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Abstract—We study the optimal age-energy tradeoff arising in
the context uplink scheduling of multiple heterogeneous devices
that are transmitting time-sensitive update packets through the
base station in a cellular network. In the model, new updates
arrive stochastically at the devices and they are subject to losses
when attempting to transmit. Also, associated with the update
transmission are related energy costs. The problem is to develop
policies for minimizing the weighted sum of the total mean age
and energy costs. The Whittle index approach is applied to obtain
a near-optimal policy. In particular, we prove the indexability of
the problem and explicitly derive the associated Whittle indices.
Our numerical experiments demonstrate the superiority of the
resulting Energy-aware Whittle index policy compared with other
heuristics.

I. INTRODUCTION

Age-of-Information (AoI) has in the recent years become an
important performance metric for time-sensitive data collected
by various devices and transmitted over a network to servers,
where the data is processed and utilized. The interest has
been strongly motivated by recent efforts in the standardization
of 5G cellular systems to provide support for machine-to-
machine type communications with extremely low latency
requirements.

Essentially, AoI measures the freshness of the information
updates at the receiver and it is defined as the time difference
between the current time and the time that the previous update
was received. AoI is a stochastic process since the time that
the previous update was received is characterized by the
output process of the network over which the update message
was sent. In the seminal paper [1], the authors analyzed the
AoI process as a general stochastic process, where update
transmissions require a random service time and are served
by a single server FIFO queue, as well as derived the mean
AoI for elementary queues, such as M/M/1 and M/D/1. The
main observation from the analysis is that to minimize mean
AoI one needs to balance the frequency of the generation of
updates (inter-arrival times) with the likelihood of observing
a long queue yielding a strictly positive value for the optimal
load, which is very different to mean delay performance that
would be minimized by having load zero or to throughput
performance that is maximized by load arbitrarily close to
one. Since then the research on AoI has flourished and by
now a large body of research exists, see [2] for a very recent
and in-depth survey. The analysis of optimization of AoI has
been extended to alternative age metrics (even non-linear age

costs), optimization of AoI in more complex queueing systems
with various update packet replacement policies and wireless
networks under different physical and MAC layer assumptions,
also sometimes including energy constraints.

In this paper, we consider a set of devices (sources) that
are attempting to transmit their update packets in the uplink
direction to a base station. The task of the base station is to
schedule the devices in each time slot and we allow the base
station to schedule multiple devices per time slot. The devices
are bufferless and new updates arrive randomly in each time
slot. When a device is scheduled the update is successful with
a given probability. Associated with each uplink transmission
is additionally an energy cost at the device. If the energy cost
is high enough it could be better from the device point of
view to still postpone the update transmission attempt, which
gives rise to a tradeoff between the age of the devices and the
energy consumption to perform the updates. The base station
is assumed to be aware of the age of each device. Based on
the age information together with other system parameters,
including the energy costs of the devices, the objective is to
determine the optimal scheduling policy that minimizes the
weighted sum of the mean AoI and the energy costs. Note that
in the downlink direction this tradeoff does not exist since the
base station is always on, but in the uplink each device can
save energy by not transmitting.

The age-energy tradeoff considered in our problem differs
from the one studied in the context of information age with
energy harvesting devices, where the problem setup involves
a single device with a finite battery supply which is being
charged by a harvesting process creating a stochastic supply
of energy available for transmitting information updates. The
tradeoff then involves selecting when to make transmission
attempts subject to the energy constraint to minimize AoI. This
has been analyzed assuming an error-free wireless channel in
[3], [4], and the optimal policy has been shown to have a
certain threshold structure. Similar results for noisy channels
have been recently given in [5].

The problem that we consider can be formulated as a
Markov Decision Process (MDP) problem. However, explicitly
solving the optimal policy is infeasible and to overcome
this we apply the celebrated Whittle index approach, origi-
nally proposed in [6] for restless multiarmed bandit problems
(RMAB). Here the idea is to relax the original strict scheduling
constraint that must be satisfied in every time slot such that
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it is only required to hold on average. By using Lagrangian
techniques, the original problem involving joint optimization
of the age process for all devices is decomposed into an MDP,
where each device is considered separately, thus reducing the
complexity. A technical assumption in the approach is that the
problem must be so-called indexable. However, a priori it is
not necessarily known whether a given problem is indexable
or not and it needs to be verified and this is the technical
challenge in the approach. The Whittle index approach has
been used in many application scenarios recently, e.g., the
opportunistic scheduling problem [7], [8], [9] and the job
dispatching problem [10], [11], and shown numerically to
perform very well. Also, it is known that, if the problem is
indexable, the Whittle index policy is asymptotically optimal
[12], [13], at least under certain technical conditions.

As our main theoretical contribution, we show that our
considered problem is indexable and we derive the explicit
form of the Whittle index. In our numerical simulation exper-
iments, we demonstrate that our Energy-aware Whittle index
policy performs significantly better than any other heuristic
policy. Also, we consider the impact of scheduling multiple
devices in a time slot. By simulations we also illustrate that
the Energy-aware Whittle index policy systematically provides
better performance the higher the number of devices that can
be scheduled. Based on the index values, the base station
can estimate whether it is actually advantageous for a device
to transmit, and, if not, the base station can allocate that
transmission opportunity for use by other traffic in the system.
This is in contrast with all the other heuristic policies which
always select exactly the given number of devices and there
is for any combination of other parameters an optimal number
of devices to be scheduled for minimizing the performance.
Thus, the Energy-aware Whittle index is robust against the
precise selection of the number of devices to be scheduled.

The Whittle index approach has been applied to age-optimal
scheduling with multiple devices, but without any energy
aspects, recently in a few papers [14], [15], [16], [17], [18].
A similar model to ours, including the bufferless assumption,
has been analyzed in [15], see also the conference version
[14]. The authors prove the indexability and the explicit form
of the Whittle index is derived. Similarly, [16] also presents
an index policy, but the age model is slightly different than
in [14], [15]. Finally, the authors in [18] (original conference
paper [17]) relax the no buffer assumption resulting in a two-
dimensional age process with exact knowledge of age at sender
and scheduler. Indexability is proven and the index values
are derived, thus generalizing the results of [15]. Our model
differs from all these works in that we include the age-energy
tradeoff. Additionally, we study the impact of scheduling
simultaneously multiple devices, which is not considered in
any of the previous works. Also, technically our proof of
indexability uses a different approach.

The paper is organized as follows. Section II presents the
system model and the original MDP formulation. The Whittle
index approach and the decomposition of the MDP problem
in given in Section III. The proof of indexability is given in

Section IV. The policies to be used in numerical examples,
including the Energy-aware Whittle index policy, are presented
in Section V. Numerical examples are in Section VI and the
conclusions can be found in Section VII.

II. SYSTEM MODEL AND THE ORIGINAL MDP PROBLEM

A. System model

Consider a wireless base station with K devices transmitting
time-sensitive information updates in the uplink direction from
the devices towards the base station. The devices are indexed
by k = 1, . . . ,K. Time is slotted with n denoting the n:th time
slot, i.e., n ∈ {0, 1, . . .}. In each time slot, a fresh information
update is generated at device k with probability λk, which
is independent from everything else in the system. Also, for
simplicity, we assume that the device does not have a buffer,
where an update message could be saved when a new one is
not available in the current slot.

The devices try to send their information updates to the
receiver through the base station as quickly as possible in order
to have the most recent information available at the receiver. To
measure the timeliness of the information from each device,
the base station keeps track of the time since the previous
update was observed at the base station, which is called the
age of information for device k and it is denoted by Ak(n).
Initially, we assume that at time n = 0 the age of each device
is set to 1, i.e., Ak(0) = 1, k = 1, . . . ,K.

Device k can only make a transmission attempt in time
slot n if there is an update available, which happens with
probability λk independently at any slot n. Thus, we assume
(for tractability) that the devices do not have a buffer where
to store the most recent update. The devices are additionally
energy-constrained and given that device k makes a transmis-
sion attempt in time slot n, this will always incur an energy
cost Ek, which represents the amounf of energy (in Joules)
spent by the device for the transmission during a time slot.
However, the transmission attempt will be successful with
probability pk and with probability (1− pk) the transmission
attempt fails due to poor channel conditions.

Device k can not independently decide to transmit, but
needs a scheduling grant from the base station. Thus, the
problem is for the base station to schedule the devices in order
to optimize the costs incurred by the age of the devices and
the energy costs. In our case, this can be represented as an
MDP problem.

B. MDP formulation for optimal age-energy tradeoff

We assume that the base station makes a decision Dk(n),
for all k, at the beginning of slot n and that the decision
is instantaneously available at the transmitters, which then
implement the actions. However, the base station at the instant
of making the scheduling decisions is not aware of whether
an update is currently available at each of the devices. It can
only utilize age information of the devices at the beginning
of the slot Ak(n) and the other parameters, i.e., energy costs
Ek, arrival rates λk and success probabilities pk. We define
that Dk(n) = 1, if the base station decides to schedule device



k in slot n. Correspondingly, Dk(n) = 0, if the base station
decides not to schedule. Altogether, in one time slot the base
station can schedule a maximum of M devices, and thus we
have the constraint

K∑
k=1

Dk(n) ≤M, ∀n. (1)

The decisions Dk(n),∀(k, n), constitute the policy π and
affect the age process Ak(n) of each device. To highlight
this dependence we from now on explicitly include π in the
decision variables, Dπ

k (n) and age variables Aπk (n).
The state of the system in slot n is described by
{Aπ1 (n), . . . , AπK(n)}, i.e., the vector of all ages, whose com-
ponents evolve in the following manner. Consider device k in
time slot n with age Aπk (n) = a. If Dπ

k (n) = 1, the device is
allowed to transmit and if there is an update available and the
transmission is successful in time slot n, which happens with
joint probability λkpk, the age of device k is initialized to 1
at the base station in time slot n+1, i.e., Aπk (n+1) = 1. With
probability (1−λkpk) the scheduled transmission attempt fails
and the age increases by one, i.e., Aπk (n+1) = a+1. Also, if
Dπ
k (n) = 0, then naturally Aπk (n+1) = a+1 with probability

1. To minimize age Aπk (n), one should schedule as often as
possible, but this decision involves also an energy cost Ek
with probability λk, i.e., if an update is available at device
k. Thus, there is an inherent tradeoff between minimizing the
age and the energy costs.

To represent the age-energy tradeoff, as the cost for each
device k in time slot n we consider the weighted sum of
the instantaneous age and the expected energy cost, i.e.,
Aπk (n) + Dπ

k (n)λkwkEk, where wk ≥ 0 is a weighting
factor that converts the energy cost (in Joules) into time slots
(dimensionless unit), i.e., the unit of wk is [1/J]. For generality
the weight parameter wk is allowed here to depend on the
device index. The overall objective is then to find a policy π∗

that minimizes the long run average costs (weighted sum of
mean age and energy costs),

lim
N→∞

E

[
1

N

N−1∑
n=0

K∑
k=1

(Aπk (n) +Dπ
k (n)λkwkEk)

]
, (2)

subject to the scheduling constraint (1). This is clearly an
MDP problem. However, due to the multidimensional and
unbounded nature of the age process, obtaining the optimal
solution to the problem is not feasible. As an approximate
solution to the problem, we will next consider the so-called
Whittle index approach.

III. RELAXED OPTIMIZATION PROBLEM

The problem (2) belongs in the class of restless multi-armed
bandit problems (RMAB). The innovative idea developed orig-
inally by Whittle [6] for overcoming the inherent intractability
of such problems was to relax the strict scheduling constraint
(1), which must be satisfied for every time slot n, by requiring
it to hold only on average. This allows to combine the original

objective function (2) and the constraint into one, the so-
called Lagrangian function. Furthermore, the overall problem
involving K devices can be decoupled into K separate sub-
problems, one for each device, involving determining the
policy π∗k that minimizes

lim
N→∞

E

[
1

N

N−1∑
n=0

(Aπk (n) +Dπ
k (n)λkwkEk) + νDπ

k (n)

]
,

(3)
where ν is a real-valued variable referred to as the Lagrange
multiplier. The variable ν can also be interpreted as the unit
price of activity (scheduling in this case). Minimizing (3) can
again be characterized as an MDP, but with a significantly
simpler structure than in our original problem. Utilizing the
solution to this allows us later on to define an index policy
that can then be used as the near optimal policy for solving
the original problem.

Note that our formulation of the constraint (1) does not
require it to be satisfied as a strict equality, unlike in the
original formulation in [6]. However, allowing the constraint to
be defined as an inequality has been analyzed, e.g., in [13]. We
will later see how the inequality affects the optimal solution.

Next let us define in more detail the MDP formulation
associated with minimizing (3). The problem is now one-
dimensional, where the state of a bandit is given by a ∈ A,
where A = {1, 2, . . .} is the state space of the age of device
k, and let d ∈ D, where D = {0, 1} is the decision space.

We denote by ck(a, d; ν) the mean cost in state a with de-
cision d and a given value of the price of activity (scheduling)
ν for device k. In our case, this is given by

ck(a, d; ν) = a+ d(λkwkEk + ν). (4)

Also, let qk(a′|a, d) denote the conditional one-step transi-
tion probabilities for making a transition to state a′ given that
in the previous slot the state was a and that decision d was
taken. The non-zero transition probabilities qk(a′|a, d) in our
case are clearly, for any a ≥ 1,

qk(a+ 1|a, 0) = 1,

qk(1|a, 1) = λkpk,

qk(a+ 1|a, 1) = 1− λkpk.

Since the state space is discrete, the decision space finite and
the cost rate (4) is linear with respect to the state a there is a
stationary deterministic policy π∗k, which minimizes the long
run average costs (3) [19]. Furthermore, the optimal policy π∗k
is characterized by the set of optimality equations defined for
each state a ∈ A

vk(a; ν) = min
d∈{0,1}

{
ck(a, d; ν)− c̄k(ν)

+
∑
a′∈A

qk(a′|a, d)vk(a′; ν)

}
, (5)

where c̄k(ν) is the minimum expected cost under the optimal
policy π∗k and vk(a; ν) is the so-called value function referring



to the expected difference in the total cost when starting the
process from state a and in equilibrium under the optimal
policy π∗k. In our case, (5) becomes

vk(a; ν) = min{a− c̄k(ν) + vk(a+ 1; ν),

a+ λkwkEk + ν − c̄k(ν) + λkpkvk(1; ν)

+ (1− λkpk)vk(a+ 1; ν)}, (6)

where the terms inside the minimum correspond to mean costs
for the decisions not to schedule (d = 0) and to schedule
(d = 1), respectively.

Let us denote by ∆k(a; ν) the difference of the value
functions in state a and state 1,

∆k(a; ν) = vk(a; ν)− vk(1; ν).

From (6), we clearly get the following condition for optimal
decisions in each state a ∈ A,

(i) If λkwkEk + ν − λkpk∆k(a+ 1; ν) < 0,
it is optimal to schedule (d = 1) device k.

(ii) If λkwkEk + ν − λkpk∆k(a+ 1; ν) > 0,
it is optimal not to schedule (d = 0) device k.

(iii) If λkwkEk + ν − λkpk∆k(a+ 1; ν) = 0,
both decisions are equally optimal for device k.

(7)

We refer to (7) as the optimality condition in state a and it
will be utilized often in our proof of the indexability of our
problem.

IV. THE WHITTLE INDEX

In the Whittle index approach, the main technical challenge
is that one needs to prove that the problem is indexable [6],
which is not a priori obvious in our case. In this section, we
prove the indexability of our problem and explicitly derive the
corresponding Whittle index values.

The optimal solution to the relaxed problem with the
objective function (3) can be considered now as an uncon-
strained problem for any given value of the price of activity
ν ∈ [−∞,∞]. The solution is characterized by the Whittle
index values, when the problem is indexable, which is defined
as follows.

Definition 1: The optimization problem with objective
function (3) is indexable if, for any a ∈ A, there exists
ν∗k(a) ∈ [−∞,∞] such that
(i) decision 1 (to schedule device k) is optimal in state a if

ν∗k(a) ≥ ν;
(ii) decision 0 (not to schedule device k) is optimal in state

a if ν∗k(a) ≤ ν.
The value ν∗k(a) is referred to as the Whittle index for state

a. Also, note that it follows from the definition that if ν∗k(a) =
ν both actions are equally good. In other words, the Whittle
index for state a, ν∗k(a), is precisely the value of the Lagrange
parameter (price of scheduling) ν, which makes the decisions
0 (not to schedule) and 1 (to schedule) equally optimal (or
good) in state a. Note that, as shown in [13], if for some
state a the optimal ν = ν∗k(a) < 0 then that device is never

scheduled in the optimal solution since our constraint (1) does
not have to be satisfied as an equality.

Next we proceed to proving the indexability property. The
analysis only concerns a given device k in isolation, and hence
we leave out the explicit dependence on k from the notation.

A. Analysis of threshold policy π(m)

Our proofs rely on the properties of the following threshold
policy π(m). The policy π(m) is defined such that the device
is scheduled (i.e., decision d = 1) in any state a ≥ m ≥ 1, and
not scheduled in the states a ∈ {1, . . . ,m− 1}, respectively.

Let us denote by p(a,m) the steady state probability for
the age process under policy π(m). It is straightforward to
derive the steady state probabilities from the global balance
equations, which gives

p(a,m) =
λp

(m− 1)λp+ 1
·

{
1, if a < m,
(1− λp)a−m, if a ≥ m.

Correspondingly, the cost rate in any given state is given by
(4) and hence the mean cost c̄(m) with policy π(m) equals

c̄(m) =

m−1∑
a=1

c(a, 0; ν) p(a,m) +

∞∑
a=m

c(a, 1; ν) p(a,m)

=
m

2
+

1

λp
+
wλE + ν −m/2
1 + (m− 1)λp

.

In particular, the value function differences ∆π(m)(a; ν) for
state a under policy π(m) are key in the optimality condition
(7) and are utilized in the indexability proof. These are given
in the proposition below.

Proposition 1: The value function difference in a given state
a and value ν for policy π(m), ∆π(m)(a; ν), is given by

∆π(m)(a; ν) = vπ(m)(a; ν)− vπ(m)(1; ν)

=


0, if a = 1,
f0(a,m, ν), if a = 2, . . . ,m− 1,
f1(a,m, ν), if a ≥ m,

(8)

where

f0(a,m, ν) =
1

(m− 1)λp+ 1
×(a− 1

λp
− 1

2
(a− 1)(a− 2(m− 1))

+
m− 1

2
(a− 1)(m− a)λp+ (a− 1)(wλE + ν)

)
,

and

f1(a,m, ν) =
1

(m− 1)λp+ 1
×(a− 1

λp
+ (m− 1)a− 1

2
(m2 +m− 2)

+ (m− 1)(wλE + ν)
)
.

Proof. The value functions for each state and given policy
π(m), vπ(m)(a; ν), are defined, up to an arbitrary additive
constant that can be chosen as vπ(m)(1; ν), by a set of



linear equations, one for each state, i.e., the so-called Howard
equations [19]. In our case, the Howard equations read as
follows:

vπ(m)(a; ν) = a− c̄(m)

+vπ(m)(a+ 1; ν), if 1 ≤ a ≤ m− 1,
vπ(m)(a; ν) = a+ wλp+ ν − c̄(m)

+λpvπ(m)(1; ν)

+(1− λp)vπ(m)(a+ 1; ν), if a ≥ m.

The two equations are related to states, where the device is not
scheduled and scheduled, respectively. Note that when m = 1,
device is always scheduled and the first equation is redundant.

It is easy to check that, for any m, the value functions as
defined in (8) satisfy the above Howard equations in any state
1 ≤ a < m − 1 (device is not scheduled in state a and next
state a+ 1), state a = m− 1 (device is not scheduled in state
m − 1 but is scheduled in state m) and state a ≥ m (device
is always scheduled), which completes the proof. 2

B. Proof of indexability

Theorem 1: The relaxed MDP problem with objective
function (3) is indexable and the Whittle index in state a,
ν∗(a), is given by

ν∗(a) = a+
λp

2
a(a− 1)− wλE. (9)

Proof. In the proof, we cover the whole interval −∞ <
ν < ∞. The first interval spans −∞ < ν ≤ ν∗(1), while
the remaining part of the range of ν values is split into sub-
intervals ν∗(a−1) ≤ ν ≤ ν∗(a). Since ν∗(a) is an increasing
function of a, the whole range −∞ < ν <∞ will be covered
by the proof.

1◦ Assume that −∞ < ν ≤ ν∗(1). Below we show that the
threshold policy π(1), which always schedules the device for
any state a ≥ 1, is optimal.

From (8), we get that

∆π(1)(a; ν) =
a− 1

λp
.

Consider state a = 1. By the optimality condition (7), π(1) is
optimal in state 1 if and only if

wλE + ν − λp∆π(1)(2; ν) ≤ 0

⇔wλE + ν − λp 1

λp
≤ 0

⇔ν ≤ 1− wλE = ν∗(1).

Next we consider the states a ∈ {2, 3, . . .}. From the assump-
tion ν ≤ ν∗(1), it follows

wλE + ν − λp∆π(1)(a+ 1; ν)

≤ wλE + (1− wλE)− λp a
λp

= 1− a < 0,

since a ≥ 2. We conclude by the optimality condition (7) that
if ν ≤ ν∗(1) then π(1) is optimal for any state a, and in state

1 both decisions are equally optimal if ν = ν∗(1), which is
also the Whittle index of state 1.

2◦ Now assume that m ≥ 2 and ν∗(m− 1) ≤ ν ≤ ν∗(m).
Below we show that the threshold policy π(m) is optimal in
the considered generic interval. The proof is done in four steps.

Step 1: Let the state a ∈ {1, . . . ,m − 2}, i.e., the set of
states, where policy π(m) does not schedule the device. Note
that this step is redundant for m = 2 and thus we may assume
m ≥ 3. Since ν ≥ ν∗(m− 1), it follows by using (8), where
f0(a,m, ν) is an increasing function of ν, and (9) that

wλE + ν − λp∆π(m)(a+ 1; ν)

≥ wλE + ν∗(m− 1)− λpf0(a+ 1,m, ν∗(m− 1))

=
1

2
(m− (a+ 1))(λp(m− (a+ 2)) + 2) ≥ 1 > 0,

since a ≤ m− 2. Thus, by the optimality condition (7) policy
π(m) is optimal in states a ∈ {1, . . . ,m − 2} when ν ≥
ν∗(m− 1).

Step 2: Now consider the state a = m − 1. According to
policy π(m) the device is not scheduled in state a = m − 1,
but it is scheduled in state a = m. By the optimality condition
(7), π(m) is optimal in state a = m− 1 if and only if

wλE + ν − λp∆π(m)(m; ν) ≥ 0

⇔wλE + ν − λpf1(m,m, ν) ≥ 0

⇔ν ≥ ν∗(m− 1).

The last inequality above can be verified readily by using the
expressions from (8) and (9). We conclude by the optimality
condition (7) that if ν > ν∗(m − 1) then π(m) is optimal
for state a = m − 1 and both decisions are equally optimal
if ν = ν∗(m − 1), which is also the Whittle index of state
a = m− 1.

Step 3: Now consider the state a = m. According to policy
π(m) the device is scheduled in state a = m and also in state
a = m+ 1. By the optimality condition (7), π(m) is optimal
in state a = m if and only if

wλE + ν − λp∆π(m)(m+ 1; ν) ≤ 0

⇔wλE + ν − λpf1(m+ 1,m, ν) ≤ 0

⇔ν ≤ ν∗(m).

The last inequality above can be verified readily by using the
expressions from (8) and (9). We conclude by the optimality
condition (7) that if ν < ν∗(m) then π(m) is optimal for state
a = m and both decisions are equally optimal if ν = ν∗(m),
which is also the Whittle index of state a = m.

Step 4: Let the state a ∈ {m+ 1, . . .}, i.e., the set of states,
where policy π(m) always schedules the device. Since ν ≤
ν∗(m) it follows by using (8) and (9)

wλE + ν − λp∆π(m)(a+ 1; ν)

≤ wλE + ν∗(m)− λpf1(a+ 1,m, ν∗(m))

= m− a ≤ −1 < 0,

since a ≥ m+ 1. Thus, by the optimality condition (7) policy
π(m) is optimal in states a ∈ {m+ 1, . . .} when ν ≤ ν∗(m).



By steps 1 – 4 above we have shown that policy π(m) is
optimal in the interval ν∗(m−1) ≤ ν ≤ ν∗(m) for any state a.
Furthermore, if ν = ν∗(m− 1) (or ν = ν∗(m), respectively)
both decisions are equally optimal in state a = m − 1 (or
state a = m, respectively), which are also the corresponding
Whittle indices. 2

V. THE WHITTLE INDEX POLICY AND OTHER HEURISTICS

In this section, we define the Whittle index policy and
other heuristic index policies that will then be applied in the
numerical examples. Consider now the original problem to
minimize the objective function (2) with K devices and the
scheduler (i.e., the base station) must select in each time slot
at most M devices to be scheduled, according to the constraint
(1). Here we again bring back into the notation the explicit
dependence on the device index k.

Energy-aware Whittle index policy: For a device k in state
a, we define the index

νEW
k (a) = ν∗k(a) = a+

λkpk
2

a(a− 1)− wkλkEk,

as given in Theorem 1. The energy-aware Whittle index policy
is defined as the policy that selects at most M devices with the
largest Whittle index values νEW

k (a) such that νEW
k (a) > 0.

In case of any ties, they are broken randomly.
Max-age policy: As a simple heuristic, we define the non-

energy aware policy, which simply attempts to stabilize the age
process of all devices. Thus, the index of device k is simply

νMax
k (a) = a.

The Max-Age policy is defined as the policy that selects exactly
M devices with the largest ages, i.e., the index values νMA

k (a).
In case of any ties, they are broken randomly.

Myopic policy: In the Myopic policy, the idea is to only
consider the change in the immediate mean age and energy
costs between the two decisions. If the device is scheduled
the immediate mean costs are simply λkpk · 1 + (1− λkpk) ·
(a + 1) + wkλkEk. If the device is not scheduled the mean
cost is only (a + 1). Thus, for device k the index is defined
as the difference in the costs for the two decisions,

νMyo
k (a) = −λkpka+ wkλkEk.

The Myopic policy is defined as the policy that greedily selects
M devices with the smallest index values νMyo

k (a).
All above policies are dynamic, depending on the instanta-

neous state of the devices. As a static randomized policy we
can consider the Random policy that schedules randomly M
devices (out of K) in each time slot. Thus, the probability that
an arbitrary device is scheduled in a time slot equals M/K,
independent of its own state and the states of the other devices,
and each device behaves stochastically independently. The age
of a device will be initialized to 1 in each time slot with
probability λkpk(M/K) and otherwise it increases by one.
The mean age is K/(λkpkM) and the mean energy cost is
(M/K)λkEk. The total mean cost is then given by

c̄Rnd(M) =

K∑
k=1

K

λkpkM
+ wk

M

K
λkEk, (10)

where we have highlighted explicitly the dependence of the
policy on parameter M .

The Random policy can be easily optimized with respect
to M . The unconstrained minimum cost (assuming M is
continuous valued) is achieved by the value M∗, which equals

M∗ = K

√ ∑
k

1
λkpk∑

k wkλkEk
.

Since M is integer valued and constrained such that M ∈
{1, . . . ,K}, the final minimized cost is obtained as

c̄OptRnd = (11){
min{c̄Rnd(bM∗c), c̄Rnd(dM∗e)}, if 1 ≤M∗ ≤ K,
min{c̄Rnd(1), c̄Rnd(K)}, otherwise.

The performance of the other polices depends on M , as well.
We will explore this later in the numerical examples.

VI. NUMERICAL EXAMPLES

In this section, we compare the performance of the policies
by simulating the system for different parameter values. For
each simulation run, the system has been simulated for at least
2 · 105 time slots.

To simplify the parameterization of the simulations we
consider a scenario, where there are two classes of devices
with a given number of devices in each class, denoted by n1
and n2. Similarly, the other parameters are also given per class.
Within each class the devices then have identical parameters.

A. Performance of different policies

First we consider a scenario with a small number of devices
with n1 = 1 and n2 = 2 (i.e., K = 3 devices), where we only
schedule one user in a time slot, i.e., M = 1. The classes have
asymmetric parameters in order to highlight the differences in
the performance. In Scenario 1, the parameters are selected
such that energy costs will be relatively high compared with
the age costs. For the class 1 device the following parameters
are used: p1 = 0.5, w1 = 1, E1 = 50. For class-2 devices
the following parameters are used: λ2 = 0.5, p2 = 0.4, w2 =
5, E2 = 100. Clearly, for class-2 devices energy costs are
significantly greater than for class 1. We then simulate the
system for an increasing value of λ1. In Scenario 2, all other
parameters are kept the same, except we decrease the impact
of the energy cost by one order of magnitude by changing the
weights to w1 = 0.1 and w2 = 0.5. The results for the total
mean cost in the system as a function of λ1 for the different
policies are shown in Figure 1, where upper panel corresponds
to Scenario 1 and lower panel to Scenario 2. In the figures, the
curves for different policies are labeled as follows: Random
policy (Rnd), Max-age policy (Max), Myopic policy (Myo)
and Energy-aware Whittle index policy (EW).

In Scenario 1 (upper panel), the Myopic policy performs
very poorly with the mean cost exceeding 1000 across all
values of λ1 and therefore its results are not shown. Closer
inspection of the results reveals that the Myopic policy gives
a too great emphasis on the energy costs and as a result the
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Fig. 1. Total mean cost in a small system with K = 3 devices and M = 1
for the different policies (Rnd = Random policy, Myo = Myopic policy, EW =
Energy-aware Whittle index policy) as a function of λ1 in Scenario 1 (upper
panel) and Scenario 2 (lower panel).

age of class-2 devices are very high compared with the other
policies. Random policy performs typically worse than Max-
age and Energy-aware Whittle index policies and the total cost
first decreases and then practically flattens or slowly increases
as a function of λ1. This behavior can be inferred from the
expression of the total cost for the Random policy (10). In our
case, as a function of λ1 the age of class 1 device decreases
but it also increases the energy consumption, while the costs
from class 2 devices are unaffected. However, with our given
parameter values the decrease in the age is first outweighing
the increase in energy cost, until the increasing energy costs
start to dominate. Max-age policy performs somewhat differ-
ently. By inspecting the detailed results from simulations, the
reason is that the Max-age policy aims to equalize the ages
of all devices across both classes. Therefore, with increasing
λ1 the age of class 1 device decreases, but it simultaneously
also decreases the age of class-2 devices, which have an even
greater energy cost than the class 1 device. As the energy costs
anyway have a very high weight in this scenario, this causes
the total costs of Max-age policy to increase as a function of
λ1 so that for small values of λ1 it is performing better than
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Fig. 2. Total mean cost in a large system with K = 30 devices and M = 10
for the different policies (Rnd = Random policy, Myo = Myopic policy, EW =
Energy-aware Whittle index policy) as a function of λ1 in Scenario 1 (upper
panel) and Scenario 2 (lower panel).

Random policy but for larger values it performs even worse
than Random policy. Notably, the Energy-aware Whittle index
policy is clearly outperforming all other policies.

In Scenario 2, where impact of energy costs have been
reduced significantly, costs of all policies are decreasing
sharper as a function of λ1, i.e., effects as was seen in Scenario
1 about the counter acting impacts of increasing energy costs
are not seen here. Also in this case, Myopic policy still gives
clearly the worst performance, but it is relatively better than
in Scenario 1 due to the decreased weight of energy costs and
it can be reasonably shown in the figure. Max-age policy is
clearly performing now uniformly better than Random policy
and at times even almost as good as the best performing
Energy-aware Whittle index policy.

Next, we study a larger system and increase the number
of devices to n1 = 10 and n2 = 20, i.e., there are K = 30
devices. Similarly, we increase the number of devices to be
scheduled in a time slot to M = 10. The same two scenarios,
Scenario 1 (high energy weight) and Scenario 2 (low energy
weight), are considered as earlier. The results for the total
mean cost in the system as a function of λ1 for the different



policies are shown in Figure 2, where upper panel corresponds
to Scenario 1 and lower panel to Scenario 2. It can be observed
that the results are very similar to the ones in Figure 1, only
the scale is higher due to the larger number of devices. Due
to the poor performance of Myopic policy, its results are not
shown in the figure.

B. Impact of optimizing M

The number of devices to schedule M has a great impact on
the achievable costs of the policies. As was seen earlier, with
the Random policy the optimal M can be even analytically
determined. However, for the other policies we need to study
this through simulations.

We consider Scenario 1 with K = 30 devices with λ1 = 0.2
and λ1 = 0.9, see Figure 3. For the Energy-aware Whittle
index policy the cost appears to monotonously decrease as
a function of M . This is natural as the policy inherently
decides, whether it is beneficial from the total cost point of
view to schedule or not, i.e., if the Whittle index is positive or
negative valued. Thus, the parameter M is a soft constraint in
the system. The scheduler does not have to schedule exactly
M devices, but it selects up to M , if it is cost effective at that
time. From the system point of view this is a nice property
since M can be set to a relatively high value and whatever
out of M remains unutilized it can be allocated to other users
in the system.

This is in contrast with all the other policies, which have a
distinct value for M that minimizes the cost and any deviation
from that will result in inferior performance. Moreover, the
minimizing value depends on the parameters, as seen in
Figure 3 with λ1 = 0.2 (upper panel) and λ1 = 0.9 (lower
panel), which may be difficult to estimate. In these policies,
there is no natural way for the scheduler to decide whether
it is beneficial to schedule or not. Note that for the Random
policy, the minimum point on the curve corresponds to the
costs of the optimized Random policy given by (11).

VII. CONCLUSIONS

We considered the optimal age-energy tradeoff arising in
the context uplink scheduling of multiple devices that are
transmitting time-sensitive update packets through the base
station in a cellular network. In the model, new updates arrive
stochastically at the devices and they are subject to losses
when attempting to transmit. Also, associated with the update
transmission are related energy costs. As a measure of the
information freshness at the base station, we consider the age
of update packets. The problem is to develop policies for
minimizing the weighted sum of the total mean age and energy
costs when devices having heterogeneous parameters.

The problem is an instance of RMABs and we applied the
Whittle index approach to obtain a near-optimal policy. We
proved the indexability of the problem and explicitly solved
the associated Whittle indices. In our numerical experiments,
we demonstrated the superiority of the resulting Energy-
aware Whittle index policy compared with the other heuristics
(Random policy, Max-age policy, Myopic policy). In practical
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Fig. 3. Total mean cost in a large system with K = 30 devices and M = 10
for the different policies (Rnd = Random policy, Myo = Myopic policy, EW
= Energy-aware Whittle index policy) as a function of M ∈ {1, . . . , 10} for
λ1 = 0.3 (upper panel) λ1 = 0.9 (lower panel) in Scenario 1.

settings, multiple devices can be scheduled in a time slot and
the Whittle index policy was illustrated to behave in a robust
manner without a need to optimize precisely the number of
devices to schedule, since the Whittle index value is also a
direct measure of the usefulness of scheduling a device.

A possible extension of the work here is to consider
the same model but assuming that the scheduler has exact
knowledge, whether a fresh update is available or not, thus
extending the state description from mere knowledge of the
instantaneous age to also being aware of the realization of
the Bernoulli random variable characterizing the generation
of a new update. Additionally, in our model, the bufferless
assumption at the device is done for tractability reasons. It is
worth exploring how this assumption could be relaxed in the
analysis, but it will lead to a two-dimensional process, which
significantly complicates the analysis.
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