
Edison: Event-driven Distributed System of Network
Measurement

Xiaoban Wu†, Timothy Miskell†, Yan Luo∗
Department of Electrical and Computer Engineering

University of Massachusetts Lowell
∗{Y an Luo}@uml.edu,

†{Xiaoban Wu, Timothy Miskell}@student.uml.edu

Liang-Min Wang‡, Li-De Chen‡
Intel Corporation

Hudson, MA 01749
‡{Liang −Min.Wang, Li−De.Chen}@intel.com

Abstract—Network measurement is critical in net-
work management such as performance monitoring, di-
agnosis, and traffic engineering. However, conventional
network measurement software tools are inadequate
in high-speed network at scale. They also lack an
event-driven mechanism to automate complex network
measurement process. In this paper, we present Edi-
son which contains an high performance measurement
backend (Ares) to collect flow metrics, driven with an
expressive frontend (Equery) to enable the composition
of complex measurement tasks. Finally, we evaluate the
effectiveness of our Edison framework on a distributed
measurement platform deployed for 100Gbps interna-
tional research networks.

Index Terms—Network Management; Event-driven
Programming; Distributed Network Measurement;

I. Introduction
Network measurement is instrumental to understand-

ing network behavior, fault diagnosing, attack prevention
and traffic engineering. While conventional measurement
tools such as pmacct, argus[1], [2] support basic network
flow metrics (e.g. NetFlow, sFlow), emerging network
infrastructure and applications impose new challenges that
make these tools out of date.

First, the existing tools were designed a decade ago for
the network infrastructure of that time. The computing
and networking technology have experienced significantly
advance in performance. In particular, the bandwidth of
the networks has been increased dramatically from the
scale of Mbps to 100 Gbps and beyond. However, the con-
ventional measurement tools do not scale naturally with
computing platform and network infrastructure due to
inherent design principles and assumptions. For example,
our experiment shows that argus and pmacct can only
sustain up to 10-20 Gbps input traffic due to their lack
of support to emerging multicore architecture and high
performance network I/O.

Second, the new network architecture and operational
methods introduce many interesting opportunities as well
as new problems. For example, a network flow going
through multiple AS domains may experience performance
loss at one link, as a result, the trouble shooting on such a

flow requires multiple measurement actions to take place,
at different locations and in a certain order, before finally
narrowing down the problematic point. Although some
support SQL-like language to let user choose measurement
fields, the conventional measurement tools (e.g. argus and
pmacct) lack a mechanism to express the logical and tem-
poral order of such chained network measurement tasks. In
general, a meaningful network measurement is composed
of a collection of metric oriented tasks, and network
operators execute them one after another. We define an
event as the trigger that initiates a new measurement task
after the prior one completes. We argue that such events
play an increasingly important role in chaining the tasks to
fulfill the desired measurement goals. We can significantly
improve the efficiency of network measurements by using
events as the glue logic to automate the process and avoid
human intervention.

To address the aforementioned challenges, we present
Edison, an event-driven distributed system of network
measurement, which includes a high performance backend
Ares for network metrics collection and a flexible frontend
Equery for expressive task definition. Specifically, Ares
is a network measurement component for collecting a
variety of flow statistics. It takes advantage of a fast
packet I/O library called DPDK [3], an effective parallel
design for scalability in multicore systems, and an efficient
insertion-lookup data structure called cuckoo hash. Our
experiment results show that Ares can reach line rate with
100Gbs input traffic. Second, Equery is an event-driven
query language, which not only allows human operators to
launch network queries to derive network-wide information
in a programmable way, but also supports event-driven
mechanism to detect specified network events and trigger
further network monitoring automatically. We demon-
strate through extensive evaluation experiments that the
Edison framework is scalable and effective.

II. Design of Edison
A. Overview of Edison

The design of Edison originated from the need of a
programmable network measurement framework for Inter-
national Research Network Connections (IRNC), a global978-3-903176-15-7 c© 2019 IFIP

545



scale high speed network infrastructure for data-intensive
scientific research funded by the US National Science
Foundation [4]. Edison aims to provide advanced pas-
sive traffic measurement with flow granularity. By design,
Edison consists of a growing number of passive mea-
surement instrument deployed at major network exchange
points, as show on the map in Figure 1. Each instrument is
built upon a multicore x86 server with 100Gbps network
interface cards (NICs), and runs Ares, the backend for
flow metrics collection. The user-facing part of Edison is
Equery, a SQL-like event driven language that allows users
to compose complex measurement functions. Ares commu-
nicates with Equery via a central Edison controller.

The Edison architecture is currently deployed at mul-
tiple operational exchange points including StarLight [5]
at Northwestern University, University of Kentucky, and
AMPATH [6] at Florida International University. Two
additional instrument are being deployed and tested at
Sao Paulo, Brazil and La Serena, Chile. Other network
exchange points are in the planning stage. At each oper-
ational exchange point, in order to passively collect flow
statistics, the Ares runs on a multicore server connected
to a mirroring port of a network switch. As solely a
passive measurement, Ares is different from the active
measurement systems like perfSONAR [7]. PerfSONAR
actively generates traffic to exercise the network links
and collect metrics, whereas Ares only passively listens to
live traffic to collect metrics, thus having no performance
impact to live traffic.

In order to fully take advantage of Ares, the Equery is
designed to flexibly express the event-driven measurement
tasks. Users’ query statements are analyzed and compiled
into small deployable tasks. The Edison controller maps
these tasks to the distributed Ares instrument boxes,
which actually execute them. The measurement results are
returned to the controller and used to trigger the next task
if the event criterion is met. The aggregated results are
recorded and eventually made available to user through a
web interface.

Next we introduce in detail how Ares is designed
to support deep programmability and scale with high-
throughput network traffic. Then we will describe how
Equery facilitates composition of complex network mea-
surements.

B. Edison Backend: The Ares

Ares serves as the backend of Edison and runs on a
multicore based hardware platform. From the architectural
perspective, Ares differs from commercial network appli-
ances. Ares assumes only the multicore architecture (e.g.
x86) and fast packet I/O library (e.g. DPDK [3]), which
are readily available from many vendors. It is designed
to be open hardware and software, which can evolve well
with advancing technologies. Such a salient advantage that
has proven to be effective as Ares can readily execute
on hardware platforms with different configurations. Such

http://localhost:8000

Query Result

submit

Equery GUI Web Server
(cherry.uml.edu)

Edison Controller

Operational Network

query results

http://localhost:8000/result

Query Result

id query string view

Ares

Ares

Ares

query

result

Fig. 1. Edison Architecture

open architecture and familiar programming environment
(Linux) also enable rapid prototyping and reprogramming
to add and test new measurement functionalities. Both
the performance and programmability have made Ares
the ideal platform for traffic measurement on the research
network backbone.

Performing measurement functions at line rate is non-
trivial, especially on such a general purpose environment
as Ares. One challenge is how to best utilize the CPU
cores, and the other one is the fast packet I/O. These two
challenges are in fact intertwined due to the packet buffer
management schemes and workload balancing.

Figure 2 illustrates the overall architecture of Ares.
From bottom to top, Ares has a fast packet I/O scheme,
a CPU core management scheme in groups of ”clusters”,
and a software based hash called Cuckoo for efficient look
up and insert of flow meta data required for collecting
metrics. Ares is designed generic enough that these three
components are portable and customizable to different
hardware platforms. In the next few subsections we explain
in more details the specifics of current implementation .

1) Packet I/O and buffer management: It is critical to
move received packets from NICs to system memory under
tight time constraint for online processing. The per packet
packet processing time is only about 10ns for a 64B packet
plus padding on wire at 100Gbps. That includes the time
needed to bring the packet into the system memory. Unlike
the traditional packet capture library libpcap [8], used
in pmacct and argus, which works in the kernel space,
DPDK is a set of userland libraries and drivers to pro-
vide high throughput packet I/O in high speed networks.
Recent studies have proven DPDK to be a reliable and
feasible framework for high performance software switches
on a multicore system. Zhou et al. [9] integrate the DPDK
library with a Cuckoo hash table to design a Cuckoo
switch operating at significantly high throughput rates.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions546



Port

……DPDK IO

RSS

Cluster 
0

Cluster 
1

……
Cluster 

N

……

NIC

ASYNC 
Update 
Cuckoo

ASYNC 
Update 
Cuckoo

Aggregator

RabbitMQ

Edison 
Controller

ASYNC 
Update 
Cuckoo

Fig. 2. Ares Architecture

Furthermore, Li et al. [10] propose several VNF designs
that aim to increase the performance of network functions
by utilizing the DPDK library.

We wish to explicitly emphasize three aspects of DPDK
that are most relevant to Ares, multicore framework, poll-
mode drivers (PMDs) as well as ring buffers.

Multicore Framework: To support Non-Uniform Mem-
ory Access (NUMA) architecture which is widely adopted
on modern high-end servers, DPDK provides a multicore
framework. At the Environment Abstraction Layer (EAL)
phase, DPDK detects the enabled cores in the system and
manages the software thread affinity to hardware cores. In
order to reduce the memory access delay, DPDK enables
threads to allocate hugepage memory from the closest
socket.

PMD Driver : The PMD driver in DPDK replaces tra-
ditional interrupt-driven hardware events with a low la-
tency polling mechanism. The PMD driver resides in the
userland space to avoid the overhead associated with user-
to-kernel context switches, and this is main reason why
Ares can sustain high throughput while pmacct and argus
cannot. In addition, the majority of modern NICs support
Receive Side Scaling (RSS), which uses hardware hashing
to enable the efficient distribution of network receiver-side
processing across the multiple CPUs available within a
multicore system. As shown in Figure 2, to fully explore
the parallelism available within a multicore system, Ares
declares multiple receiving (RX) queues at the same time
and utilizes RSS to distribute packets into multiple RX
queues which are further processed by the corresponding

Cluster.
Ring Buffer : In order to make communication between

threads convenient and efficient, DPDK provides four
types of ring buffers implementations for different use case
scenarios: single-producer (SP), single-consumer (SC),
multiple-producer (MP) and multiple-consumer (MC).
The MP and MC ring buffers consist of atomic index
updating and parallel reading and writing operations. By
default, all the RX queues use MP and MC ring buffers.
Since atomic operations are very expensive, using MP and
MC buffers may not render the optimal performance. Due
to this fact, as explained in section II-B2, within each
Cluster, Ares utilizes SP and SC ring buffer to implement
communication between master core (producer) and slave
cores (consumers).

2) CPU core management and load balancing: The
number of cores in a x86 server keeps increasing. The latest
generation consists of 28 cores in a processor[11], and there
are typically two processors or more in a system. It remains
an open question as how to allocate cores for high speed
network applications. As packet I/O requires polling and
active buffer management, certain cores are dedicated for
such tasks. The rest of the cores in Ares should be utilized
to their full extent for flow metrics collection.

In order to efficiently collect flow statistics at line rate,
as shown in Algorithm 1, Ares has two ways to utilize the
CPU cores, namely Aggregator as readers and Cluster as
writers. While Aggregator is used to collect flow statistics
and report them to Edison controller (the communication
is done via a software library called RabbitMQ), Cluster
is the main component of Ares and used to generate flow
statistics. In this paper, we only focus on the detail of the
design of the writers, i.e. Cluster, which includes a single
master core and multiple slave cores.

Algorithm 1 Algorithm of Ares
1: function Cluster Subroutine( )
2: while True do
3: Asynchronously update cuckoo hash table;
4: function Aggregator Subroutine( )
5: while True do
6: Iterate through each cuckoo hash table
7: and collect flow statistics;
8: Return collected information to Edison controller;

Due to the fact that the number of RSS hardware RX
queues is limited while a multicore server can have tens of
cores, to take the full advantage of these cores and make
performance scalable, Ares first splits all the cores into
multiple Clusters. And then within each Cluster, as shown
in Figure 3, Ares implements an asynchronous parallel
design called ASYNC. ASYNC means that the master core
and all the slave cores are working in an asynchronous
way and do not wait for any synchronizing signal. We
use Figure 3 to depict this: the master core maintains
a global ring buffer for each slave core. Whenever the
master core receives a batch of packets into RX Queue
from NIC via RSS, it hashes each packet and push it into

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions 547



Ring 
Buffer M

Ring 
Buffer 2

Ring 
Buffer 1

……

Slave 
Core 1

Slave
Core 2

Slave 
Core M

……

Master Core 0: RX Queue

Cuckoo
HT 1

Cuckoo
HT 2

Cuckoo
HT M

……

Hash and Enqueue

Dequeue 

Update

…… ……

Fig. 3. ASYNC Parallel Design

the corresponding ring buffer of the slave core. For each
slave core, it keeps polling on its associated ring buffer and
begins to work on the packets immediately if there exists
any. The details are shown in the Algorithm 2.

Algorithm 2 Cluster Subroutine
1: Global Data: slave ring buffer[]
2: DPDK API: rx burst(), enqueue(), dequeue()
3: function Master Core Subroutine( )
4: while True do
5: rx burst(received pkts[]);
6: for each packet in received pkts[] do
7: value = hash(packet);
8: enqueue packet into slave ring buffer[value];
9: function Slave Core Subroutine( )

10: while True do
11: while my buffer in slave ring buffer[] has packets do
12: dequeue(a batch of packets out of my buffer);
13: Update my cuckoo hash table with dequeued packets;

In summary, by using both DPDK RSS (hardware
hashing) and ASYNC (software hashing), Ares can fully
distribute packets into many cores, balance the work load
across multiple slave cores and thus achieve the highest
scalable throughput.

3) Cuckoo Hash Table for Efficient Lookup and Inser-
tion: To collect flow-level metrics, a measurement function
needs to frequently access the per flow stateful meta data
(e.g. the total number and size of packets). Therefore, the
lookup and insertion operations on such shared stateful
data structures are time critical. The cuckoo hash table
achieves high memory utilization efficiency, and ensures
expected O(1) lookup time. Ares adopts 1,8 cuckoo hash
table, where 1 means one hash table and 8 means 8-way
associative, simply each bucket (row) contains 8 slots.
Cuckoo hash table maintains two hash functions, namely
primary and secondary hash function. And each hash
function map the key to the corresponding bucket, namely
primary and secondary bucket. When lookup, cuckoo hash
table only needs to check if the key exists in any slot
of either primary bucket or secondary bucket. And when

insertion of a new key, it first looks for any available
empty slot in the primary bucket or the associated set of
secondary buckets. If not, it recursively relocate the first
unmarked slot from the primary bucket to its secondary
bucket until an empty slot is found.

For the key−value pair in the cuckoo hash table, Ares
uses 5-tuple, src addr, dst addr, protocol, src port, and
dst port as key, which uniquely defines a flow. And
the value includes node id, stime, ltime, smac, dmac,
ip ttl, ip tos, tcp seq, tcp ack, tcp win, total count,
total byte, ploss count, and ploss byte.

C. Edison Frontend: The Equery

Equery serves as the frontend of Edison. The Equery
language is not only a SQL-like query language which
allows user to gather per-flow statistics information, but
also has its own unique features which supports the event-
driven mechanism. With an event, a user can construct a
composite query which contains multiple atomic queries,
one triggered by another, and thus avoid manual interven-
tion.

TABLE I
The Equery Syntax

Name Format and Attribute
Atomic Equery qName: select selField groupby hdr-

Field where whereCond when when-
Cond;

Composite Equery a list of Atomic Equery
selField hdrField

aggrField
hdrField Ares measurement fields from

key−value pair in cuckoo hash table
aggrField count(hdrField)

sum(hdrField)
avg(hdrField)
max(hdrField)
min(hdrField)

whereCond boolean expression of hdrField
whenCond boolean expression of whenField
whenField qName.selField

1) The Equery Syntax: The syntax of Equery is sum-
marized in Table I. For more details of Equery, we refer
readers to [12].

A select clause is used to express what data the user
wants to query. Here the arguments are defined as mea-
surement fields, including the fields of a packets header,
as well as the aggregated fields.

A where clause applies the boolean expression to fil-
ter the query results. Only those packets satisfying the
boolean expression will be analyzed for statistical pur-
poses.

A groupby clause is used together with an select clause
to collect measurement data across multiple fields and
group the results by one or more columns.

A when clause is employed to impose a event trigger on
a query. A query driven by a when clause will be executed

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions548



once the event (described as boolean expression) happens.
With when clause, Equery uniquely distinguishes it self
from the conventional measurement tools, for example,
pmacct and argus.

2) The Equery Examples: We present two Equery ex-
amples to illustrate how to use Equery to describe mea-
surement tasks. The first one is an atomic Equery, and the
second one is an event-driven composite Equery.
Example 1: Atomic Equery

• q1: select count(src addr), dst addr groupby
dst addr where node id=NodeX;

This example can be used to count the number of sources
for each destination, and hence detect the possible DDOS
attack at NodeX.

Node1 Node2

10.0.0.1:22 10.0.0.2:33

Query 1: ploss_byte 

Query 2: total_byte Query 3: total_byte 

Event 1: ploss_byte > K1

Event 2: total_byte < K2

Event 3: total_byte < K3

Query 4: tcp_win 

Event 1

Event 2

Event 3

Fig. 4. Example network for event mechanism.

Example 2: Composity Equery
As shown in Fig. 4, in order to detect packet loss

between two Data Transfer Nodes (DTN) and the root
causes along the path from Host A to Host B, we can
describe the process as follows.

• q1: select ploss byte where src addr=10.0.0.1,
dst addr=10.0.0.2, src port=22, dst port=33, pro-
tocol=TCP, node id=Node1;

• q2: select total byte where src addr=10.0.0.1,
dst addr=10.0.0.2, src port=22, dst port=33, pro-
tocol=TCP, node id=Node1 when q1.ploss byte >
K1;

• q3: select total byte where src addr=10.0.0.1,
dst addr=10.0.0.2, src port=22, dst port=33, pro-
tocol=TCP, node id=Node2 when q2.total byte <
K2;

• q4: select tcp win where src addr=10.0.0.1,
dst addr=10.0.0.2, src port=22, dst port=33, pro-
tocol=TCP, node id=Node2 when q3.total byte <
K3;

After the query q4, we check to see if the TCP window
size is the root cause of packet loss. If so, we can start
to tune the relevant parameters of system settings in the
DTNs.

III. Evaluation
In this section, we evaluate the performance of Edison.

In particular we focus on the performance and scalability

of Ares as Equery has been used in experimental oper-
ations of the international research networks. We expect
to show the performance boost of Ares over argus and
pmacct on measuring high speed network traffic up to
100Gbps. The evaluation metric is packet receiving rate
(PRR), which is proportional to the sustained throughput.

A. Experiment Platform and Methodology
We employ two identical Dell Power Edge R730 servers

in the experiments. Each server contains two Intel Xeon
E5-2643 6-core CPUs @ 3.4GHz that reside separately
on 2 sockets (socket #0 and #1) connected with Intel
QuickPath Interface (QPI). Both servers are equipped
with a single Mellanox ConnectX-4 EDR 100GbE NIC on
the socket #1 over a PCIe x16 slot. The aforementioned
two NICs are connected back-to-back via a QSFP-28 cable
for testing purpose. We set one server as the TX server for
packet generation and the other server as the RX client for
the Ares performance testing.

B. TX Capability Study
To emulate the realistic network traffic at operational

exchange point, which might involve many different flows
at the same time, we have modified DPDK pktgen [13]
to generate random flows at the highest rate. For each of
the following RX evaluation, our modified pktgen always
sends out 1.5M different flows. The TX capability varies
with packet sizes: it reaches 55Gbps for 64-byte packets,
and 94Gbps for 750-byte packets. The packet rate (million
packets per second or Mpps) is 78 Mpps for 64-byte
ones, and 16 Mpps for 750-byte ones, respectively. It is
expected that the smaller the packets (e.g. 64-byte), the
more challenging for the Ares backend to process due to
per packet I/O overhead.

C. RX Capability Study
As shown in Figure 5, we compare the packet receiving

rate between different RX configurations. For Ares, NxM
means it has N Clusters and each Cluster has M slave
cores, whereas argus and pmacct have no such setting.
Also since there are only 6 CPU cores at the socket where
the NIC is inserted, we can only have up to 3 Clusters.
With these experiment data, we have some observations
as follows.

• The Ares has huge performance boost against argus
and pmacct. With Ares 2x2 configuration, the PRR
is around 9x better than argus and pmacct. This
comparison clearly shows that our design of Ares is
efficient under 100 Gbps network environment.

• The Ares has good performance scalability. For ex-
ample, with the same number of Clusters, either 1x1,
1x2 and 1x4, or 2x1 and 2x2, the PRR scales linearly
with the number of slave cores. And with different
number of Clusters, 1x1, 2x1 and 3x1, the PRR also
scales linearly. These data proves that Ares can scale
very well in a multicore system.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions 549



0.80%
3.05%

6.29%

11.50%

21.70%

12.38%

22.87%
18.61%

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%

argus

pmacct

Ares 1
x1

Ares 1
x2

Ares 1
x4

Ares 2
x1

Ares 2
x2

Ares 3
x1Pa

ck
et

 R
ec

ei
vi

ng
 R

at
e

RX Configuration

P RR WI T H 64- BYT E

(a) 64-byte

3.75%10.68%
25.27%

50.62%

99.20%

50.75%

100.00%

75.82%

0.00%

25.00%

50.00%

75.00%

100.00%

argus

pmacct

Ares 1
x1

Ares 1
x2

Ares 1
x4

Ares 2
x1

Ares 2
x2

Ares 3
x1Pa

ck
et

 R
ec

ei
vi

ng
 R

at
e

RX Configuration

P RR WI T H 750- BYT E

(b) 750-byte

Fig. 5. Packet Receiving Rate with Different Packet Sizes

• Between either 1x2 and 2x1, or 1x4 and 2x2, they have
the same number of slave cores, but PRR is always
slightly better when more Clusters are used. This is
due to the fact that the overhead of hardware hashing
is always less than software hashing. This means we
should always prioritize the number of Clusters if we
want to maximize the PRR.

IV. Related Work
There are several prior research works thar are closely

related to ours, and they are mainly separated into two
categories based upon their functionalities, backend and
frontend. 1) Backend Lucente developed Pmacct[1], a
small set of multi-purpose passive network monitoring
tools. Bullard developed Argus[2], an IP auditing tool to
help support network security management and network
forensics. Fusco et.al[14] developed packet capture kernel
module that enables monitoring applications to scale with
the number of cores. However, these tools do not pro-
vide adequate performance for high-speed networks. 2)
Frontend Foster et al. designed Frenetic [15], a high-
level declarative query language for programming dis-
tributed collections of network switches. Narayana et al.
[16] presented Marple, a declarative query language that
targets P4-programmable software switch. However these
languages do not provide a mechanism to describe flow-
level events which allow for triggering subsequent queries.

V. Conclusion and Future Work
In this paper we presented Edison, an event-driven

distributed system of network measurement. Edison has
not only a powerful backend Ares which can sustain 100
Gbps traffic, but also a flexible frontend Equery which
enables event-driven measurement. Our evaluation shows
that Edison is a significant improvement over the existing

traditional network measurement tools, in both backend
and frontend. In the future, we will deploy Edison into
more complex networks and construct more use cases.

Acknowledgment
This work is supported in part by the National Science

Foundation (No. 1547428, No. 1541434, No. 1738965 and
No. 1450996), Hubei ISTC Program (2017AHB060) and a
grant from Intel Corporation.

References
[1] P. Lucente, “pmacct: steps forward interface counters,” Tech.

Rep., 2008. [Online]. Available: http://www.pmacct.net
[2] L. QoSient, “Argus: Auditing network activity,” 2009. [Online].

Available: https://qosient.com/argus
[3] Intel Corporation, “Data plane development kit,” 2018. [Online].

Available: http://dpdk.org
[4] K. Thompson and D. Gatchell, “Nsf international research

network connections (irnc) program,” in NSF IRNC Program
Kickoff Meeting, 2005.

[5] J. Mambretti, T. DeFanti, and M. D. Brown, “Starlight: Next-
generation communication services, exchanges, and global facil-
ities,” in Advances in Computers. Elsevier, 2010, vol. 80, pp.
191–207.

[6] “Ampath: The international exchange point for research
and education networking in miami.” [Online]. Available:
https://www.ampath.net

[7] B. Tierney, J. Metzger, J. Boote, E. Boyd, A. Brown, R. Carlson,
M. Zekauskas, J. Zurawski, M. Swany, and M. Grigoriev, “perf-
sonar: Instantiating a global network measurement framework,”
SOSP Wksp. Real Overlays and Distrib. Sys, 2009.

[8] L. M. Garcia, “Programming with libpcap-sniffing the network
from our own application,” Hakin9-Computer Security Maga-
zine, vol. 2, p. 2008, 2008.

[9] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen,
“Scalable, high performance ethernet forwarding with cuck-
ooswitch,” in Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies. ACM,
2013, pp. 97–108.

[10] P. Li, X. Wu, Y. Ran, and Y. Luo, “Designing virtual net-
work functions for 100 gbe network using multicore processors,”
in Architectures for Networking and Communications Systems
(ANCS), 2017 ACM/IEEE Symposium on. IEEE, 2017, pp.
49–59.

[11] Intel Corporation, “Intel xeon platinum 8180m processor,” 2018.
[Online]. Available: https://ark.intel.com/products/codename/
37572/Skylake

[12] Y. Ran, X. Wu, P. Li, C. Xu, Y. Luo, and L. Wang, “Equery:
Enable event-driven declarative queries in programmable net-
work measurement,” in NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium, April 2018, pp. 1–7.

[13] W. Keith, “The pktgen-dpdk packet generator,” 2018. [Online].
Available: http://dpdk.org/browse/apps/pktgen-dpdk

[14] F. Fusco and L. Deri, “High speed network traffic analysis with
commodity multi-core systems,” in Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. ACM, 2010,
pp. 218–224.

[15] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic:
A network programming language,” in Proceedings of
the 16th ACM SIGPLAN International Conference on
Functional Programming, ser. ICFP ’11. New York,
NY, USA: ACM, 2011, pp. 279–291. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034812

[16] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim, “Language-directed
hardware design for network performance monitoring,” in Pro-
ceedings of the Conference of the ACM Special Interest Group
on Data Communication. ACM, 2017, pp. 85–98.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Experience Sessions550


