
VFTGen: a Tool to Perform Experiments in
Virtual Fat Tree Topologies

Tommaso Caiazzi∗†, Mariano Scazzariello∗, Lorenzo Ariemma∗
∗Roma Tre University – Rome, Italy

†NAMEX, ROMA Internet eXchange Point – Rome, Italy

Abstract—Data centers are a critical part of the Internet
infrastructure. In fact, most of the relevant online services are
hosted in a data center. Data center networks are complex, since
they are characterized by a high density architecture and by
a high level of redundancy. Fat tree topologies are currently
the most used in hyperscale data centers. Performing tests in
such topologies would be unfeasible, because of the high costs of
the required equipment and due to the involvement of human
resources. This would limit the automation and reproducibility of
tests, leading to a more error-prone testing pipeline. This paper
presents VFTGen, a tool that, leveraging on the virtualization
and the Software Defined Data Center concepts, automatically
builds, deploys and configures arbitrary fat tree topologies in a
virtual environment. We demonstrate the ease of use of the tool
and its value as a support to the study or the development of
networking protocols for fat trees.

Index Terms—Network Virtualization, Data Center, Fat Tree.

I. INTRODUCTION

In the latest years, cloud computing lead to a transition
from a capital expenditure (CAPEX) to an operating expense
(OPEX) model. This caused a rapid growth and expansion
of new digital services hosted in data centers. For this reason,
data centers became a critical part of the Internet infrastructure
and their performance, security and reliability are key qualities
for the companies’ businesses.

Such qualities heavily depend on the network architecture
and on the protocol used to design and manage the data center
infrastructure. There are two high-level choices for building a
data center network: to use specialized, but more expensive,
proprietary hardware with high bandwidth, or to rely on
commodity Ethernet switches and routers to connect data
center nodes. The price difference between commodity and
proprietary hardware provides a solid motivation to build the
network infrastructure of a data center using cheap switches.

In hyperscale data centers, cheap switches are typically
connected in a fat tree topology, a hierarchical network
topology that is highly scalable and redundant. Fat trees can
rely on several routing solutions. Some of them are at a
very mature stage and/or are variations of general-purpose
routing protocols (BGP [1], Openfabric [2]). Others have been
developed to work specifically on such topologies (RIFT,
Routing In Fat Trees [3]).

Testing and comparing such routing solutions in a physical
data center is unfeasible due to the high costs and complexity
of the network. However, such tests can be performed in

PoD 1

Leaf_1_0_2

Spine_1_1_1 Spine_1_1_2

Leaf_1_0_1

PoD 2 

Leaf_2_0_2

Spine_2_1_1 Spine_2_1_2

Leaf_2_0_1

ToF_1_2_1 ToF_1_2_2

Fig. 1: Single plane fat tree topology (K = 2, R = 2).

a virtual environment, leveraging on virtualization and the
concept of Software Defined Data Center (SDDC) [4], [5].

In this paper, we present VFTGen, a tool that, leveraging
on the SDDC concept, automatically builds arbitrary fat tree
topologies and configures network devices with different rout-
ing protocols. Given the protocol and the topology parameters,
the tool creates all the configuration files and folders needed
to deploy the desired network scenario in Kathará [6]–[8], a
network emulation system. We demonstrate the ease of use
of the tool and its value as a support to the study or the
development of networking protocols for fat trees.

II. FAT TREE DATA CENTER TOPOLOGIES

A fat tree is a special type of Clos network [9]. Typically,
fat tree architectures are composed of three or more levels
of switches [10], [11]. A three-level design is composed
by an aggregation layer that links together different PoDs
(Point-of-Delivery) of two level of switches.

A PoD is a set of Leaves (switches at level 0) that are
directly connected to the server farm, plus a set of Spines
(switches at level 1) fully interconnected to the Leaves. For the
sake of simplicity, we assume that each switch has 2K ports,
with K ports pointing north and the other K pointing south.
We denote by KLEAF the number of Leaves’ ports pointing
north or south, and by KTOP the number of Spines’ ports
pointing north or south. The aggregation layer is composed by
ToF (Top of Fabric, level 2) switches that provide inter-PoD
communication. A ToF is connected to at least one Spine per
PoD. Depending on the number of links between a ToF and a
PoD (redundancy factor R), there are two types of fat trees:
single plane and multi-plane.978-3-903176-32-4 © 2021 IFIP



ToF_1_2_1 ToF_1_2_2 ToF_2_2_1 ToF_2_2_2

ToF Plane 1 ToF Plane 2

Spine_1_1_1

PoD 1

Spine_1_1_2

Leaf_1_0_1

Leaf_1_0_2

Spine_2_1_1

PoD 2

Spine_2_1_2

Leaf_2_0_1

Leaf_2_0_2

Spine_3_1_1

PoD 3

Spine_3_1_2

Leaf_3_0_1

Leaf_3_0_2

Spine_4_1_1

PoD 4

Spine_4_1_2

Leaf_4_0_1

Leaf_4_0_2

Fig. 2: Multi-plane fat tree topology (K = 2, R = 1).

In a single plane topology, depicted in Fig. 1, each ToF is
connected to all the top Spines of each PoD. This topology has
the maximum value of redundancy factor, with R = KTOP .

In a multi-plane topology, ToFs are partitioned into N =
KTOP /R sets (R being a divisor of KTOP ), each with the
same number of nodes, called planes. The top Spines of a
PoD are partitioned into N sets of R nodes. All the Spines of
the same set are connected to all the ToFs of the same plane,
and all the ToFs of the same plane are connected to the same
set of Spines of each PoD. In this way, the redundancy of the
network is reduced in order to increase the maximum number
of supported PoDs. Fig. 2 shows a multi-plane topology.

III. VFTGEN OVERVIEW

VFTGen is written in Python and exposes a set of parame-
ters which allows to configure the desired fat tree topology and
routing protocol in a very simple way. It takes several input pa-
rameters, based on the ones in Sec. II, giving the possibility to
specify them in a configuration file or using the command line
interface. Mandatory parameters are: (i) KLEAF ; (ii) KTOP ;
(iii) Redundancy Factor R; (iv) Desired routing protocol;
(v) Number of servers connected to each Leaf. Additional
parameters are used to specify the number of parallel links
between nodes and other protocol-specific requirements.

VFTGen outputs files and folders to directly deploy the net-
work scenario in Kathará. This enables to easily run complex
tests on virtual topologies, using virtual devices that act like
physical ones. Kathará is chosen since it supports Kubernetes
for running virtual scenarios, allowing the deployment of
arbitrary large topologies.

Currently, the tool supports three protocols: BGP, Openfab-
ric (both using FRRouting [12] implementation), and RIFT
(using RIFT-Python [13]). BGP and Openfabric leverage on
state-of-the-art configurations for data centers [14], [15]. How-
ever, it is easy to customize the protocol configuration or to
add new protocols.

The source code of VFTGen is available at [16].

IV. DEMONSTRATION

We will demonstrate the ease of use of VFTGen, generating
different fat tree topologies of arbitrary complexity by varying
the parameters configuration. We will deploy the generated
topologies with Kathará, showing that virtual devices correctly
emulate real data center switches. We will interact with
such virtual devices, dumping routing tables, sniffing network
traffic, and digging into the protocol control plane.

After that, we will perform an experiment that reproduces
a typical data center scenario: a node failure. It will be
performed three times, each time with a different protocol,
showing how the supported protocols react to the failure.

This is only an example of the value of VFTGen as a support
to the study and development of data center technologies.

REFERENCES

[1] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for Routing
in Large-Scale Data Centers,” IETF, RFC 7938, Aug. 2016. [Online].
Available: http://tools.ietf.org/rfc/rfc7938.txt

[2] R. White, S. Hegde, and S. Zandi, “IS-IS Optimal Distributed Flooding
for Dense Topologies,” Internet Engineering Task Force, Internet-Draft
draft-white-distoptflood-04, Jul. 2020, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-white-distoptflood-
04

[3] T. Przygienda, A. Sharma, P. Thubert, B. Rijsman, and D. Afanasiev,
“RIFT: Routing in Fat Trees,” Internet Engineering Task Force, Internet-
Draft draft-ietf-rift-rift-12, May 2020, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-rift-rift-12

[4] Fujitsu. (2020) Software-Defined Data Center – Infras-
tructure for Enterprise Digital Transformation. [Online].
Available: https://sp.ts.fujitsu.com/dmsp/Publications/public/wp-sddc-
infrastructure-for-enterprise-digital-transformation-ww-en.pdf

[5] VMWare. (2015) VMware Software-
Defined Data Center. [Online]. Available:
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/
techpaper/technical-whitepaper-sddc-capabilities-itoutcomes-white-
paper.pdf

[6] G. Bonofiglio, V. Iovinella, G. Lospoto, and G. Di Battista, “Kathará:
A Container-Based Framework for Implementing Network Function
Virtualization and Software Defined Networks,” in Proc. IFIP/IEEE
Network Operations and Management Symposium (NOMS 2018), Y.-K.
Tu, Ed., 2018.

[7] M. Scazzariello, L. Ariemma, and T. Caiazzi, “Kathará: A lightweight
network emulation system,” in NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020, pp. 1–2.

[8] M. Scazzariello, L. Ariemma, G. D. Battista, and M. Patrignani, “Mega-
los: A scalable architecture for the virtualization of network scenarios,”
in NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1–7.

[9] C. Clos, “A study of non-blocking switching networks,” The Bell System
Technical Journal, vol. 32, no. 2, pp. 406–424, March 1953.

[10] LinkedIn Engineering. (2016) The LinkedIn Data
Center 100G Transformation. [Online]. Avail-
able: https://engineering.linkedin.com/blog/2016/03/the-linkedin-data-
center-100g-transformation

[11] Facebook. (2014) Introducing data center fabric, the next-
generation Facebook data center network. [Online]. Avail-
able: https://engineering.fb.com/production-engineering/introducing-
data-center-fabric-the-next-generation-facebook-data-center-network/

[12] FRRouting. (2020) Frrouting. [Online]. Available: https://frrouting.org/
[13] B. Rijsman. (2020) RIFT-Python. [Online]. Available:

https://github.com/brunorijsman/rift-python
[14] D. G. Dutt, BGP in the Data Center. O’Reilly, 2017.
[15] Philip Smith. (2016) ISIS Tutorial. [Online]. Avail-

able: https://www.menog.org/presentations/menog-4/MENOG4-ISIS-
Tutorial.pdf

[16] VFTGen. [Online]. Available:
https://gitlab.com/uniroma3/compunet/networks/data-center-
comparison-tools/fat-tree-generator


