
Build an SR-IOV Hypervisor

Liang-Min Wang

Intel Corp

liang-

min.wang@intel.com

Alex Zelezniak

AT&T Labs

alexz@att.com

E. Scott Daniels

AT&T Labs - Research

daniels@research.att.com

Timothy Miskell

Intel Corp

timothy.miskell@intel.com

Li-De Chen

Intel Corp

li-de.chen@intel.com

Abstract— IO virtualization is a key technology that enables

SDN and NFV applications. There are two mainstream IO

virtualization technologies that are used to implement a

virtualized network device: VIRTIO and SR-IOV. The VIRTIO

technology is a software virtualization technology that renders

efficient IO virtualization based upon paravirtualization. In

contrast, SR-IOV is a hardware assisted device virtualization that

requires support from both the platform and IO devices.

Although the packet processing throughput of a virtualized

network device leveraging SR-IOV technology outperforms a

device leveraging VIRTIO technology, there remains a lack of

standardization amongst NIC device vendors with respect to the

management of SR-IOV devices. The adoption of SR-IOV

technology tends to be limited in embedded environments where

ad hoc management routines are typically used. In this paper, we

introduce the concept of an SR-IOV hypervisor to depict a trust

management interface that can be used to manage SR-IOV

devices over enterprise scale infrastructures such as the cloud. In

addition, we present implementations of this new management

interface through both user-space drivers (DPDK) and kernel-

space drivers. Furthermore, for our user-space driver approach,

we develop an innovative framework so that users can leverage

existing legacy tools to manage SR-IOV devices. We demonstrate

how an SR-IOV hypervisor can be deployed into a cloud

environment, often containing a myriad of network devices and

dynamic VM configurations, which can then be controlled via the

management interface.

Index Terms—SDN, NFV, VIRTIO, SR-IOV, DPDK, VFd,

DPDM.

I. INTRODUCTION

Software-Defined Networking (SDN) and Network

Function Virtualization (NFV) have transformed how network

resources are used over the course of the past decade [1-4],

revolutionizing not only the traditional networking centric

telecommunication industry, but also the manner in which

computing and networking resources are deployed within the

data center environment. Two key components of SDN and

NFV are 1) the separation of the control plane from the

traditional data forwarding plane and 2) network virtualization.

Although SDN deployments can vary from one implementation

to another [1], the essential requirement is a separated control

plane, either centralized or distributed, that supports flexible

network protocols, i.e. programmability. Kreutz et al. [1] have

provided an extensive review of various approaches to realize

SDN networks from inception to implementation. One aspect

not fully explored as part of this study are IO virtualization

technologies, which are key to network virtualization. This is

not surprising, because most large-scale applications of

network virtualization are implemented through software IO

virtualization, e.g. Linux-based VIRTIO [16] and VMWare’s

VMXNET[17], which involves the adoption and

implementation of a common software specification.

By contrast, IO virtualization capabilities and programming

interfaces for hardware are vendor dependent. In this paper we

focus upon Single-Root IO Virtualization (SR-IOV), a

hardware-based IO virtualization technology [14-15][18],

which is considered for fast-path IO virtualization, as compared

to other software approaches [1][8][18]. Figure 1 presents the

test results collected from a simple Virtual Network Function

(VNF) running an L2 forwarding application between two VF

ports. The VF ports are realized through either VIRTIO

technology or SR-IOV. Figure 1(a) demonstrates the

throughput generated by the same VNF for different packet

sizes. Figure 1(b) shows hardware performance monitor unit

(PMU) counters collected for each test [23].

As demonstrated over the test results, a significant

throughput difference exists between device drivers based upon

VIRTIO and SR-IOV technologies. In particular, for small

sized packets, SR-IOV based implementations are shown to

exhibit more than three times the throughput than VNFs based

upon VIRTIO. The gap between these two IO virtualization

technologies can be explained through the collected run-time

PMU counters shown in Fig. 1(b), which reveal the key

differentiators between the two IO technologies in terms of the

number of read-write operations.

The differences in the PMU counters stems from the fact

that, for SR-IOV deployments, guest-to-host memory

translation is done in the hardware. In the case of VIRTIO, a

backend driver must copy data from shared memory between

the host and guest whenever data is forwarded from one VF

port to the other. This observation underlines the importance of

integrating SR-IOV technology with SDN/NFV

implementations. As described, one drawback of integrating

SR-IOV into large scale virtualized networks is the potential

disparity of hardware implementations amongst NIC vendors.

Therefore, a common interface designed to abstract the SR-

IOV offloading capabilities of a NIC is a key step towards the

standardization of low-level hardware programming. With a

standardized interface, it would simplify integrations of SR-

IOV devices into SDN based implementations, such as

southbound interface described in [1].

978-3-903176-15-7 © 2019 IFIP

539

For the remainder of the paper, we begin by discussing the

gap that exists between kernel network device management

interfaces and provide a description of the SR-IOV

management routines implemented throughout this work.

Moreover, in Section II we describe an SR-IOV hypervisor by

means of a VFd (VF daemon) [11] implementation. In Section

III and IV we present the design for an SR-IOV hypervisor API

realized through both user-space drivers as well as kernel

drivers.

We begin this work with a popular open source network

application design framework, the Data Plane Development Kit

(DPDK). With the SR-IOV management routines provided by

DPDK, we develop a Data Plane Device Management library

(DPDM) along with a light-weight kernel module [24]. The

DPDM framework enables DPDK applications to manage

network devices through existing network management utilities

such as ethtool, ip, ifconfig, etc. In addition, we

describe an innovative encoding scheme allowing for the

management of SR-IOV devices via ethtool commands.

Upon realizing the SR-IOV hypervisor routines, we continue

our work by presenting a means of standardization through a

comprehensive, kernel sysfs based framework. This sysfs

framework builds upon the work presented in [25] by

extending the original design and providing a comprehensive

specification, as described in [11].

We present a VFd use case in Section V. Subsequently,

Section VI concludes the paper with identified challenges along

with future work.

(a)Throughput

PMU SR-IOV VHOST/VIRTIO

mem_uops_retired.all_stores+

mem_uops_retired.all_loads

239 771/451

cycles 173 565/565

(b) Per Packet PMU

Figure 1 VIRTIO versus SR-IOV

II. VF NETWORK DEVICE MANAGEMENT

A. The Kernel Device Management Interface

Similar to most device drivers, conventional NIC drivers

are either built into the kernel stack or are provided as loadable

kernel modules, encapsulating hardware resources within the

kernel space. As a result, only kernel space APIs can access

device hardware resources, e.g. control and status registers, and

manage target NIC devices. To constitute a secure interface,

i.e. to restrict management routines to the kernel-space, and

enable user-space applications to send requests to the

respective kernel space device driver, a kernel driver needs to

support the device driver ioctl mechanism [9 - 10]. As

illustrated by Fig. 2, the ioctl mechanism enables a common

application programming interface to manage NIC devices. All

the device management operations are captured by three

members of the net_device (netdev) data structure, namely

netdev_ops, ethtool_ops and fwd_ops. A description

of the net_device data structure and the associated network

device driver can be found in chapter 17 of [9].

Ethtool command:
ioctl(soket-fd, SIOCETHTOOL, ifr-cmd)

User Space Kernel Space

Kernel socket interface:
ethtool_ioctl(net, argup)

Kernel ioctl interface:
dev_ioctl(net, SIOCETHTOOL, ifr)

Kernel ethtool interface:
dev_ethtool(net, ifr)

Kernel device driver:
dev->ethtool_ops->cmd

Figure 2 ethtool command request traversal between a

user-space application and the kernel interfaces

As shown in Fig. 2, an ethtool command is passed through

the kernel socket interface followed by the ioctl kernel

interface, and eventually the request reaches the device

driver’s registered ethtool_ops callback function. This

mechanism is equally applicable for the other two members,

i.e. netdev_ops and fwd_ops, of the netdev interface.

Each NIC kernel device driver can register its own device

management routines through one of these netdev device

management ops. As a result, a hardware abstraction layer is

introduced such that the kernel network stack can share device

management with common kernel-space/user-space utilities

such as ethtool, ip, etc. Nevertheless, the existing design

focuses on managing devices in its domain. Specifically, the

interface provides Physical Function (PF) drivers to manage

PF devices and Virtual Function (VF) drivers to manage VF

devices, which misinterprets a key design principal of SR-

IOV. The design of SR-IOV [14] calls for a single-root (PF) to

manage multiple VFs. In SR-IOV, a PF device is capable of

accessing all of the NIC resources while a VF device is

constrained to limited access of a subset of network device

resources. The design makes the Physical Function the master,

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions540

trusted device allowing the possibility for the PF device

management routine to enforce different policies on each VF

device. The existing netdev interface only enables limited VF

management capabilities through netdev_ops, which at

present does not adequately meet the demands of VNF

management in the cloud. Therefore, we propose additional

APIs to manage virtual functions through PF drivers. The

proposed APIs are designed to address

 VLAN Management

 Tx Security and Rx Mode Management

 VF QoS

 VF Statistics

Additional APIs currently in development are also designed to

address network traffic mirroring, power management, along

with protocol header parsing offloading.

B. The SR-IOV Hypervisor

Given the lack of support from the kernel stack, we

decided to implement our SR-IOV hypervisor by means of

DPDK-based user-space drivers. Beginning with version

16.11, DPDK has supported new APIs to management VF

configurations via the DPDK-based PF driver [11-12]. In the

following sections, we provide a description of the SR-IOV

hypervisor functions that have already been implemented

along with functions that are currently in development.

B.1 VLAN management
As described in [1] [3], VLAN based network virtualization is

one technology to partition network traffic and steer packet

flows. Within this category, APIs that were implemented

include management interfaces for VF Rx VLAN stripping,

VF Rx VLAN filtering, VF Tx VLAN insertion and VF Rx

traffic steering, i.e. filtering and traffic distribution via Rx

queue assignment. This capability allows a control plane

application to manage each VF device as an independent hub,

which in turn can be used to manage different traffic flows by

means of vlan-tagging.

B.2 Tx Security and Rx Mode Management

The VF management APIs within this category are designed to

address packet spoofing, wherein a “malicious” VF might

impersonate different VLAN IDs or MAC addresses when

transmitting packets. The configuration APIs provide both

MAC and VLAN anti-spoofing capabilities. As for SR-IOV

packet receiving interface, the SR-IOV hypervisor adds

support of the same PF Rx mode configuration (such as

broadcast, untag, multicast etc.) management.

B.3 VF QoS

VF QoS management is one of the few VF management

interfaces supported by the kernel netdev interface and is

available via the Linux ip command. Specifically, there are

four VF settings available: VF MAC-address, VF VLAN tag,

VF VLAN QoS and VF Tx rate. The SR-IOV hypervisor

provides an extension to what has already been defined in the

netdev interface. For example, the existing netdev interface

only allows a single VLAN tag to be assigned to a VF device,

which is inadequate for most cloud applications. This work

provides an API to allow multiple VLAN tag assignments to

the same VF.

B.4 VF Queue Management, Statistics and Other Features

The SR-IOV hypervisor interface supports APIs to allow the

PF to manage VF Rx/Tx queues. With this functionality, the

network manager can enable and disable packet traversal

into/out of a virtual device. Other VF management APIs

include the ability to query statistics from VF devices, and

register handlers for specific VF related events. The latter

feature allows the SR-IOV hypervisor to manage VF devices

when a critical event occurs.

B.5 Features in Development

Aside from the aforementioned APIs, there are device

management features made available by DPDK that can be

integrated into the SR-IOV hypervisor design. Among them are

two important management features: statistics based

power/frequency management and packet header parsing

offloading. The x86 architectures provide CPU P-state and

turbo-state [20] adjustments which enable applications to adjust

CPU frequency for throughput and power consumption. Based

on collected statistics, the controller can apply policies in

regarding to observed run-time traffic (Rx receiving rate

calculated from VF statistics), e.g. increasing core frequency to

boost packet processing performance or dropping core

frequency to conserve power consumption. Another interesting

NIC feature is the dynamic device personality (DDP) [22],

which allows run-time update of NIC firmware to support new

packet types. As indicated in [6], packet header parsing

contributes up to 58% of overhead when implementing a P4 [7]

based packet forwarding application. Although this feature is

not universally available from all device vendors, it can be

significant as headers parsing has become increasingly

cumbersome [1].

III. SR-IOV HYPERVISOR VIA USER-SPACE DRIVER

As described, the proposed SR-IOV hypervisor functions

are not supported in the existing kernel stack, the initial work

is therefore done through DPDK APIs. As described in [11],

we implemented VFd which includes a parentless DPDK PF

driver process, i.e. a process daemon, along with a set of

configuration utilities. When combined, VFd can be used for

managing VF configurations in cloud applications. In this

section, we describe our attempt to bridge the gap between

DPDK user-space device drivers and the kernel netdev

interface. This effort began two years ago in an attempt to

create a netdev equivalent interface in DPDK1. The goal was

to create an interface that requires minimal changes to the

device management implementation of existing network

applications, thus allowing legacy applications to run device

management either through kernel driver or DPDK device

drivers. Given that the initial set of APIs were not all accepted

1 http://dpdk.org/dev/patchwork/6564

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions 541

by the DPDK community, a re-architecture was done to

support comprehensive netdev integration. Three NIC PF/VF

usage models were analyzed to capture the gap and the need to

optimize running both kernel and user-space drivers.

 Bifurcated driver model (BFD): A bifurcated driver

approach involves running both the kernel and user-space

DPDK drivers. This mixed mode configuration either

deploys drivers based upon PF/VF interface or leverages

flow-director to separate flows [19]. In this partition, the

kernel driver is used for device management, and user-

space driver is used to run VF device or selected flow so

maximum data throughput can be achieved.

 DPDK Kernel NIC interface model (KNI): The existing

DPDK libraries [5] support a set of functions that enable a

non-binding kernel module2 to respond to ioctl and

ethtool requests. As part of this model, the KNI

kernel module implements the ethtool_ops data

structure required by legacy applications which are based

upon ethtool APIs. This configuration allows legacy

utilities, e.g. ethtool, ip, and ifconfig, to work

seamlessly with user-space DPDK applications. The

drawback of this approach is that all the device drivers

that support DPDK libraries must implement a separate

set of driver functions in the kernel space. This non-trivial

effort would result in duplication of driver functions in the

kernel and user-space.

 User-space ethtool (USE) API with a proxy kernel

module: In this execution model, a new set of device ops

is introduced in the user-space driver to support existing

netdev interface and a kernel module is devised to serve

as a conduit to forward requests from kernel to user-space

device drivers. To support this design, an attempt was

previously initiated to modify DPDK KNI interface so

that the kernel implementation for netdev was removed

and replaced by a proxy kernel module3. Due to concerns

described within the aforementioned link, this effort was

put on hold.

Data Plane Device Management

Given the aforementioned development history, we employ

a user-space device driver extension methodology. Specifically,

a set of user-space drivers are created and attached to existing

DPDK device drivers. With this design approach, we

implemented DPDM (Data Plane Device Management) [24]

libraries without the need to modify the DPDK source code.

Furthermore, by incorporating DPDK API revision detection,

DPDM has been shown to work with multiple versions of

DPDK4. The major components of DPDM include:

 A new set of high-level rte_eth APIs, created

to provide equivalent functions as defined in

2 Unlike kernel-space drivers, the KNI is not bound to the NIC as the device
driver. With KNI, the target NIC device is bound by a kernel proxy driver, e.g.
igb_uio, and the kernel module serves as a conduit for the kernel space API
to pass requests from the ioctl system call to the target NIC device.
3 http://dpdk.org/dev/patchwork/patch/10130
4 At the time of writing, DPDM has been tested with DPDK 16.11 through the
latest release (18.11).

ethtool_ops (linux/ethtool.h), and

netdevice_op (linux/netdevice.h).

 A user-space netlink client library.

 A kernel module (VNI) that supports both the
netlink and netdev kernel interface.

Figure 3 presents the architectural diagram for DPDM. The

communication between the kernel module, VNI, and the user-

space libraries is based upon the kernel netlink interface. The

kernel netlink interface supports data transferred between the

kernel module and the user-space application through a socket.

The user-space netlink client interface provides an API that

allows an application to register virtual netdev interfaces via

packets delivered from the user-space to the VNI. Similar to

the kernel device driver, each port can register one interface

name through the kernel netdev device registration process. In

order to enable each virtual interface to be connected with its

proxy driver, i.e. the kernel driver that owns the device, e.g.

igb_uio or vfio-pci, DPDM includes bus information as

part of the netlink client data structure during interface

registration. Once the virtual netdev devices are registered by

VNI, a subsequent request for a netdev op on the virtual netdev

interface will be re-directed to VNI. The VNI will then pass the

requests through the netlink interface to the user-space netlink

client. The netlink client parses the request packet and invokes

the respective user-space netdev API via the extended device

drivers. The result along with the data is then returned to the

kernel through the netlink interface. To support requests from

the kernel netlink server, a user-space netlink client need to

listen to a dedicated netlink socket as prescribed by kernel

netlink protocol. Over DPDM design, such complicated socket

communications is simplified through a session open/close API

design that can easily be adopted by any network management

application [24].

As mentioned in prior sections, due to lack of support of SR-

IOV hypervisor functionality, we decided to extend the existing

ethtool –set-priv-flags option through an innovative

encoding scheme. Essentially, this ethtool option allows

each device driver to define up to 32 one-shot features5 and to

define its own feature string(s). The definition of each bit is

private to each NIC device driver, i.e. different NIC device

driver may have different function definition of each 32 priv-

flags bit. With the inherent driver automacy from this

ethtool option, we extend support of this ethtool feature

by employing a variable length API encoding scheme. By

means of a 32-bit encoding scheme as described in Table 1, it

can describe the SR-IOV hypervisor functions through

ethtool –set-priv-flags feature.

5 A one-shot feature is a feature that can be either enabled or disabled, and
there is no additional parameter can be specified

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions542

Ethtool/IP/Ifconfig

IOCTL()

User Space Data Plane Device Management Architecture

Kernel Space

User Space

Kernel Netdev Ops Proxy

NetLink API

User-Space Netlink
Client

Netdev API and VF Management API
Through Extended Device Driver

Kernel Space
Ethtool Request

External User
Space

Netlink Process

VNI (Virtual Netdev Interface)

Kernel Netlink Server

DPDM

Figure 3 DPDM Architectural Diagram

Priv-Flags Bits Descriptions

31 Enable VFd API Encoding

30:24 Denote vf index (0..127)

23:21 OP-Code: Seven categories defined:

0: VF feature bit set/reset

1: VF Rx mode management

2: VF statistics

3: VF Rx VLAN filter

4: VF Tx VLAN insertion

5: VF bandwidth (QoS)

6: VF queue bandwidth

20:18 Code sequence (for multi-step ops)

15:0 Feature bits, Rx mode features, 16-bit

VLAN

Table 1 VFd API ethtool Encoding

With this encoding scheme, we are able to extend the existing

netdev interface to support all SR-IOV hypervisor

management routines implemented over DPDK.

IV. SR-IOV HYPERVISOR VIA KERNEL DRIVER

As mentioned the existing kernel netdev interface has

limited support of VF management. Therefore, we extended

the design in [25], which leverages a sysfs file hierarchy of the

form as shown below to provide the ability to program SR-

IOV configurations from simple shell scripts.
/sys/class/net/<pf-interface>/

device/sriov/<vf-index>/<SysFs File>

Table 2 lists the first implementation of this extension over

Intel® i40e device [26]. The complete list of all features can

be found in [11]

SysFs File Description

vlan_mirror List of VLANs to mirror to this VF

trunk List of VLANs to filter on

allow_untagged Enable/disable untagged packets

ingress_mirror Mirror traffic of the specified VFs to this

VF

mac_anti_spoof Enable/disable MAC anti spoofing

vlan_anti_spoof Enable/disable VLAN anti spoofing

loopback Enable/disable Tx loopback

mac Default MAC if not set use random

mac_list List of additional MACs

promisc Enable/disable unicast/multicast promisc.

allow_bcast Enable/disable broadcast

vlan_strip Enable/disable VLAN stripping

max_tx_rate Maximum Tx bandwidth

Stats Rx/Tx statistics

Table 2 VFd API Sysfs Encoding

By means of this interface, we are able to build an SR-IOV

hypervisor through network device kernel drivers. However,

two important tasks lie ahead. The first requires an increased

adoption rate of the sysfs interface by vendors. The second,

and more important task, requires OS vendors to incorporate

support of the sysfs interface into the in-tree drivers, or by

simply adopting this interface as a kernel network device

management interface [11][25-26].

V. VFD USE CASE

With a small set of patches, Openstack Neutron is being

used to define settings and policy information for VNFs, then

communicates these to VFd for actual NIC configuration.

Figure 4 illustrates the relationship between Openstack and

VFd showing that the configuration for each guest is passed to

VFd which pushes the configuration to the NIC. VFd also

reacts to callback requests from the PF.

Figure 4 Relationship between Openstack and VFd.

Debugging packet flows for VNFs is often difficult. VFd is

being used to configure VF mirrors such that packets to and/or

from a VNF are mirrored to a second VF (heavy grey line)

allowing traditional analysis tools to be used in the guest.

VI. CONCLUSION

In this paper we presented a set of APIs that provide an SR-

IOV device management interface for the control plane within

a trusted host environment, and develop this interface into a

hypervisor. With the API adoption by DPDK, we are able to

create two frameworks: VFd and DPDM. Furthermore, we

intend to surface our VF management routines through a sysfs

VNF

VFd Callback req
VNF config info

Openstack

VNF

VNF SR−IOV

SR−IOV

SR−IOV

Guest

VF

VF

VF

VF

PF

VNF

Private Flag Bit Definition

• 31: PF/VF (0/1) PF/VF private flag
• 30:24: VF ID
• 23:21: OP-Code

– 0: VF feature bit set/reset
• Bit [15:0] for 13 features

– 1: VF Rx mode set/reset
• Bit[15:0] for 5 Rx mode

– 2: VF get statistics
• Return data through kobj

– 3: VF Rx VLAN filter add/del
• 5-step OP, bit[15:0] VLAN tag

– 4: VF Tx VLAN insertion
• Bit[15:0] VLAN tag

– 5: VF bandwidth (rate) limit
• Bit[15:0] Tx rate

– 6: VF Queue bandwidth(rate) limit
• 5-step OP, bit[15:0] Rx rate

• 20:18: Code Sequence (only for multi-step Ops)
• 17:16: reserved
• 15:0: Feature bits/Rx mode features/ 16-bit VLAG tag

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions 543

file structure. This work allows us to explore its application in

cloud environments, e.g. Openstack[11]. Based upon results

shown in Fig. 1, we believe such an interface can provide a

fast-path for most VNFs. However, PCI-SIG SR-IOV may be

inadequate for large numbers of VFs, since the existing

technology supports at most 256 instances [14]. Although the

specification can be modified to extend this number, we

foresee that additional VFs will eventually be subject to

physical resource limitations. A hybrid deployment of

VIRTIO and SR-IOV devices is inevitable. There are two

scenarios where both devices can coexist: horizontal

expansion or hierarchical expansion. For a horizontal

expansion setup, the same PF device can manage SR-IOV

instances and serve as a vhost driver for VIRTIO devices. For

hierarchical expansion, SR-IOV devices serve as the vhost

driver in order to manage multiple VIRTIO devices. Given

that the use of nested VMs has not yet been popularized, over

the hierarchy expansion use case, SR-IOV devices are

primarily deployed in the host environment. One such use case

can be found in [22] where SR-IOV is used as an OVS vhost

driver for VIRTIO devices, and the proposed SR-IOV

hypervisor API can work as part of integrated host

management system instead.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their valuable comments on this paper. The authors also

wish to show their gratitude to the DPDK team for their

support in developing an SR-IOV hypervisor API.

REFERENCES

[1] D. Kreutz, et al., Software-Defined Networking: A

Comprehensive Survey, Proceedings of the IEEE, vol. 103, no.
1, Jan 2015.

[2] K. Greene, TR10: Software-Defined Networking, MIT
Technology Review 2009,http://www2.technologyreview.com/
news/412194/tr10-software-defined-networking.

[3] N. McKeown et al., OpenFlow: Enabling innovation in campus
networks, ACM SIGCOMM Comput. Comm. Rev., vol. 38, no.
2, Apr. 2008, pp 69 – 74.

[4] S. Sezer et al., Are We Ready for SDN? Implementation
Challenges for Software-Defined Networks, IEEE Comm. Mag.,
July 2013, pp 36 – 43.

[5] DPDK: Data Plane Development Kit. http://dpdk.org.

[6] P. Li et al., BMAcc: Accelerating P4 Based Data Plane with
DPDK, DPDK summit 2017, https://www.slideshare.net/
LF_DPDK/lfdpdk17accelerating-p4based-dataplane-with-dpdk

[7] P4, https://p4.org.

[8] Intel, Intel 82576 SR-IOV Driver Companion Guide: Overview
of SR-IOV Driver Implementation, 322192-001 revision 1.0,
June 2009.

[9] J. Corbet, A. Rubini and G. Kroah-Hartman, Linux Device
Driver, 3rd Edition, 2005, O’reilly Media, Inc.

[10] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd
Edision, Oreiley, 2006.

[11] VFd: Virtual Function Daemon. https://github.com/att/vfd.

[12] A. Zelezniak, Implementing an SR-IOV Hypervisor using
DPDK, DPDK Summit 2017, https://dpdksummit.com/us/en/
past-events.

[13]] E. S. Daniels, Reflections on Mirroring with DPDK, DPDK
Summit 2017, https://www.slideshare.net/LF_DPDK/lfdpdk17
reflections-on-mirroring-with-dpdk.

[14] PCI-SIG. SR-IOV Specification, https://pcisig.com/sites/
default/files/specification_documents/ECN_SR-
IOV_Table_Updates_16-June-2016.pdf

[15] Y. Dong, Z. Yu and G. Rose, SR-IOV Networking in Xen:
Architecture, Design and Implementation,
https://www.usenix.org/legacy/event/wiov08/tech/full_papers/do
ng/dong.pdf

[16] OASIS Virtual I/O Device TC, Virtual I/O Device (VIRTIO)
Version 1.0, http://docs.oasis-open.org/virtio/virtio/v1.0/csprd02
/virtio-v1.0-csprd02.pdf

[17] VMWare, Best Practices for Performance Tuning of Latency-
Sensitive Workloads in vSphere VMs, VMWare Tech. Paper,
https://www.vmware.com/content/dam/digitalmarketing/vmware
/en/pdf/techpaper/vmw-tuning-latency-sensitive-workloads-
white-paper.pdf

[18] P. Kutch and B. Johnson, SR-IOV for NFV Solutions: Practical
Consideration and Thoughts, Intel® Tech. Brief, Feb. 2017,
https://www.intel.com/content/dam/www/public/us/en/document
s/technology-briefs/sr-iov-nfv-tech-brief.pdf.

[19] Getting the Best of Both Worlds with Queue Splitting
(Bifurcated Driver), http://rhelblog.redhat.com/2015/10/02/
getting-the-best-of-both-worlds-with-queue-splitting-bifurcated-
driver.

[20] T. Kidd, Power Management States: P-States, C-States, and
Package C-States, Intel Developer Zone,
https://software.intel.com/en-us/articles/power-management-
states-p-states-c-states-and-package-c-states

[21] S. Su et al., Low overhead VM-to-VM transmission for service
function chaining, IEEE NFV-SDN, Nov. 2016. Demo track.
http://nfvsdn2016.ieee-nfvsdn.org/program/demonstrations

[22] A. Chilikin and B. Johnson, Flexible and Extensible support for
new protocol processing with DPDK using Dynamic Device
Personalization, DPDK Summit 2017.

[23] Performance Monitoring Unit, Intel® 64 and IA-32
Architectures Software Developer’s Manual, vol. 3, chap. 18.

[24] DPDM, https://github.com/intel/dpdm_lib

[25] Mellanox, MLNX_EN for Linux User Manual,
http://www.mellanox.com/related-doces/prod_software/
Mellanox_EN_for_Linux_User_Manual_v4_4.pdf

[26] https://sourceforge.net/projects/e1000/files/i40e%20stable/2.7.1
2

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions544

