, WICON. ACM,
2006.

[6] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Trian-
dopoulos. Anonysense: Privacy-aware people-centric sensing. In
Proceedings of the 6th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’08, pages 211–224. ACM, 2008.

[7] S. Devadas and A. R. Newton. Decomposition and factorization of
sequential finite state machines. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 8(11):1206–1217, Nov. 1989.

[8] R. Friedman, A. Kogan, and Y. Krivolapov. On Power and Throughput
Tradeoffs of WiFi and Bluetooth in Smartphones. IEEE Transactions
on Mobile Computing, 12(7):1363–1376, July 2013.

[9] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current
status and future directions. Data Mining and Knowledge Discovery,
15(1):55–86, Aug. 2007.

[10] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann, Apr. 2006.

[11] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Mining
and Knowledge Discovery, 8(1):53–87, 2004.

[12] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song.
SeeMon: scalable and energy-efficient context monitoring framework for
sensor-rich mobile environments. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Services, MobiSys
’08, pages 267–280. ACM, 2008.

[13] W. Khan, Y. Xiang, M. Aalsalem, and Q. Arshad. Mobile Phone
Sensing Systems: A Survey. IEEE Communications Surveys Tutorials,
15(1):402–427, 2013.

[14] K. Kumar and Y. H. Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, 43(4):51–56, Apr. 2010.

[15] M. Kurz, G. Holzl, A. Ferscha, A. Calatroni, D. Roggen, G. Troster,
H. Sagha, R. Chavarriaga, J. del R. Millan, D. Bannach, K. Kunze,
and P. Lukowicz. The OPPORTUNITY framework and data processing
ecosystem for opportunistic activity and context recognition. Inter-
national Journal of Sensors Wireless Communications and Control,
1(2):102–125, Dec. 2011.

[16] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. Campbell. A survey of mobile phone sensing. Communications
Magazine, IEEE, 48(9):140–150, 2010.

[17] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester.
City of things: An integrated and multi-technology testbed for iot smart
city experiments. In Smart Cities Conference (ISC2), 2016 IEEE
International, pages 1–8. IEEE, 2016.

[18] D. Liaqat, S. Jingoi, E. de Lara, A. Goel, W. To, K. Lee,
I. De Moraes Garcia, and M. Saldana. Sidewinder: An energy efficient
and developer friendly heterogeneous architecture for continuous mobile
sensing. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 205–215. ACM, 2016.

[19] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy
trade-off for continuous mobile device location. In Proceedings of
the 8th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’10, pages 285–298. ACM, 2010.

[20] R. Loomba, L. Shi, and B. Jennings. State-machine driven opportunistic
sensing by mobile devices. In 2014 IEEE Global Communications
Conference (GLOBECOM), pages 2739–2744, Dec. 2014.

[21] R. Loomba, L. Shi, B. Jennings, R. Friedman, J. Kennedy, and J. Butler.
Information Aggregation for Collaborative Sensing in Mobile Cloud
Computing. In 2014 2nd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud), pages
149–158, Apr. 2014.

[22] R. Loomba, L. Shi, B. Jennings, R. Friedman, J. Kennedy, and J. Butler.
Energy-aware collaborative sensing for multiple applications in mobile
cloud computing. Sustainable Computing: Informatics and Systems,
8:47–59, Dec. 2015.

IFIP/IEEE IM 2017 Special Track on Management of IoT1236

[23] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T.
Campbell, D. Gatica-Perez, and T. Choudhury. StressSense: detecting
stress in unconstrained acoustic environments using smartphones. In
Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
UbiComp ’12, pages 351–360. ACM, 2012.

[24] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell.
The jigsaw continuous sensing engine for mobile phone applications.
In Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’10, pages 71–84. ACM, 2010.

[25] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B.
Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social
networks: The design, implementation and evaluation of the cenceme
application. In Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys ’08, pages 337–350. ACM, 2008.

[26] A. Mtibaa, A. Fahim, K. A. Harras, and M. H. Ammar. Towards
Resource Sharing in Mobile Device Clouds: Power Balancing Across
Mobile Devices. In Proceedings of the 2nd ACM SIGCOMM Workshop
on Mobile Cloud Computing, MCC, pages 51–56, 2013.

[27] S. Nath. ACE: exploiting correlation for energy-efficient and continuous
context sensing. IEEE Transactions on Mobile Computing, 12(8):1472–
1486, Aug. 2013.

[28] T. Penner, A. Johnson, B. Van Slyke, M. Guirguis, and Q. Gu. Transient
clouds: Assignment and collaborative execution of tasks on mobile
devices. In Proceedings of the IEEE Global Communication Conference
(GLOBECOM), pages 2801–2806, 2014.

[29] B. Priyantha, D. Lymberopoulos, and J. Liu. LittleRock: enabling
energy-efficient continuous sensing on mobile phones. IEEE Pervasive
Computing, 10(2):12–15, Apr. 2011.

[30] A. Pyattaev, K. Johnsson, S. Andreev, and Y. Koucheryavy. 3GPP LTE
traffic offloading onto WiFi Direct. In Proceedings of the IEEE Wireless
Communication and Networks Conference Workshops (WCNCW), pages
135–40, 2013.

[31] A. Pyattaev, K. Johnsson, S. Andreev, and Y. Koucheryavy. Proximity-
Based Data Offloading via Network Assisted Device-to-Device Com-
munications. In Proceddings of the 77th IEEE Vehicular Technology
Conference (VTC Spring), pages 1–5, 2013.

[32] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow. Sociable-
Sense: Exploring the Trade-offs of Adaptive Sampling and Computation
Offloading for Social Sensing. In Proceedings of the 17th Annual Inter-
national Conference on Mobile Computing and Networking, MobiCom
’11, pages 73–84. ACM, 2011.

[33] M. M. Rathore, A. Ahmad, A. Paul, and S. Rho. Urban planning and
building smart cities based on the internet of things using big data
analytics. Computer Networks, 101:63–80, 2016.

[34] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong. On
the levy-walk nature of human mobility. IEEE/ACM Transactions on
Networking, 19:630–643, June 2011.

[35] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable
computer battery power through remote process execution. SIGMOBILE
Mobile Computing and Communications Review, 2(1):19–26, Jan. 1998.

[36] S. Sarker, A. K. Nath, and A. Razzaque. Tradeoffs between sensing
quality and energy efficiency for context monitoring applications. In
2016 International Conference on Networking Systems and Security
(NSysS), pages 1–7, Jan. 2016.

[37] H. Shah-Mansouri and V. Wong. iCoMe: A novel incentivized cooper-
ative mobile resource management mechanism. In Proceedings of the
IEEE Global Communication Conference (GLOBECOM), pages 4996–
5001, Dec. 2014.

[38] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura. Serendipity:
Enabling Remote Computing Among Intermittently Connected Mobile
Devices. In Proceedings of the 13th ACM International Symposium on
Mobile Ad-Hoc Networking and Computing, MobiHoc, pages 145–154,
2012.

[39] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Trian-
dopoulos. AnonySense: A system for anonymous opportunistic sensing.
Pervasive and Mobile Computing, 7(1):16–30, 2011.

[40] L. Tang, S. He, and Q. Li. Double-sided Bidding Mechanism for
Resource Sharing in Mobile Cloud. IEEE Transactions on Vehicular
Technology, in press, 2016.

IFIP/IEEE IM 2017 Special Track on Management of IoT 1237

