
PrIoT Demo: Example of Invariant Functionalities
Nahit Pawar

Institut Polytechnique de Paris
Télécom SudParis

nahit.pawar@telecom-sudparis.eu

Thomas Bourgeau
KB DIGITAL AG

Switzerland
tbourgeau@kb-digital.ch

Hakima Chaouchi
Institut Polytechnique de Paris

Télécom SudParis
hakima.chaouchi@telecom-sudparis.eu

Abstract—This paper presents a simple IoT scenario that uses
the concept of application invariant functionalities. We propose to
implement our scenario with the PrIoT framework that provides
a lightweight approach when designing intermediate abstraction
layers with minimalist programming functionalities that are IoT
application invariant.

Index Terms—IoT system architecture, device heterogeneity,
invariant functionalities

I. INTRODUCTION

In the context of the Internet of Things (IoT), device and
communication protocol heterogeneity poses serious problems
for interoperability control and also for harmonized IoT devel-
opment tools over a plethora of hardware from various manu-
facturers. As exposed in our current studies [4], irrespective of
IoT domain and its requirements an IoT end-system performs
some basic high-level invariant functionalities as shown in
Table I . In this paper, we propose to implement a simple
IoT scenario using the invariant functionalities exposed by our
PrIoT framework [3] and is explained hereafter.

TABLE I: PrIoT application invariant functionalities
Application file (*.app) - PrIoT-Lang

Read Read data from sensor
Write Write data to actuator
Execute Execute user defined operations on data
Send Send data using transceiver
Receive Receive data from transceiver
Wait Wait for defined period

II. PRIOT FRAMEWORK OVERVIEW

The PrIoT framework aims at leveraging IoT adoption
and usage from design to deployment and better handle
the heterogeneity property of the IoT device, services and
applications. The main design philosophy behind our PrIoT
framework is “code once port anywhere”. In this section
we focus only on the invariant functionalities exposed by
the PrIoT language and its configuration features. Further
implementation details, documentation and example scenario
can be found in its community website [1].

In PrIoT the application logic is independent of any IoT
end-system hardware, this implies that the same application
logic can be ported to any hardware supported by PrIoT.
The IoT application developer implements the application
logic in application files (*.app) and hardware or software
libraries configuration as per application requirements in con-
figuration files (*.cfig) as it will be shown in the use case

below (Section III). The application file and configuration file
functions are represented in Table I and Table II respectively.

The configuration file includes - selecting IoT end-devices,
standard communication protocol and interface between IoT
end-devices. These configuration files have all the necessary
information required by PrIoT to automatically configure and
compile the whole IoT application on selected embedded
system and hardware.

PrIoT is equipped with high level programming language
- PrIoT-Lang, which exposes user with device independent
high level set of functions that are kept limited but capture
most practical IoT scenarios. The high level language uses
a procedural c-like structure with conditional operators and
inherit from the wiring language syntax [2].

The first step before implementing the application logic is
to select hardware components from PrIoT Database (PrIoT-
DB), this step does not require to know the exact specification
of hardware vendor but rather it defines what are the high level
hardware entities used by application logic.

TABLE II: PrIoT Configuration functionalities
Configuration file (*.cfig) - PrIoT-Config

Select Select hardware components
Import Import hardware and software library
Define Define hardware interface, software variable and li-

brary configuration.

III. SCENARIO IMPLEMENTATION

In order to show the added value of using invariant function-
alities with our PrIoT framework, in this section we explain
with an IoT scenario usecase what are the components to be
developed and the implementation workflow used.

A. Proposed Scenario

We present in Fig. 1 our simple IoT scenario that consists
of a device equipped with a temperature sensor that sends its
measured data periodically to an MQTT broker that is hosted
on a gateway. A wireless communication channel using 802.11
WiFi is used where the gateway acts as an access point and
the device is configured as a station. In the spirit of coding
tutorials, this example can be seen as our Hello World scenario
to showcase the core concepts of the PrIoT framework and its
relation to invariant functionalities. For sake of simplicity, we
will only focus on how to implement the connected device with
PrIoT but the gateway and other more evolved scenario can
be implemented with PrIoT by following the same workflow.978-3-903176-32-4 © 2021 IFIP



Fig. 1: Hello world Scenario

B. Demo Requirements

As stated before, PrIoT provides a large set of target
hardware and MCUs and allows to easily change underlying
hardware targets without modifying the application logic. In
order to use the PrIoT framework, it is mandatory to download
it’s command line interface as described in its website. For our
scenario, the connected device is made of an Arduino Uno
board based on the ATmega328P, an Espressif ESP8266 as
wireless transceiver and a Negative Temperature Coefficient
(NTC) thermistor to sense the temperature. For the Gateway,
a Raspberry Pi with a Mosquitto MQTT service is set and
configured as a WiFi access point.

C. Scenario implementation with PrIoT

1 # File name - hello_world.cfig
2

3 Select Sensor.Temperature as temp
4 Select Transceiver.IEEE80211 as wifi
5 Select Hardware.MCU as avr
6

7 # Communication Protocol
8 Import Communication.80211 as wc
9 Import Gateway.PubSub.client as mqtt

10

11 # Embeded System
12 Define avr.Type as ATmega328p
13 Define avr.GPIO.RX4 as wifi.TX
14 Define avr.GPIO.TX5 as wifi.RX
15 Define wifi.SSID as "My_SSID"
16 Define wifi.Mode as "Station"
17 Define mqtt.Connector as wifi
18 Define mqtt.Topic as "MyRoom/Temp"
19 Define mqtt.Host as "mqtt.myhome.local"
20 Define timer as "2s"

Listing 1: Configuration file

In our example scenario, the configuration file and the
application file for the object is shown in Listing 1 and 2
respectively.

In the configuration file, the Select keyword allows user
to select hardware from the repository of IoT-end devices
maintained by PrIoT-DB, this also includes any relevant de-
vices libraries used by the application. The Import keyword
is used to inform PrIoT which library to include in the project,
in this example we included standard communication library
for IEEE 802.11 and PubSub. At this stage, the selected
elements are defined as default element from the PrIoT-DB
and are not linked to a specific hardware vendor. Thus for the
object, a generic temperature sensor, a WiFi transcriever have
been selected as electronic components and communication
protocols such as a Wifi Station mode and PubSub Client have
been selected as communication libraries.

We also have the ability to specify dedicated hardware
and configuration at this stage by using the Define keyword
allowing user to define precise hardware for IoT-end devices.
In our case, the targeted MCU and its connection to the
generic transceiver are defined in addition to the wireless
communication configuration and the PubSub setup. We can
also define variable to be used in the application file such as
the timer variable exposed in our scenario configuration file.

After having defined the IoT components to be used, we can
program the targeted scenario through the application file that
consist of application logic written using device independent
language - PrIoT-Lang. To be coherent with the hardware
components selected, we have to use the Import keyword
and specify the related configuration file to be imported.
In Listing 2 we see that the object sense the temperature
and sends to the MQTT broker the temperature information
published on the given topic and wait during a certain time
defined by the timer variable before repeating the same actions.

1 # File name - hello_world.app
2 Import hello_world.cfig
3

4 T = temp.Read()
5 mqtt.Send(T)
6 Wait(timer)

Listing 2: Application file

Following this approach, we have the ability to program
a scenario with default hardware specification. As not all
hardware are similar, it is possible to target a more precise
hardware components configured with the Define keyword.

In order to generate the binary code from the application
and configuration files we will use the PrIoT command line
as shown in Listing 3.

1 priot parse hello_world
2 priot build hello_world

Listing 3: PrIoT command line

The first line use the parse argument with the application
file name to produce a single file with linked libraries from
PrIoT-DB. Then, the second line use the build argument to
generate a binary file for the target device MCU.

IV. CONCLUDING REMARKS

In this paper, we have presented our PrIoT framework
invariant functionalities and demonstrated it’s usage through
a simple IoT scenario. With the same logic and simplicity,
it is possible to implement more complicated IoT scenario
spanning a large set of IoT application with their invariant
functionalities.

REFERENCES

[1] Priot website. http://www.priot.org. [Online; last accessed 25-Jan-2021].
[2] H. Barragán. Wiring: Prototyping physical interaction design. Interaction

Design Institute, Ivrea, Italy, 2004.
[3] N. Pawar, T. Bourgeau, and H. Chaouchi. PrIoT: Prototyping the Internet

of Things. In 2018 IEEE 6th International Conference on Future Internet
of Things and Cloud (FiCloud), pages 216–223. IEEE, 2018.

[4] N. Pawar, T. Bourgeau, and H. Chaouchi. Study of iot architecture
and application invariant functionalities. In IEEE/IFIP International
Symposium on Integrated Network Management. IEEE, 2021.


