
Inference of virtual network functions’ state via analysis of the CPU behavior

Charles Shelbourne
BP R&D

London, United Kingdom
charles.shelbourne@bp.com

Leonardo Linguaglossa
Telecom Paris
Paris, France

linguaglossa@telecom-paristech.fr

Tianzhu Zhang
Nokia Bell Labs

Paris-Saclay, France
tianzhu.zhang@nokia.com

Aldo Lipani
University College London
London, United Kingdom

aldo.lipani@ucl.ac.uk

Abstract—The on-going process of softwarization of IT networks
promises to reduce the operational and management costs of
network infrastructures by replacing hardware middleboxes with
equivalent pieces of code executed on general-purpose servers.
Alongside the benefits from the operator’s perspective, new
strategies to provide the network’s resources to users are arising.
Following the principle of “everything as a service”, multiple
tenants can access the required resources – typically CPUs, NICs,
or RAM – according to a Service-Level Agreement. However,
tenants’ applications may require a complex and expensive
measurement infrastructure to continuously monitor the network
function’s state. Although the application’s specific behavior is
unknown (and often opaque to the infrastructure owner), the
software nature of (virtual) network functions (VNFs) may be
the key to infer the behavior of the high-level functions by
accessing low-level information, which is still under the control of
the operating system and therefore of the infrastructure owner.
As such, in the scenario of software VNFs executed on COTS
servers, the underlying CPU’s behavior can be used as the sole
predictor for the high-level VNF state without explicit in-network
measurements: in this paper, we develop a novel methodology
to infer high-level characteristics such as throughput or packet
loss using CPU data instead of network measurements. Our
methodology consists of (i) experimentally analyzing the behavior
of a CPU that executes a VNF under different loads, (ii)
extracting a correlation between the CPU footprint and the high-
level application state, and (iii) use this knowledge to detect the
previously mentioned network metrics. Our code and datasets
are publicly available.

I. BACKGROUND

The increasing demand for scalability in cloud environ-
ments and data centers has challenged the classical network
approach to adopt custom ASICs to deploy network functions.
Instead of static, expensive hardware middleboxes, operators
have started to use a more flexible approach based on pure
software, which advocates implementing network functions
(e.g., forwarding, firewall, IDS, etc.) as pieces of software
to be deployed and executed on commercial off-the-shelf
(COTS) hardware [1]. While the main drawback of these
flexible approaches is generally related to the performance
limitations w.r.t. ASICs specifically manufactured to execute a
single function, several advances in the state-of-the-art high-
speed packet processing engines, aka software routers or
VNF routers, have brought line-rate capabilities to COTS
servers [2], [3]. As a result, many frameworks for software
networking are nowadays capable of achieving multi-10 Gbps
performance, with a smaller and smaller gap compared to
hardware-based systems. Among the most common techniques
adopted to speed-up the processing rate, we have batching
(both I/O and compute), polling, and NUMA awareness to

CPUN
IC
s

RAM

Monitoring
VNF

APP

Commodity Server(s)

APP...

Optimization

Fig. 1: A COTS server with the low-level resources, the
deployed VNFs, and the high-level network applications.

cite a few, and are all implemented by the most popular
libraries for high-speed packet processing such as netmap [4]
or DPDK [5]. Batching and polling, in particular, are known to
be very effective in high-load scenarios: one (or more) CPU(s)
are statically allocated to perform only the packet processing,
and the available clock cycles are 100% allocated to perform
the network-related instructions, thus mitigating the interrupt
pressure [4], [6].

This current trend of “network softwarization”, fueled
by the growing popularity of Software Defined Networking
(SDN) [7] or Network Function Virtualization (NFV) [1], can
significantly reduce the maintenance cost of network services,
as the life-cycle of software evolves much faster than that of
hardware-based solutions [8]. Moreover, it opens new business
models for network services. For instance, as represented in
Fig. 1, a server owner may provide some resources such as
CPUs, Network Interface Cards (NICs), or storage to the
tenants following a Service-level agreement (SLA). Tenants
can then utilize the allocated resources to deploy the VNFs
that create the high-level application (which can scale both
horizontally and vertically). It is important to underline that
the server owner cannot usually access the deployed VNFs or
the input traffic. In the context of high-speed networking ap-
plications, NICs typically operate in kernel-bypass mode [9],
which removes their visibility from the operating system
(and therefore from the server owner). Moreover, several
existing tools provide further isolation between the tenants
and the server owner, e.g., BlindBox [10] and Embark [11]
protect user traffic from server owners through encryption,
while ShieldBox [12], TrustedClick [13], and SGX-BOX [14]
prevent the server owners from directly accessing the VNFs.
SafeBricks [15], SafeLib [16], and LightBox [17] protect both
traffic and VNFs from unauthorized entities. This implies
that the classical operations of monitoring and optimization

ISBN 978-3-903176-43-0 © 2021 IFIP

2021 33nd International Teletraffic Congress (ITC 33)

must be performed independently by the server owner and
the tenants [18], which may require invasive techniques such
as traffic mirroring or per-NIC active probing [19]. In all the
above situations, the limited visibility about global resource
usage may lead to an inefficient resource allocation. More-
over, a natural extension of the detection of current resource
requirement is the prediction of future resource usage in line
with the actual demand. While this is a classic problem, in
modern cloud environments it is challenging to predict the
evolution of the system in a short time scale (e.g., tens of
minutes) that reflect a common usage pattern for the cloud
behavior [20].

To solve these problems while, at the same time, reducing
the amount of measurement on live traffic, we propose a novel
approach that exploits the interactions among components
at low-level (CPU, NICs, memory) and high-level (VNFs,
service chains, end-to-end applications). Within the context of
software networking, a network application is a collection of
VNFs, each consisting of pieces of code that are ultimately
translated into a sequence of operations executed on low-
level components to perform simple operations (instructions,
branches, memory accesses). In this duality, finding a correla-
tion between high-level and low-level behavior (i.e. inferring
what is the low-level pattern associated with the high-level
application) is the key to solve the aforementioned problem
without altering the typical workflow of modern high-speed
network applications. Although third-party VNFs might not
be visible to the OS, the low-level information related to the
CPUs usage (which are still under the control of the operating
system, and therefore of the service provider) are easy to
monitor and can thus be thought of as a CPU fingerprint,
which is an indicator to infer the behavior of the high-level
network application. In a nutshell, the CPU behavior will
reflect both the actual VNF processing, as well as the input
network conditions.

In this paper, we verify the validity of this approach by
performing an extensive experimental campaign from which
we gathered a large dataset openly available at [21]. We se-
lected several high-speed open-source software routers where
we deploy a simple L2 forwarding VNF, and we collect low-
level CPU measurements by running the perf [22] command.
Among our contributions, (i) we provide several insights on
the evolution of the CPU patterns reflecting the different high-
level scenarios; (ii) we support and empirically prove that such
patterns are sufficient to act as predictors to infer the high-level
network applications under different conditions; (iii) we dis-
cuss the potential applications of our findings. We present our
intuition within the context of high-speed software networks in
Sec. II. We then describe our experimental analysis in Sec. III.
In Sec. IV we describe three case studies for our methodology
to detect a state change in VNF, a packet loss regime, or for
input traffic detection. We discuss our findings in Sec. V and
Sec. VI concludes the manuscript.

NIC CPU

1

2

poll()

Batch
[0, MAX]

process()

do_process()

finish() Batch

Program

Assembler

Poll:
INSTR_1
…
INSTR_n

do_processing:
INSTR_1
…
INSTR_m

Fig. 2: The CPU is executing some instructions as a result of
the translation from a high-level programming language.

II. EFFECT OF VNF PROCESSING ON CPU’S BEHAVIOR

To provide the ground for our inference model, we now
briefly describe the scenario of a software router running one
or more VNFs (Sec. II-A) and then we show the important
low-level components of the CPU behavior and how the high-
level application can have an impact on them (Sec. II-B).

A. VNF execution on a single-core CPU

The objective of software routers is to receive packets
from the physical NICs, perform some processing, and steer
the traffic towards either a physical NIC or another VNF.
Via Receive-side scaling (RSS) [23] the input traffic can be
partitioned into different flows, which are assigned to one (or
more) CPU(s) for the processing required by the respective
tenant. For simplicity, we will only focus on the single-CPU
case, where the incoming traffic is managed by a single CPU
core running the VNFs of a single-tenant (we describe how to
generalize our approach in Sec. V).

Modern general-purpose CPUs in COTS servers (e.g., In-
tel Xeon, AMD Ryzen) are intrinsically complex systems
with multiple pipelines, each processing instructions in a
sequence of stages [24]. With pipelining it is possible to obtain
instruction-level parallelism by allowing a single CPU core
to issue more than one instruction with a single clock cycle:
this is measured by the instructions per clock cycle (IPC)
metric. When instructions are independent, and no interrupts
are stopping the execution of the CPU, the IPC can be
maximized. On the contrary, (i) when the instruction execution
depends on some previous results, the pipelines must be stalled
to wait for the said result to be finalized; (ii) when some
interrupts are received due to some I/O, the CPU performs
a context-switch and executes the corresponding interrupt
handler, thus resetting the pipeline and repopulating it with
the new instructions. Furthermore, CPUs are equipped with a
hierarchy of small but fast cache memories (usually from L1 to
L3), for both instructions and for data, which can significantly
speed up the computation rate of the CPU by reducing the
memory access latency. Finally, modern CPU try to proactively
populate the internal pipelines thanks to extensive usage of
branch predictors, which allows the CPU pipeline to advance
even if the result of some True/False conditions is not known

yet, by considering what would be the most likely outcome
and verifying it after the result is ready.

Software routers extensively exploit such architecture to
provide high-speed packet processing. In this context, the
actual packet processing is implemented as a regular program,
and as such it implies the translation of the program code into
some low-level instructions executed by the CPU, as shown
in Fig. 2. Two of the commonly adopted techniques to accel-
erate packet processing in software are polling and batching.
Polling aims at reducing the interrupt pressure for incoming
packets, as the CPU would otherwise be overwhelmed by the
continuous context-switches generated by incoming packets.
On the other hand, batching is used to share both the I/O and
the computational costs over a group of packets, as well as
to populate the CPU instruction and data caches. In summary,
both polling and batching can accelerate packet processing by
providing an optimal utilization of the CPU pipelines and the
low-level caches.

B. Inference model of the VNF behavior

To monitor the behavior of VNFs, classical approaches re-
quire obtaining measurements from three sources: NIC, CPU,
and hypervisor. NIC-based measurements are used to quantify
the bandwidth requirements (i.e., the number of processed
packets per second) or the packet loss. Standard solutions
such as Cisco’s NetFlow [25] require custom ASICs, while
software-based solutions may need to sample the incoming
traffic. Hardware solutions are expensive and unscalable, while
software solutions are slow and invasive, as they may alter
the processing rate. Both CPU and hypervisor data are used
by operators to correctly provision the server resources to the
tenant. Since VNFs are usually deployed as virtual machines
or containers, it is possible to detect the CPU utilization and,
in the case of several inter-VM communications, optimize the
deployment of multiple VNFs.

Although it is possible to adopt lightweight approaches to
access the NIC counters [26], operators still need to access the
underlying infrastructure to monitor the CPU and the VNF
behaviors. Since the CPU utilization can significantly vary,
depending on the instruction sequence to be executed (as show
in Sec. III), our approach relies solely on the CPU data to
infer all the aforementioned metrics. We identify three main
components affected by the changes in the CPU execution,
namely: computation, cache accesses and memory operations.

Computation refers to how the VNF code is executed by
the CPU. For instance, when the VNF must execute several
independent instructions, the IPC may increase, and it can be
quantified by counting the number of instructions issued per
time unit. Similarly, when the code becomes more complex,
the execution path can take different branches depending on
the result of some if conditions, thus affecting the number
of branches and branch mispredictions. Cache accesses reflect
the code and data complexity of the high-level VNF. A simple
forwarding function is likely to be executing a small set of
instructions all the time, which increases the probability of
both instructions and data to be found in the L1-L3 caches.

On the contrary, complex VNFs that require more instructions
can incur a high number of cache misses. However, even in
the case of complex VNFs, if the traffic is static (e.g., same
source/destination for subsequent packets) the data caches may
still experience several hits. In general, as not all the code
may be placed within the internal caches, the VNF must
eventually perform some memory accesses (though for high-
speed applications this should be avoided as much as possible).
Furthermore, if inter-VM communication occurs, the internal
buses are used to move data across different processors of
the server. In *nix OS, the system memory is organized in
blocks called pages [27]. When a memory operation occurs,
the bus utilization is higher: while caches are located on the
same die of the CPU, RAM is usually an external piece of
semiconductor that is connected via a bus. Whether memory
access is required or not, a Translation Lookaside Buffer
(TLB) is accessed to map the virtual addresses assigned to
the program and the physical addresses of the main memory1.

We now experimentally verify how such components are
affected by the actual execution of VNFs, and we use the
obtained results of the low-level behavior to infer the high-
level state of the VNF.

III. EXPERIMENTAL ANALYSIS OF CPU FEATURES UNDER
DIFFERENT LOADS

For our experimental campaign, we select six state-of-the-
art VNF routers: vpp [28], ovs [29], fastclick [6], t4p4s [30],
snabb [31], and bess [32]. In each test, we deploy an instance
of the VNF router in our hardware, which consists of a COTS
server with two Intel Xeon E5-2690 v3 CPUs @ 2.60 GHz
(each with 12 cores and 32k/256k/30720K L1-3 caches) and
two Intel 82599ES dual-port 10 Gbps NICs. On one NIC,
we run the MoonGen traffic generator [33] to inject packets
towards another NIC with a combination of transmission
rates, packet sizes, and traffic patterns. The transmission rate
is between 0 Gbps (no link utilization) and 10 Gbps (full
saturation of the link); the packet size can be 64B, 256B,
or IMIX (i.e., a mixture of various packet sizes); the traffic
pattern can be constant bit rate (CBR) or with Poisson inter-
arrival time. On the other NIC, we execute a VNF router that
is statically assigned to a CPU core isolated from the OS
scheduler. With a sampling rate of 1s, we query the perf tool
to collect the measured value of low-level CPU features (the
full list of the features is provided at [21]). The router executes
an L2 forwarding VNF. In this section, we focus on a single
VNF router (for its ease of management and configurability we
opted for fastclick) and we continuously generate traffic with
different characteristics to observe the impact of traffic-related
factors such as the input rate and traffic pattern.

A. Computation: Instructions and Branches

We first analyze the computation components (i.e., number
of instructions, branches, and branch mispredictions issued
per time unit) and report our perf measurements in Fig. 3.

1The TLB is also accessed in parallel with the caches, to reduce the latency
of memory accesses. See more on Chap. 2 of [27]

0e0

3e9

6e9

0 2 4 6 8 10
0
3
6
9
12
15
18

F
ea

tu
re

 p
er

 s
ec

on
d

Input traffic load [Gbps]

Instructions

CBR Poisson Forwarding rate

0e0

3e8

6e8

9e8

0 2 4 6 8 10
0
3
6
9
12
15
18

Input traffic load [Gbps]

Branches

0e0

3e6

6e6

9e6

1e7

0 2 4 6 8 10
0
3
6
9
12
15
18

M
ax

im
um

 f
or

w
ar

di
ng

 r
at

e
[M

p
ps

]

Input traffic load [Gbps]

Branch misses

(a) CBR/Poisson traffic of 64B packets

0e0

2e9

4e9

6e9

0 2 4 6 8 10
0
2
4
6
8
10
12
14

F
ea

tu
re

 p
er

 s
ec

on
d

Input traffic load [Gbps]

Instructions

 IMIX

0e0

2e8

4e8

6e8

8e8

1e9

0 2 4 6 8 10
0
2
4
6
8
10
12
14

Input traffic load [Gbps]

Branches

0e0

2e6

4e6

6e6

8e6

1e7

1e7

0 2 4 6 8 10
0
2
4
6
8
10
12
14

M
ax

im
u

m
 f

o
rw

ar
di

ng
 r

at
e

[M
pp

s]

Input traffic load [Gbps]

Branch misses

(b) CBR traffic of IMIX packets

Fig. 3: Computation features per time unit in fastclick as a function of the input rate

The figure shows the impact of the input traffic rate on the
computation features of the CPU for fastclick. For comparison,
we plot on the right axis the maximum forwarding rate, which
depends on the packet size: with 64B packets and 10 Gbps
processing, the packet rate, measured in millions of packets
per second (Mpps) is 14.88. In Fig. 3a, we observe that for
both CBR and Poisson traffic, the instructions and the branches
follow a similar non-linear pattern. When the rate is low, the
measured value of such features is high, and it decreases with
the input rate up to a knee point (at about 4.5 Gbps, or 6.7
Mpps) where the observed value starts increasing again. This
behavior is related to which particular state the CPU is oper-
ating (cfr. Fig. 2). At a low rate, the processing is dominated
by the polling and it has its maximum IPC, thus increasing the
number of instructions per second. As the CPU performs the
busy polling with no live traffic, the low-level pipelines are
likely populated with the same subset of instructions, and the
number of branch mispredictions is low: this reflects a high
instruction rate (more than 5 billion per time unit) and a low
branch miss rate (around 3 million per time unit). Given the
CPU clock frequency of our system, we observe that in this
state the CPU can execute more than two instructions with the
same clock cycle, thus showing an IPC value greater than 2.
When the rate increases, the system approaches an equilibrium
between the polling and processing state, which leads to the
IPC reduction due to the increased code complexity and the
frequent switching between different states. After 4.5 Gbps,
the CPU spends more time in the processing state than in the
polling state, which allows the CPU to efficiently utilize the
internal pipelines with a subsequent IPC increase. The number

of branch-misses per second increases with the traffic rate
up to a saturation point (around 7 Gbps/10.4 Mpps) where
the average value is constant but the observed values become
more scattered. Incidentally, beyond 8 Gbps we start observing
packet drops. In Fig. 3b, we observe that for IMIX traffic
the change of the features is monotonous: this is because the
packet processing rate never exceeds 4 Mpps (as shown by
the red line), which means the CPU never reaches the balance
point between polling and processing.

B. Data and instruction caches
Caches’ behavior reflects the locality of instructions and

data during the VNF processing. In other words, similar
processing and/or the utilization of the same data can pos-
itively affect the CPU caches such that (i) instructions can
be found in the lowest level of caches, and (ii) the CPU can
finalize the computation without memory access. In Fig. 4,
we show the scatter plot of the aforementioned cache-related
features as a function of the input rate for fastclick. A first
observation is that the input rate significantly affects both the
cache references and the L1 d-cache misses, with a minor
impact on the L1 i-cache misses, independently from the
generation pattern. The increase in the input rate corresponds
to a higher packet-processing rate, and therefore the VNF
router will have a greater probability to reference some cached
data (incrementing the cache references) or to miss in the L1
i-d-caches. The generation pattern does affect the L1 i-cache
behavior, with the IMIX being consistently smaller than the
CBR/Poisson cases, which in turn reach a saturation point
at about 8 Gbps where no increment is observed. A second
observation refers to the fact that cache misses are not affected

0.0e+0

3.0e+7

6.0e+7

9.0e+7

1.2e+8

 0 2 4 6 8 10
Input traffic load [Gbps]

F
ea

tu
re

 p
er

 t
im

e
u

n
it

L1-dcache-miss

CBR IMIX Poisson

0.0e+0

2.0e+4

4.0e+4

6.0e+4

8.0e+4

1.0e+5

 0 2 4 6 8 10
Input traffic load [Gbps]

L1-icache-miss

0.0e+0

3.0e+7

6.0e+7

9.0e+7

1.2e+8

 0 2 4 6 8 10
Input traffic load [Gbps]

Cache references

0.0e+0

3.0e+4

6.0e+4

9.0e+4

 0 2 4 6 8 10
Input traffic load [Gbps]

Cache misses

Fig. 4: Caches’ features per time unit as a function of the input rate for CBR/Poisson traffic of 64B packets and CBR traffic
of IMIX packets in fastclick.

1e2

1e3

1e4

0 2 4 6 8 10

F
ea

tu
re

 p
er

 s
ec

on
d

dTLB store misses

1e8

1e9

0 2 4 6 8 10

F
ea

tu
re

 p
er

 s
ec

on
d

dTLB stores

1e1
1e2
1e3
1e4
1e5

0 2 4 6 8 10

F
ea

tu
re

 p
er

 s
ec

on
d

Input traffic load [Gbps]

iTLB loads

1e2
1e3
1e4
1e5

0 2 4 6 8 10

F
ea

tu
re

 p
er

 s
ec

on
d

Input traffic load [Gbps]

iTLB load misses

F
ea

tu
re

 p
er

 s
ec

on
d

CBR Poisson IMIX

Fig. 5: fastclick address translation.

by the input rate. In a steady-state condition, the L2-L3 caches
are likely to be filled with the data that the CPU would not find
in the L1 caches, and since our VNF is a simple L2 forwarding
function, we have a bound in the number of misses that the
CPU will experience, being that limited to the L1 cache only.
It is important to underline that this pattern may change with
more complex VNFs, where even the data in the L2-L3 caches
might be evicted by the caches’ replacement policy.

C. Address translation: virtual memory

Whether the instructions or data to be retrieved are in the
caches or not, the CPU will access in parallel the TLB to
translate a virtual address (local to the program) to a physical
address (shared among all processes of the system). During the
translation, the TLB also verifies if the desired item is to be
found in the L1-L3 cache, in the main memory, or a swap to
disk has occurred. We remark that the latter scenario never
happens for high-speed network applications by setup. For
this component, we select the loads operations and the missed
loads for the iTLB, as well as the stores and the ”missed
stores” for the dTLB. A store miss can occur when (i) the
translated address cannot be stored on the first level of TLB,
but can be stored on the second level, or (ii) the store fails on
all levels and additional operations are needed2.

As for the effect of the input rate on the TLB features, we
observe in Fig. 5 that the input rate for the CBR/Poisson traffic

2This is called a page walk, but a detailed discussion is out of the scope
of this manuscript.

has an impact on the steady-state value of the dTLB-stores and
iTLB-loads that is similar to the knee plot previously observed
for the compute-related features. IMIX traffic does not show
this behavior. The dTLB store-misses grow linearly with the
input rate (CBR/Poisson), but remain constant for the IMIX
traffic, because of the increasing packet processing rate that
may require new address translations for the new data, and it
may not fit on the first-level TLB. A similar linear dependency
is found on the iTLB load misses, although the IMIX traffic
causes this feature to decrease up to 6 Gbps, to stay constant
until 10 Gbps.

IV. APPLICATIONS

We now show three applications of this methodology to
infer the VNF’s behavior via the CPU fingerprint. First, with
the on-off experiment, we show how to detect a state change
in the VNF. Second, the packet-loss experiment will show
that it is possible to detect packet loss without accessing the
NIC counters. Finally, with the traffic injection experiment, we
show how it is possible to accurately recognize the injected
traffic typology as well as the traffic rate.

A. Detecting a VNF state change

Since a VNF state change mostly impacts the packet pro-
cessing, we engineer this experiment to focus on the CPU
computation features only. This experiment consists of two
stages: in the first half, the VNF router does not receive traffic
(and therefore only a busy-polling is executing); in the second
half, we generate some traffic with MoonGen and we observe
the variation in the CPU features due to the change in the state
of the VNF. We repeat the experiment for all the chosen VNF
routers. Figure 6 shows the values collected every second by
perf of the number of instructions, branches, and branch-
misses per time unit. In the first half, we start the VNF router
in polling mode: as no traffic is present, the measurements
refer to the polling state of the CPU. In the second half, at
about 17 seconds, MoonGen starts transmitting packets to the
VNF router at the maximum rate.

It is easy to discern a low-traffic vs. high-traffic duality,
despite the behaviors of individual VNF routers may differ.
Most VNF routers present a decrease in the number of
instructions issued per time unit. This is justified by the fact

0e+0

2e+9

4e+9

6e+9

8e+9

 0 5 10 15 20 25 30

F
ea

tu
re

 p
er

 t
im

e
u

ni
t

vpp

 0 5 10 15 20 25 30

bess

 0 5 10 15 20 25 30
0e+0

2e+6

4e+6

6e+6

8e+6

fastclick

0e+0

2e+9

4e+9

6e+9

8e+9

 0 5 10 15 20 25 30

F
ea

tu
re

 p
er

 t
im

e
un

it

Time [s]

t4p4s

 0 5 10 15 20 25 30

Time [s]

ovs

 0 5 10 15 20 25 30
0e+0

2e+6

4e+6

6e+6

8e+6

Time [s]

snabb

instructions branches branch misses

Fig. 6: Number of instructions, branches and branch misses as
a function of time in the on-off experiment for 10 Gbps CBR
traffic of 64B packets.

 1

 10

 100

 1000

0e0 1e6 2e6 3e6 4e6 5e6 6e6 7e6 8e6 9e6

O
cc

ur
re

nc
es

Branch misses per time unit

ON
OFF

Fig. 7: Aggregated histogram of branch misses in the on-off
experiment for all the VNF routers and all traffic rates.

that the polling state (cfr. Sec. II) utilizes a very small set
of instructions, resulting in optimal utilization of the internal
pipelines and caches (although such instructions are not used
to perform any actual packet processing). When MoonGen
sends traffic, the CPU consistently switches between polling
and processing: every time the CPU switches from one state to
the other, new instructions must be added to the pipelines, thus
reducing the IPC efficiency. A similar explanation holds for
the number of branches and branch-misses: although the code
executed during the polling state may have a high number
of ”if conditions”, the outcome is almost always correctly
predicted, and the number of branch-misses approaches zero.
When some traffic is received, the VNF router executes the
processing code that presents a higher value of unpredictability
and the number of missed branches will increase accordingly.
This further confirms the analysis of Sec. III-A.

Both the snabb and the ovs experiments show an increase in
all the computation features when the traffic appears, which is
due to the CPU not being used when no traffic is present (as
for the snabb experiment, where the number of instructions per
second is significantly less than that of the other VNF routers)

Fig. 8: Packet loss detection via Principal Component Analysis
for fastclick.

or to the datapath not being accessed when no traffic is present,
or just to the fact that the polling state has a simpler code
than the VNF processing. However, a predictor component
must only take into account a variation in the observed value,
rather than the numerical absolute values. As such, it can be
possible to detect a state change for all the behaviors of our
VNF routers.

Despite individual VNF routers may behave differently, we
have observed that our collected data for all the routers and
different traffic rates is sufficient to effectively estimate the
current VNF state or a state change with very high accuracy
and little calibration. Although the design of an effective
estimator is out of the scope of the current manuscript, we
have performed some preliminary tests as proof of concept
for our approach. As the branch misses consistently shows a
very high correlation with the VNF state, we plot in Fig. 7
the observed values for the branch misses in the ON and
OFF scenarios, in the form of a log-scale histogram, for all
VNF routers and different traffic rates in the range [1, 10]
Gbps. We observe that, independently of the VNF router, when
no VNF is running the branch misses are mostly clustered
around the minimum, while a running VNF causes a higher
number of branch misses. Our naive estimator leverages the
data distribution to guess whether an observation belongs to
the ”ON” or ”OFF” state. The estimator’s output is ”OFF”
when the observation is found within a standard deviation
distance from the minimum, and ”ON” otherwise. Even in
these simplistic settings, the accuracy is 0.85. We plan to
develop more complex estimators that can take into account
different computation features as future work.

B. Packet-loss detection

We now show how to detect a lossy regime without access-
ing the NIC counters. To do so, we collected all the avail-
able data for fastclick, and performed a principal component
analysis (PCA) across all the features, to simplify the data
visualization and find the presence of some clusters of data.

Figure 8 shows the PCA data where data points are addi-
tionally colored depending on the input packet rate (i.e., the
number of packets per second injected to our VNF routers).
As expected, we observe that the two principal components
variable carry enough information to separate data points

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

C
o

si
n

e
si

m
il

ar
it

y

Input rate [Gbps]

Rate: 3.5Gbps, Pktsize: 256B

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Input rate [Gbps]

Rate: 7.5Gbps, Pktsize: 64B

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10

Input rate [Gbps]

Rate: 5Gbps, Pktsize: IMIX

Pktsize: 64B

Pktsize: 256B

Pktsize: IMIX

Fig. 9: Cosine similarity of different traffic categories for
fastclick.

according to the incoming traffic rate. Our CPU is capable
of performing about 12 Mpps (8 Gbps of 64-byte packets)
without incurring packet drops. We underline that such values
are clustered in a circular area centered at (−8, 30). Therefore,
it is possible to use a simple PCA classifier that periodically
gathers the CPU data, finds the PCA coordinates in the PCA
space, and detects whether the measurement is taken within
the lossy area or not. We underline that some approaches exist
which can detect the packet loss regime of VNF routers [34],
but they work offline and cannot be easily deployed in the
same server as the VNF. We also point out that it is only
required to perform the full PCA analysis once (for data
collection and the PCA space representation). After that,
the PCA transformation is known, and therefore a simple
coordinate change of the collected CPU observation and the
PCA space is sufficient to check whether such observation
falls within the lossy region or not.

C. Traffic classification

This application consists of identifying the traffic charac-
teristics injected into a VNF router (including the input rate,
the packet size, or the packet distribution) without relying on
traffic mirroring, sampling, or invasive measurement software.
For this case study, we will use all the collected features.

In the following, we consider each CPU-measurement as a
vector of features V consisting of different components Vi,
where each component is a CPU feature (such as the number
of instructions, branches, or cache misses). The dimension n
of the vector is the number of features that we obtain from
perf. We then use fastclick with a combination of different
input rate in the range [0, 10] Gbps, different packet sizes
in the set {64-byte, 256-byte, IMIX} and different generation
patterns of {poisson, CBR}. Each element of the cartesian
product of these sets represents a scenario, for example
”5 Gbps traffic of 64-byte packets with poisson inter-arrival”.
For each scenario we collected several CPU-measurement
vectors {V 1, V 2, ..., V m} where m is the number of measure-
ments. We define for each scenario a representative vector
V R as a vector whose components are the average value
of all the observed measurements for that scenario: V R =
{V R

1 , V R
2 , ..., V R

n }, where V R
i = 1

m ·
∑m

j=1 V
j
i .

When a new measurement V ∗ is obtained, we use the cosine
similarity [35] to quantify the difference of the new vector
w.r.t. each representative vector V R. The cosine similarity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

D
F

Estimation distance

Fig. 10: Complementary CDF of the distance between the
inferred experiment and the second best guess.

approaches 1 when the two vectors are very similar, while
it is equal to 0 when the two vectors are orthogonal (i.e.,
very different). The idea is to map CPU behavior patterns
into network-related patterns using a vectorial distance metric.
The details of the cosine similarity are briefly discussed
in [35]. Fig. 9 shows the cosine similarity values for three
scenarios (for simplicity, we only show Poisson traffic). For
each plot, the x-axis represents a potential matching input
rate, while the colored curves represent the potential packet
size distribution. Intuitively, the coordinates of the curve that
reaches the maximum value should be taken as the inferred
scenario. Starting from the left plot, the point reaching the
maximum belongs to the ”256B” curve at 3.5 Gbps, perfectly
matching the expected scenario.

It is worth noticing that another high-similarity is the ”64B”
at 1.5 Gbps. This means that the two scenarios are very
similar, but since this false-positive value is still smaller
than the maximum, it is correctly discarded. Analogously,
the central and the right plots show two different scenarios
that can be correctly classified with cosine similarity. We
define the estimation distance as the difference between the
maximum value and the second-best guess. As with the
previous example, a low estimation distance means that two
observations are very similar, while a large estimation distance
means that two observations are very different. We report in
Fig. 10 the complementary cumulative distribution function
of the estimation distance obtained with fastclick and all
of our experiments. This plot shows that more than 90%
of the estimation distance is greater than 0.1, and 20% of
the estimation distance is between 0.7 and 1 (with 1 being
completely orthogonal). We highlight that the minimum value
of the estimation distance is 0.02, but even at this extreme the
cosine similarity correctly classified both the traffic rate and
the traffic pattern.

V. DISCUSSION

The experimental analysis that we presented supports the
opportunity to indirectly infer the high-level state of a VNF
executing some network function by observing only the low-
level CPU features for any traffic type. This is achieved by
interpreting the CPU features as a fingerprint associated with
the high-level VNF application, without interfering with addi-
tional measurements. A similar approach has been proposed

in the data mining community to detect misbehavior in some
cryptocurrency mining [36], and there is a large potential for
adoption in the network community. We now discuss the main
limitations of our approach, and the required effort to extend
our research for other applications.

A. Overhead and calibration of the perf data collection

Using CPU-related features for deriving a CPU fingerprint
still has a cost, even if this cost is being shifted to the CPU
instead of the measurement infrastructure. As shown in [37],
the overhead of the perf counters significantly varies with
the adopted OS kernel and the technique used for collecting
the data. In particular, self-monitoring, i.e. when the code to
be monitored is instrumented to collect the measurements at
specific execution points, is the most expensive, showing an
overhead in the order of thousands of clock cycles. However,
our objective is to avoid the usage of invasive techniques to
monitor the CPU behavior, and therefore we do not modify
any VNFs to collect our data. We adopt a statistical sampling
approach, which relies on the OS to periodically collect the
aggregated counters within the specified time interval. We
performed our experiments with time intervals of 100ms, 1s,
and 5s, and we finally opted for the granularity of 1s. With this
approach, no code modification is required: it is sufficient for
perf to link to the process ID of the VNF to be monitored.
Furthermore, the overhead is only occurring once per time
interval, thus having a minimal impact of about a thousand
clock cycles per time unit, which is negligible considering that
the budget of available clock cycles for a multi-GHz CPU is
a few billion per second. Finally, depending on the VNF to
be monitored, a finer or a coarser approach can be adopted.

B. Multiple VNFs and multiple cores

Whereas the quantitative measures may vary, the qualitative
analysis can be generalized with further exploration on more
complex scenarios involving multiple VNFs assigned to the
same core, or the same VNF distributed to multiple cores. In
the former scenario, there may be contention between different
VNFs on the same core may lead to difficulty in inferring
the actual application. This will result notably in computation
features (such as instructions or branches) to be shared among
the different VNFs. We note that the perf tool is capable
of monitoring the instructions executed by different processes
(with different process IDs) even if they are executed on
the same CPU. Therefore, we plan to measure the effect of
multiple VNFs pinned to the same core, as it would likely
result in a shared allocation of the available clock cycles to the
different VNFs (depending on the OS’s scheduler). Albeit our
methodology is shown for a single-core scenario, it can also
be generalizable to the multicore case. When several VNFs are
running on different cores the computation can be assumed as
independent, but cores deployed to the same NUMA node will
share the last level caches. In this case, the server’s operating
system can still use the perf tools to obtain the measurements
from different CPUs. A piece of software can then be used at

OS-level to periodically collect data from all running VNFs
and perform the proposed analysis on a per-core basis.

C. More complex VNFs

We focused on a simple L2 forwarding VNF as a starting
point to illustrate our methodology. More complex VNFs will
require additional analysis, especially related to caches and
memory patterns. L2 forwarding is one of the simplest VNF,
with limited impact on memory-related features. Most of the
processing is spent on computation, while no state is necessary.
When the VNFs have to access the RAM, this will also have
an impact on both the caches and the TLB features. We plan
to extend our experimental campaign with complex VNFs that
either require to access a large data structure (as for an IPv4
forwarding module that has to perform a longest prefix match
lookup on a hash table) or present stateful characteristics (as
for a NAT module).

D. Other applications of our methodology

In addition to reducing the number of invasive network
measurements, another use-case for our methodology is the
resource optimization for high-speed VNFs of unknown re-
quirements. For instance, it is possible to leverage the great
amount of available data with lightweight machine learning
algorithms that could be deployed within the datapath to
quickly react to changes in the application state such as packet
loss or misbehavior. We highlight that some tools exist [18]
to monitor and plan the resource allocation of VNFs, but
they need to be integrated within the tenants’ sequence of
VNFs, and therefore are opaque to the server owner. With
our approach, the server owner would have the possibility to
analyze the requirements for a plethora of use-cases and plan
the resources accordingly [38]. Moreover, a simple algorithm
that periodically analyzes the CPU fingerprint can, at runtime,
adjust the resource allocation accordingly, without any change
on the tenants’ or the operator’s side, or quickly associate
special patterns to misbehavior. Additional data about the CPU
utilization (not utilized for this manuscript) can be leveraged
to estimate the CPU requirements for VNFs and optimize
resource usage. Finally, since a global software network ap-
plication can be considered as the union of multiple VNFs
deployed on a COTS server, we plan to investigate how to
also infer the global network behavior based solely on CPU
measurements. As the network is not necessarily changing so
abruptly as we engineered for our experiments, it is possible
to adopt our approach to predict network changes in the
short term, and therefore extending our inference model to
a predictive one.

VI. CONCLUSION AND FUTURE WORK

We propose a novel methodology, based on a “CPU finger-
print”, to infer the behavior of high-level VNF applications
by using the low-level CPU features related to the VNF
processing instead of using common network measurement
tools. In this work, we analyzed a set of potential CPU features
linked to the VNF execution and showed how they can be

affected by different high-level scenarios. We performed an
extensive evaluation campaign to validate the foundations of
our approach: variations on the CPU measurements are indeed
tightly coupled to the high-level state, and this knowledge
could be used as the sole hypothesis to infer the network
function’s state. We have shown that this technique can be
effectively utilized to infer current state conditions without
additional monitoring tools. As future work, we plan to extend
our inference to analyze both the cases of different VNFs
sharing the same core (which can affect the CPU-related
measurements) and a VNF distributed across multiple cores.
We also plan to analyze the CPU fingerprint associated with
more complex VNFs performing stateful processing (e.g.,
firewalls, load balancers). Finally, we will tackle the adoption
of our technique also as a predictive model, where CPU
measurements can give network operators insights about the
short term evolution of their infrastructure and could use
such knowledge for planning actions ahead of time within
the constraints of high-speed cloud environments. Our code
and dataset are open-source, and we strongly encourage re-
searchers to use them and perform additional evaluations.

VII. ACKNOWLEDGMENTS

This work was carried at LINCS3 and was partially funded
by a grant from the German-French Academy for the industry
of the future4.

REFERENCES

[1] ETSI GS NFV-IFA 002 - Network Functions Virtualisation (NFV);
Acceleration Technologies; VNF Interfaces Specification, 2017.

[2] Leonardo Linguaglossa, Stanislav Lange, Salvatore Pontarelli, Gabor
Rétvári, Dario Rossi, Thomas Zinner, Roberto Bifulco, Michael Jarschel,
and Giuseppe Bianchi. Survey of performance acceleration techniques
for network function virtualization. Proceedings of the IEEE, 2019.

[3] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giac-
cone, Luigi Iannone, and James Roberts. Comparing the performance
of state-of-the-art software switches for nfv. In ACM CoNEXT, pages
68–81, 2019.

[4] Luigi Rizzo. Netmap: a novel framework for fast packet i/o. In 21st
USENIX Security Symposium, 2012.

[5] Intel. Data Plane Development Kit. http://dpdk.org.
[6] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet

processing. In ACM/IEEE ANCS, 2015.
[7] Open Networking Foundation. Software-Defined Networking: The New

Norm for Networks. ONF White Paper - http:// pages.cs.wisc.edu/
∼agember/cs640/s14/docs/SDNWhitePaper.pdf , 2012.

[8] Tianzhu Zhang, Han Qiu, Leonardo Linguaglossa, Walter Cerroni, and
Paolo Giaccone. Nfv platforms: Taxonomy, design choices and future
challenges. IEEE TNSM, 2020.

[9] Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli, Dave Barach,
Damjan Marjon, and Pierre Pfister. High-speed data plane and network
functions virtualization by vectorizing packet processing. Computer
Networks, 2019.

[10] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. In ACM
SIGCOMM, 2015.

[11] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and
Zhi Liu. Embark: Securely outsourcing middleboxes to the cloud. In
USENIX NSDI, 2016.

3Laboratory for Information, Networking and Communication Sciences - www.lincs.fr
4German-french academy grant: Artificial intelligence for Performance (AI4P), Co-PI

from France: L. Linguaglossa and D. Rossi, Co-PI from Germany: F. Geyer and G. Carle

[12] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. Shieldbox: Secure middleboxes using
shielded execution. In ACM SOSR, 2018.

[13] Michael Coughlin, Eric Keller, and Eric Wustrow. Trusted click:
Overcoming security issues of NFV in the cloud. In SDN-NFV Security,
2017.

[14] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. Sgx-
box: Enabling visibility on encrypted traffic using a secure middlebox
module. In ACM APNet, 2017.

[15] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Safebricks: Shielding network functions in the cloud. In USENIX NSDI,
2018.

[16] Enio Marku, Gergely Biczók, and Colin Boyd. Towards protected vnfs
for multi-operator service delivery. In IEEE NetSoft, 2019.

[17] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and
Kui Ren. Lightbox: Full-stack protected stateful middlebox at lightning
speed. In ACM CCS, 2019.

[18] Raphael Vicente Rosa, Christian Esteve Rothenberg, and Robert Szabo.
VBaaS: VNF benchmark-as-a-service. In IEEE EWSDN, 2015.

[19] Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru. NFVPerf:
Online performance monitoring and bottleneck detection for NFV. In
IEEE NFV-SDN, 2016.

[20] Martin Duggan, Karl Mason, Jim Duggan, Enda Howley, and Enda
Barrett. Predicting host cpu utilization in cloud computing using
recurrent neural networks. In International Conference for Internet
Technology and Secured Transactions (ICITST), pages 67–72. IEEE,
2017.

[21] L. Linguaglossa, T. Zhang, A. Lipani. Dataset repository. https://github.
com/theleos88/ml-for-highspeed-networks, 2021.

[22] Performance Counters for Linux, PCL. https://perf.wiki.kernel.org/
index.php/Main Page (version 4.15.18), 2019.

[23] Tom Herbert and Willem de Bruijn. Scaling in the Linux networking
stack. https://www.kernel.org/doc/Documentation/networking/scaling.
txt, 2011.

[24] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[25] Benoit Claise, Ganesh Sadasivan, Vamsidhar Valluri, and Martin Djer-
naes. RFC3954: Cisco Systems NetFlow Services Export Version 9.
http://www.ietf.org/rfc/rfc3954.txt, 2004.

[26] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo Giac-
cone, and Dario Rossi. Flowatcher-dpdk: Lightweight line-rate flow-
level monitoring in software. IEEE TNSM, 2019.

[27] Daniel P Bovet and Marco Cesati. Understanding the Linux Kernel:
from I/O ports to process management. O’Reilly Media, Inc., 2005.

[28] VPP - fd.io. https://wiki.fd.io/view/VPP, 2020.
[29] Open vSwitch. https://www.openvswitch.org/, 2020.
[30] Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert Kitlei, Dániel Leskó,

and Máté Tejfel. High speed packet forwarding compiled from protocol
independent data plane specifications. In ACM SIGCOMM, 2016.

[31] Michele Paolino, Nikolay Nikolaev, Jeremy Fanguede, and Daniel Raho.
SnabbSwitch: user space virtual switch benchmark and performance
optimization for NFV. In IEEE NFV-SDN, 2015.

[32] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. SoftNIC: A software NIC to augment hardware
(BESS). 2015.

[33] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. Moongen: A scriptable high-speed packet
generator. In ACM IMC, 2015.

[34] Stanislav Lange, Leonardo Linguaglossa, Stefan Geissler, Dario Rossi,
and Thomas Zinner. Discrete-time modeling of nfv accelerators that
exploit batched processing. In IEEE INFOCOM, 2019.

[35] Amit Singhal. Modern information retrieval: A brief overview. IEEE
Data Engineering Bulletin, 2001.

[36] Rashid Tahir, Muhammad Huzaifa, Anupam Das, Mohammad Ahmad,
Carl Gunter, Fareed Zaffar, Matthew Caesar, and Nikita Borisov. Mining
on someone else’s dime: Mitigating covert mining operations in clouds
and enterprises. In Research in Attacks, Intrusions, and Defenses, 2017.

[37] Vincent M Weaver. Self-monitoring overhead of the linux perf event
performance counter interface. In IEEE ISPASS, 2015.

[38] Thomas Zinner, Stefan Geissler, Stanislav Lange, Steffen Gebert,
Michael Seufert, and Phuoc Tran-Gia. A discrete-time model for opti-
mizing the processing time of virtualized network functions. Computer
Networks, 2017.

