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Abstract—To guarantee quality of delivery for video streaming
over software defined networks, efficient predictors and adaptive
routing frameworks are required. We demonstrate an agent that
predicts video quality of delivery metrics in a scalable way using
a bespoke codec-aware learning model. We also demonstrate
the integration of this agent with an adaptive framework for
centrally controlled software-defined networks that re-configures
network operational paths in response to the learning agent,
ensuring that good quality of delivery of video is maintained
during periods of congestion. The demo scenario highlights the
feasibility, scalability and accuracy of the framework.

Index Terms—SDN, codec, monitoring, quality of delivery

I. INTRODUCTION

Predicting the quality of video delivered from cloud-hosted
services is challenging. The problem’s complexity lies in the
nature of the delivery system, which multiplexes heteroge-
neous user demands and services-types over a finite, shared
network, compute and storage substrate. Recent attempts to
model causes of adaptivity have been promising: a companion
paper [1] demonstrates the efficacy of attempting to model
the behaviour of the video codec in an off-line learning
algorithm; the approach in [2] incorporates the effects of
changing numbers of user requests on predicting real-time
service-level metrics from device statistics.

This demonstration showcases a working system, which will
be of interest to practitioners as it integrates recent break-
throughs in the area of data analytics for management and
also programmable networks and automation. Given that video
streaming is predicted to soon contribute 82% of Internet traf-
fic [3], we consider a video-over Software-Defined Networking
(SDN) scenario. Delivering video is challenging due to rapid
bandwidth fluctuations and time-varying delays. The ability
to estimate the Quality of Delivery (QoD) of the received
video at end users in a scalable way is important if service
providers are to meet service level of agreements [4]; however,
deciding what to do with this information in real-time is an
important question. Contributions have been made to improve
video delivery [5], however, deploying more intelligence in a
traditional, rigid IP Network architecture is hard. The potential
gains of run-time learning approaches has not been realised.

To achieve responsive, in-network learning we take the ap-
proach of modeling the behaviour of the video codec deployed
by the server. Modeling the codec, as opposed to instrumenting
it, makes our approach more portable. An offline evaluation of
the approach is analyzed in [1]. Modern codecs adapt based
on their perceived view of the network state; they then predict
future network performance and adapt the format of the video
they inject into the network. However, information resulting
from this codec adaptation and the prediction information is
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not used for path adaptation. The siloed nature of video codec
adaptation algorithms and SDNs proactive management of
traffic flows in [4], presents the opportunity for functionality
integration, which we demonstrate here. The information that
the codec has decided to adapt its output is useful because (1)
the codec makes an assumption about the network and how
it thinks it will behave and (2) it adapts its own behaviour.
We demonstrate that an SDN framework that re-configures
network operational paths based on this intelligence is better
able to guarantee QoD during periods of congestion. SDN
reduces the barrier to embedding intelligence inside networks.
Advances from the perspective of routing, quality of service
(QoS), traffic classification and prediction are reviewed in [6]

II. SCENARIO AND TESTBED

This demonstration shows our ability to predict and update
flow-tables, to maintain the QoD of video content. In the
testbed, a client machine streams H.264 and H.265 video
from a VLC server over RTP/UDP. The QoD metric, jitter,
is obtained from a client machine. The client and server
communicate over an SDN which has the ability to recon-
figure flow tables in response to congestion. These remedial
actions act to keep the network at a desired QoD level. Due
to the fact that network congestion is the primary cause
of performance degradation and performance variability for
time-sensitive applications like video, we focus on one of
the effects of congestion, e.g. jitter, and predict future jitter
values in order to inform the SDN Controller for future flow-
table updates. The proposed framework is implemented and
evaluated using the container-based emulator, Mininet. In the
emulation environment, we employ two servers; one acts as
the OpenFlow controller and the other simulates the network
topology. For each server, we used Ubuntu v.14.04 LTS with
Intel Core-i5 CPU and 8 GB RAM.

The Distributed Internet Traffic Generator (D-ITG) is used
to generate interfering network traffic. Different levels of
congestion are invoked by the D-ITG to cause the target
client’s QoD to change during different epoches of low to high
congestion. D-ITG produces realistic, packet-based network
traffic by accurately emulating the workload of real world
traffic and current Internet applications. We generate different
numbers of ICMP flows sequentially between the designated
hosts that share the SDN with the video client and server,
for the course of each epoch. The packet sizes and the inter-
departure times are constant and adjusted during each epoch.

III. SYSTEM ARCHITECTURE

The three main components of the demo architecture are
shown in Fig. 1. They are the topology discovery and statistics
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Fig. 1. System architecture and its components: the primary contribution lies
in the integration of the learning and action blocks. Openflow is used on the
southbound interface and POX APIs are used on the northbound interface.

gathering, the learning phase and the action phase components.

Topology Discovery and Statistics Gathering Component:
Builds a topological view of the underlay infrastructure as well
as periodically collecting information about the network traffic
flow. The standard OpenFlow protocol [7] is used to transfer
the collected data between the data and control layers.
Learning Phase Component: Typically, the transport protocol
is responsible for gauging the network capacity depending
on some metrics such as the congestion level and the round
trip time. This network capacity is utilised by the codec
as a metric to determine the most appropriate compression
level for the video, so that it can adaptively relay the video
stream to the destination. A Codec-aware Network Adaptation
Agent (CNAA) uses a light-weight online learning strategy for
estimating jitter, when the delivery system uses an adaptive
video codec. CNAA achieves accurate estimation of jitter by
estimating what the codec will decide to do next, as codec
adaptation is often the dominant factor in the time varying
nature of QoD time-series. By modeling codec behaviour,
the resulting learning agent is accurate, and has linear time
complexity in the number of training samples, /V, which makes
it ideal for real-time learning.

Action Phase Component: Exploits the information learned
from the CNAA so that QoD of video is improved. Its
primary objective is to reduce the effect of predictions of
future jitter from all traffic by steering these flows away from
elements that are expected to experience congestion. To this
end, the SDN controller maintains a list of operational paths.
It dynamically re-adjusts the flow-table of SDN forwarding
elements according to the CNAA predictions. The action phase
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Fig. 2. Row 1 (R1) illustrate traces depicting the adaptive behaviour of the
H.264 codec in response to varying levels of network congestion. Row 2 (R2)
shows the accuracy of the CNAA estimation model. The estimations obtained
are overlaid on the actual jitter measurements captured via Wireshark.

strives to avoid the impact of jitter by proactively updating
the list of operational paths. In the setup in Fig. 1, we have
developed an interface between the CNAA model outputs
and the reconfiguration model. In our framework, the CNAA
prediction estimates are passed to the reconfiguration model
to initiate an action based on the CNAA estimates.

IV. DEMONSTRATION

The demonstration shows the predictions of QoD metrics,
the accuracy of those predictions and the scalability of the
predictor. The learning agent displays real-time measurements
of jitter from a target VLC client. For example, in terms of
the accuracy of the CNAA estimation model, Fig. 2 shows
preliminary results for a client-server jitter trace. The CNAA
model accurately estimates the curve heights, decay factor
and the time-varying periods which are characteristic of the
jitter time-series captured between a video client and server,
making future jitter predictions possible. Fig. 2, R2 shows
the accuracy of the CNAA estimation model. In addition, it
shows the weighting of the flow-table reconfiguration system.
Based on the historical jitter measurements, collected from
the platform it shows whether or not a re-configuration is
recommended. Predictions of the QoD metrics are given for
different congestion levels for the system.
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