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Abstract— IO virtualization is a key technology that enables 

SDN and NFV applications. There are two mainstream IO 

virtualization technologies that are used to implement a 

virtualized network device: VIRTIO and SR-IOV. The VIRTIO 

technology is a software virtualization technology that renders 

efficient IO virtualization based upon paravirtualization. In 

contrast, SR-IOV is a hardware assisted device virtualization that 

requires support from both the platform and IO devices. 

Although the packet processing throughput of a virtualized 

network device leveraging SR-IOV technology outperforms a 

device leveraging VIRTIO technology, there remains a lack of 

standardization amongst NIC device vendors with respect to the 

management of SR-IOV devices. The adoption of SR-IOV 

technology tends to be limited in embedded environments where 

ad hoc management routines are typically used. In this paper, we 

introduce the concept of an SR-IOV hypervisor to depict a trust 

management interface that can be used to manage SR-IOV 

devices over enterprise scale infrastructures such as the cloud. In 

addition, we present implementations of this new management 

interface through both user-space drivers (DPDK) and kernel-

space drivers. Furthermore, for our user-space driver approach, 

we develop an innovative framework so that users can leverage 

existing legacy tools to manage SR-IOV devices. We demonstrate 

how an SR-IOV hypervisor can be deployed into a cloud 

environment, often containing a myriad of network devices and 

dynamic VM configurations, which can then be controlled via the 

management interface. 

Index Terms—SDN, NFV, VIRTIO, SR-IOV, DPDK, VFd, 

DPDM. 

I. INTRODUCTION 

Software-Defined Networking (SDN) and Network 

Function Virtualization (NFV) have transformed how network 

resources are used over the course of the past decade [1-4], 

revolutionizing not only the traditional networking centric 

telecommunication industry, but also the manner in which 

computing and networking resources are deployed within the 

data center environment. Two key components of SDN and 

NFV are 1) the separation of the control plane from the 

traditional data forwarding plane and 2) network virtualization. 

Although SDN deployments can vary from one implementation 

to another [1], the essential requirement is a separated control 

plane, either centralized or distributed, that supports flexible 

network protocols, i.e. programmability. Kreutz et al. [1] have 

provided an extensive review of various approaches to realize 

SDN networks from inception to implementation. One aspect 

not fully explored as part of this study are IO virtualization 

technologies, which are key to network virtualization. This is 

not surprising, because most large-scale applications of 

network virtualization are implemented through software IO 

virtualization, e.g. Linux-based VIRTIO [16] and VMWare’s 

VMXNET[17], which involves the adoption and 

implementation of a common software specification. 

By contrast, IO virtualization capabilities and programming 

interfaces for hardware are vendor dependent. In this paper we 

focus upon Single-Root IO Virtualization (SR-IOV), a 

hardware-based IO virtualization technology [14-15][18], 

which is considered for fast-path IO virtualization, as compared 

to other software approaches [1][8][18]. Figure 1 presents the 

test results collected from a simple Virtual Network Function 

(VNF) running an L2 forwarding application between two VF 

ports. The VF ports are realized through either VIRTIO 

technology or SR-IOV. Figure 1(a) demonstrates the 

throughput generated by the same VNF for different packet 

sizes. Figure 1(b) shows hardware performance monitor unit 

(PMU) counters collected for each test [23]. 

As demonstrated over the test results, a significant 

throughput difference exists between device drivers based upon 

VIRTIO and SR-IOV technologies. In particular, for small 

sized packets, SR-IOV based implementations are shown to 

exhibit more than three times the throughput than VNFs based 

upon VIRTIO. The gap between these two IO virtualization 

technologies can be explained through the collected run-time 

PMU counters shown in Fig. 1(b), which reveal the key 

differentiators between the two IO technologies in terms of the 

number of read-write operations. 

The differences in the PMU counters stems from the fact 

that, for SR-IOV deployments, guest-to-host memory 

translation is done in the hardware. In the case of VIRTIO, a 

backend driver must copy data from shared memory between 

the host and guest whenever data is forwarded from one VF 

port to the other. This observation underlines the importance of 

integrating SR-IOV technology with SDN/NFV 

implementations. As described, one drawback of integrating 

SR-IOV into large scale virtualized networks is the potential 

disparity of hardware implementations amongst NIC vendors. 

Therefore, a common interface designed to abstract the SR-

IOV offloading capabilities of a NIC is a key step towards the 

standardization of low-level hardware programming. With a 

standardized interface, it would simplify integrations of SR-

IOV devices into SDN based implementations, such as 

southbound interface described in [1]. 
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For the remainder of the paper, we begin by discussing the 

gap that exists between kernel network device management 

interfaces and provide a description of the SR-IOV 

management routines implemented throughout this work. 

Moreover, in Section II we describe an SR-IOV hypervisor by 

means of a VFd (VF daemon) [11] implementation. In Section 

III and IV we present the design for an SR-IOV hypervisor API 

realized through both user-space drivers as well as kernel 

drivers. 

We begin this work with a popular open source network 

application design framework, the Data Plane Development Kit 

(DPDK). With the SR-IOV management routines provided by 

DPDK, we develop a Data Plane Device Management library 

(DPDM) along with a light-weight kernel module [24]. The 

DPDM framework enables DPDK applications to manage 

network devices through existing network management utilities 

such as ethtool, ip, ifconfig, etc. In addition, we 

describe an innovative encoding scheme allowing for the 

management of SR-IOV devices via ethtool commands. 

Upon realizing the SR-IOV hypervisor routines, we continue 

our work by presenting a means of standardization through a 

comprehensive, kernel sysfs based framework. This sysfs 

framework builds upon the work presented in [25] by 

extending the original design and providing a comprehensive 

specification, as described in [11]. 

We present a VFd use case in Section V. Subsequently, 

Section VI concludes the paper with identified challenges along 

with future work. 

 
(a)Throughput 

PMU SR-IOV VHOST/VIRTIO 

mem_uops_retired.all_stores+ 

mem_uops_retired.all_loads 

239 771/451 

cycles 173 565/565 

(b) Per Packet PMU 

 

Figure 1 VIRTIO versus SR-IOV 

II. VF NETWORK DEVICE MANAGEMENT 

A. The Kernel Device Management Interface 

Similar to most device drivers, conventional NIC drivers 

are either built into the kernel stack or are provided as loadable 

kernel modules, encapsulating hardware resources within the 

kernel space. As a result, only kernel space APIs can access 

device hardware resources, e.g. control and status registers, and 

manage target NIC devices. To constitute a secure interface, 

i.e. to restrict management routines to the kernel-space, and 

enable user-space applications to send requests to the 

respective kernel space device driver, a kernel driver needs to 

support the device driver ioctl mechanism [9 - 10]. As 

illustrated by Fig. 2, the ioctl mechanism enables a common 

application programming interface to manage NIC devices.  All 

the device management operations are captured by three 

members of the net_device (netdev) data structure, namely 

netdev_ops, ethtool_ops and fwd_ops. A description 

of the net_device data structure and the associated network 

device driver can be found in chapter 17 of [9]. 

Ethtool command: 
ioctl(soket-fd, SIOCETHTOOL, ifr-cmd)

User Space Kernel Space

Kernel socket interface:
ethtool_ioctl(net, argup)

Kernel ioctl interface:
dev_ioctl(net, SIOCETHTOOL, ifr)

Kernel ethtool interface:
dev_ethtool(net, ifr)

Kernel device driver:
dev->ethtool_ops->cmd

 
Figure 2 ethtool command request traversal between a 

user-space application and the kernel interfaces 

 

As shown in Fig. 2, an ethtool command is passed through 

the kernel socket interface followed by the ioctl kernel 

interface, and eventually the request reaches the device 

driver’s registered ethtool_ops callback function. This 

mechanism is equally applicable for the other two members, 

i.e. netdev_ops and fwd_ops, of the netdev interface. 

Each NIC kernel device driver can register its own device 

management routines through one of these netdev device 

management ops. As a result, a hardware abstraction layer is 

introduced such that the kernel network stack can share device 

management with common kernel-space/user-space utilities 

such as ethtool, ip, etc. Nevertheless, the existing design 

focuses on managing devices in its domain. Specifically, the 

interface provides Physical Function (PF) drivers to manage 

PF devices and Virtual Function (VF) drivers to manage VF 

devices, which misinterprets a key design principal of SR-

IOV. The design of SR-IOV [14] calls for a single-root (PF) to 

manage multiple VFs. In SR-IOV, a PF device is capable of 

accessing all of the NIC resources while a VF device is 

constrained to limited access of a subset of network device 

resources. The design makes the Physical Function the master, 
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trusted device allowing the possibility for the PF device 

management routine to enforce different policies on each VF 

device. The existing netdev interface only enables limited VF 

management capabilities through netdev_ops, which at 

present does not adequately meet the demands of VNF 

management in the cloud. Therefore, we propose additional 

APIs to manage virtual functions through PF drivers. The 

proposed APIs are designed to address 

 VLAN Management 

 Tx Security and Rx Mode Management 

 VF QoS 

 VF Statistics 

Additional APIs currently in development are also designed to 

address network traffic mirroring, power management, along 

with protocol header parsing offloading. 

B. The SR-IOV Hypervisor 

Given the lack of support from the kernel stack, we 

decided to implement our SR-IOV hypervisor by means of 

DPDK-based user-space drivers. Beginning with version 

16.11, DPDK has supported new APIs to management VF 

configurations via the DPDK-based PF driver [11-12]. In the 

following sections, we provide a description of the SR-IOV 

hypervisor functions that have already been implemented 

along with functions that are currently in development. 

 

B.1 VLAN management 
As described in [1] [3], VLAN based network virtualization is 

one technology to partition network traffic and steer packet 

flows. Within this category, APIs that were implemented 

include management interfaces for VF Rx VLAN stripping, 

VF Rx VLAN filtering, VF Tx VLAN insertion and VF Rx 

traffic steering, i.e. filtering and traffic distribution via Rx 

queue assignment. This capability allows a control plane 

application to manage each VF device as an independent hub, 

which in turn can be used to manage different traffic flows by 

means of vlan-tagging. 
 

B.2 Tx Security and Rx Mode Management 

The VF management APIs within this category are designed to 

address packet spoofing, wherein a “malicious” VF might 

impersonate different VLAN IDs or MAC addresses when 

transmitting packets. The configuration APIs provide both 

MAC and VLAN anti-spoofing capabilities. As for SR-IOV 

packet receiving interface, the SR-IOV hypervisor adds 

support of the same PF Rx mode configuration (such as 

broadcast, untag, multicast etc.) management. 

 

B.3 VF QoS 

VF QoS management is one of the few VF management 

interfaces supported by the kernel netdev interface and is 

available via the Linux ip command. Specifically, there are 

four VF settings available: VF MAC-address, VF VLAN tag, 

VF VLAN QoS and VF Tx rate. The SR-IOV hypervisor 

provides an extension to what has already been defined in the 

netdev interface. For example, the existing netdev interface 

only allows a single VLAN tag to be assigned to a VF device, 

which is inadequate for most cloud applications. This work 

provides an API to allow multiple VLAN tag assignments to 

the same VF. 

 

B.4 VF Queue Management, Statistics and Other Features 

The SR-IOV hypervisor interface supports APIs to allow the 

PF to manage VF Rx/Tx queues. With this functionality, the 

network manager can enable and disable packet traversal 

into/out of a virtual device. Other VF management APIs 

include the ability to query statistics from VF devices, and 

register handlers for specific VF related events. The latter 

feature allows the SR-IOV hypervisor to manage VF devices 

when a critical event occurs. 

 

B.5 Features in Development 

Aside from the aforementioned APIs, there are device 

management features made available by DPDK that can be 

integrated into the SR-IOV hypervisor design. Among them are 

two important management features: statistics based 

power/frequency management and packet header parsing 

offloading. The x86 architectures provide CPU P-state and 

turbo-state [20] adjustments which enable applications to adjust 

CPU frequency for throughput and power consumption. Based 

on collected statistics, the controller can apply policies in 

regarding to observed run-time traffic (Rx receiving rate 

calculated from VF statistics), e.g. increasing core frequency to 

boost packet processing performance or dropping core 

frequency to conserve power consumption. Another interesting 

NIC feature is the dynamic device personality (DDP) [22], 

which allows run-time update of NIC firmware to support new 

packet types. As indicated in [6], packet header parsing 

contributes up to 58% of overhead when implementing a P4 [7] 

based packet forwarding application. Although this feature is 

not universally available from all device vendors, it can be 

significant as headers parsing has become increasingly 

cumbersome [1]. 

III.  SR-IOV HYPERVISOR VIA USER-SPACE DRIVER 

As described, the proposed SR-IOV hypervisor functions 

are not supported in the existing kernel stack, the initial work 

is therefore done through DPDK APIs. As described in [11], 

we implemented VFd which includes a parentless DPDK PF 

driver process, i.e. a process daemon, along with a set of 

configuration utilities. When combined, VFd can be used for 

managing VF configurations in cloud applications. In this 

section, we describe our attempt to bridge the gap between 

DPDK user-space device drivers and the kernel netdev 

interface. This effort began two years ago in an attempt to 

create a netdev equivalent interface in DPDK1. The goal was 

to create an interface that requires minimal changes to the 

device management implementation of existing network 

applications, thus allowing legacy applications to run device 

management either through kernel driver or DPDK device 

drivers. Given that the initial set of APIs were not all accepted 

                                                           
1 http://dpdk.org/dev/patchwork/6564 
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by the DPDK community, a re-architecture was done to 

support comprehensive netdev integration. Three NIC PF/VF 

usage models were analyzed to capture the gap and the need to 

optimize running both kernel and user-space drivers. 

 Bifurcated driver model (BFD): A bifurcated driver 

approach involves running both the kernel and user-space 

DPDK drivers. This mixed mode configuration either 

deploys drivers based upon PF/VF interface or leverages 

flow-director to separate flows [19]. In this partition, the 

kernel driver is used for device management, and user-

space driver is used to run VF device or selected flow so 

maximum data throughput can be achieved. 

 DPDK Kernel NIC interface model (KNI): The existing 

DPDK libraries [5] support a set of functions that enable a 

non-binding kernel module2 to respond to ioctl and 

ethtool requests. As part of this model, the KNI 

kernel module implements the ethtool_ops data 

structure required by legacy applications which are based 

upon ethtool APIs. This configuration allows legacy 

utilities, e.g. ethtool, ip, and ifconfig, to work 

seamlessly with user-space DPDK applications. The 

drawback of this approach is that all the device drivers 

that support DPDK libraries must implement a separate 

set of driver functions in the kernel space. This non-trivial 

effort would result in duplication of driver functions in the 

kernel and user-space. 

 User-space ethtool (USE) API with a proxy kernel 

module: In this execution model, a new set of device ops 

is introduced in the user-space driver to support existing 

netdev interface and a kernel module is devised to serve 

as a conduit to forward requests from kernel to user-space 

device drivers. To support this design, an attempt was 

previously initiated to modify DPDK KNI interface so 

that the kernel implementation for netdev was removed 

and replaced by a proxy kernel module3. Due to concerns 

described within the aforementioned link, this effort was 

put on hold. 

 

Data Plane Device Management 

Given the aforementioned development history, we employ 

a user-space device driver extension methodology. Specifically, 

a set of user-space drivers are created and attached to existing 

DPDK device drivers. With this design approach, we 

implemented DPDM (Data Plane Device Management) [24] 

libraries without the need to modify the DPDK source code. 

Furthermore, by incorporating DPDK API revision detection, 

DPDM has been shown to work with multiple versions of 

DPDK4. The major components of DPDM include: 

 A new set of high-level rte_eth APIs, created 

to provide equivalent functions as defined in 

                                                           
2 Unlike kernel-space drivers, the KNI is not bound to the NIC as the device 
driver. With KNI, the target NIC device is bound by a kernel proxy driver, e.g. 
igb_uio, and the kernel module serves as a conduit for the kernel space API 
to pass requests from the ioctl system call to the target NIC device. 
3 http://dpdk.org/dev/patchwork/patch/10130 
4 At the time of writing, DPDM has been tested with DPDK 16.11 through the 
latest release (18.11). 

ethtool_ops (linux/ethtool.h), and 

netdevice_op (linux/netdevice.h). 

 A user-space netlink client library. 

 A kernel module (VNI) that supports both the 
netlink and netdev kernel interface. 

Figure 3 presents the architectural diagram for DPDM. The 

communication between the kernel module, VNI, and the user-

space libraries is based upon the kernel netlink interface. The 

kernel netlink interface supports data transferred between the 

kernel module and the user-space application through a socket. 

The user-space netlink client interface provides an API that 

allows an application to register virtual netdev interfaces via 

packets delivered from the user-space to the VNI. Similar to 

the kernel device driver, each port can register one interface 

name through the kernel netdev device registration process. In 

order to enable each virtual interface to be connected with its 

proxy driver, i.e. the kernel driver that owns the device, e.g. 

igb_uio or vfio-pci, DPDM includes bus information as 

part of the netlink client data structure during interface 

registration. Once the virtual netdev devices are registered by 

VNI, a subsequent request for a netdev op on the virtual netdev 

interface will be re-directed to VNI. The VNI will then pass the 

requests through the netlink interface to the user-space netlink 

client. The netlink client parses the request packet and invokes 

the respective user-space netdev API via the extended device 

drivers. The result along with the data is then returned to the 

kernel through the netlink interface. To support requests from 

the kernel netlink server, a user-space netlink client need to 

listen to a dedicated netlink socket as prescribed by kernel 

netlink protocol. Over DPDM design, such complicated socket 

communications is simplified through a session open/close API 

design that can easily be adopted by any network management 

application [24]. 

 

As mentioned in prior sections, due to lack of support of SR-

IOV hypervisor functionality, we decided to extend the existing 

ethtool –set-priv-flags option through an innovative 

encoding scheme. Essentially, this ethtool option allows 

each device driver to define up to 32 one-shot features5 and to 

define its own feature string(s). The definition of each bit is 

private to each NIC device driver, i.e. different NIC device 

driver may have different function definition of each 32 priv-

flags bit. With the inherent driver automacy from this 

ethtool option, we extend support of this ethtool feature 

by employing a variable length API encoding scheme. By 

means of a 32-bit encoding scheme as described in Table 1, it 

can describe the SR-IOV hypervisor functions through 

ethtool –set-priv-flags feature. 

                                                           
5 A one-shot feature is a feature that can be either enabled or disabled, and 
there is no additional parameter can be specified 
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Ethtool/IP/Ifconfig

IOCTL()

User Space Data Plane Device Management Architecture

Kernel Space

User Space

Kernel Netdev Ops Proxy

NetLink API

User-Space Netlink 
Client

Netdev API and VF Management API 
Through Extended Device Driver

Kernel Space
Ethtool Request

External User 
Space

Netlink Process

VNI (Virtual Netdev Interface)

Kernel Netlink Server

DPDM

 
Figure 3 DPDM Architectural Diagram 

 

Priv-Flags Bits Descriptions 

31 Enable VFd API Encoding 

30:24 Denote vf index (0..127) 

23:21 OP-Code: Seven categories defined: 

0: VF feature bit set/reset 

1: VF Rx mode management 

2: VF statistics 

3: VF Rx VLAN filter 

4: VF Tx VLAN insertion 

5: VF bandwidth (QoS) 

6: VF queue bandwidth 

20:18 Code sequence (for multi-step ops) 

15:0 Feature bits, Rx mode features, 16-bit 

VLAN 

Table 1 VFd API ethtool Encoding 

 

With this encoding scheme, we are able to extend the existing 

netdev interface to support all SR-IOV hypervisor 

management routines implemented over DPDK.  

 

IV. SR-IOV HYPERVISOR VIA KERNEL DRIVER 

As mentioned the existing kernel netdev interface has 

limited support of VF management. Therefore, we extended 

the design in [25], which leverages a sysfs file hierarchy of the 

form as shown below to provide the ability to program SR-

IOV configurations from simple shell scripts. 
/sys/class/net/<pf-interface>/ 

device/sriov/<vf-index>/<SysFs File> 

 

Table 2 lists the first implementation of this extension over 

Intel® i40e device [26]. The complete list of all features can 

be found in [11] 

 

SysFs File Description 

vlan_mirror List of VLANs to mirror to this VF 

trunk List of VLANs to filter on 

allow_untagged Enable/disable untagged packets 

ingress_mirror Mirror traffic of the specified VFs to this 

VF 

mac_anti_spoof Enable/disable MAC anti spoofing 

vlan_anti_spoof Enable/disable VLAN anti spoofing 

loopback Enable/disable Tx loopback 

mac Default MAC if not set use random 

mac_list List of additional MACs 

promisc Enable/disable unicast/multicast promisc. 

allow_bcast Enable/disable broadcast 

vlan_strip Enable/disable VLAN stripping 

max_tx_rate Maximum Tx bandwidth 

Stats Rx/Tx statistics 

Table 2 VFd API Sysfs Encoding 

 

By means of this interface, we are able to build an SR-IOV 

hypervisor through network device kernel drivers. However, 

two important tasks lie ahead. The first requires an increased 

adoption rate of the sysfs interface by vendors. The second, 

and more important task, requires OS vendors to incorporate 

support of the sysfs interface into the in-tree drivers, or by 

simply adopting this interface as a kernel network device 

management interface [11][25-26]. 

 

V. VFD USE CASE 

With a small set of patches, Openstack Neutron is being 

used to define settings and policy information for VNFs, then 

communicates these to VFd for actual NIC configuration. 

Figure 4 illustrates the relationship between Openstack and 

VFd showing that the configuration for each guest is passed to 

VFd which pushes the configuration to the NIC. VFd also 

reacts to callback requests from the PF. 

 

  
Figure 4 Relationship between Openstack and VFd. 

 

Debugging packet flows for VNFs is often difficult. VFd is 

being used to configure VF mirrors such that packets to and/or 

from a VNF are mirrored to a second VF (heavy grey line) 

allowing traditional analysis tools to be used in the guest. 

 

VI. CONCLUSION 

In this paper we presented a set of APIs that provide an SR-

IOV device management interface for the control plane within 

a trusted host environment, and develop this interface into a 

hypervisor. With the API adoption by DPDK, we are able to 

create two frameworks: VFd and DPDM. Furthermore, we 

intend to surface our VF management routines through a sysfs 

VNF 

VFd Callback req 
VNF config info 

Openstack 

VNF 

VNF SR−IOV 

SR−IOV 

SR−IOV 

Guest 

VF 

VF 

VF 

VF 

PF 

VNF 

Private Flag Bit Definition 

• 31: PF/VF (0/1) PF/VF private flag 
• 30:24: VF ID 
• 23:21: OP-Code 

– 0: VF feature bit set/reset 
• Bit [15:0] for 13 features 

– 1: VF Rx mode set/reset 
• Bit[15:0] for 5 Rx mode 

– 2: VF get statistics 
• Return data through kobj 

– 3: VF Rx VLAN filter add/del 
• 5-step OP, bit[15:0] VLAN tag 

– 4: VF Tx VLAN insertion 
• Bit[15:0] VLAN tag 

– 5: VF bandwidth (rate) limit 
• Bit[15:0] Tx rate 

– 6: VF Queue bandwidth(rate) limit 
• 5-step OP, bit[15:0] Rx rate 

• 20:18: Code Sequence (only for multi-step Ops) 
• 17:16: reserved 
• 15:0: Feature bits/Rx mode features/ 16-bit VLAG tag 
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file structure. This work allows us to explore its application in 

cloud environments, e.g. Openstack[11]. Based upon results 

shown in Fig. 1, we believe such an interface can provide a 

fast-path for most VNFs. However, PCI-SIG SR-IOV may be 

inadequate for large numbers of VFs, since the existing 

technology supports at most 256 instances [14]. Although the 

specification can be modified to extend this number, we 

foresee that additional VFs will eventually be subject to 

physical resource limitations. A hybrid deployment of 

VIRTIO and SR-IOV devices is inevitable. There are two 

scenarios where both devices can coexist: horizontal 

expansion or hierarchical expansion. For a horizontal 

expansion setup, the same PF device can manage SR-IOV 

instances and serve as a vhost driver for VIRTIO devices. For 

hierarchical expansion, SR-IOV devices serve as the vhost 

driver in order to manage multiple VIRTIO devices. Given 

that the use of nested VMs has not yet been popularized, over 

the hierarchy expansion use case, SR-IOV devices are 

primarily deployed in the host environment. One such use case 

can be found in [22] where SR-IOV is used as an OVS vhost 

driver for VIRTIO devices, and the proposed SR-IOV 

hypervisor API can work as part of integrated host 

management system instead. 
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