
Application of Network Calculus Models on
Programmable Device Behavior

Max Helm∗, Henning Stubbe∗, Dominik Scholz∗, Benedikt Jaeger∗, Sebastian Gallenmüller∗, Nemanja Deric†,
Endri Goshi†, Hasanin Harkous†, Zikai Zhou†, Wolfgang Kellerer†, and Georg Carle∗

∗Chair of Network Architectures and Services, †Chair of Communication Networks,
Technical University of Munich

{helm|stubbe|scholz|jaeger|gallenmu|carle}@net.in.tum.de
{nemanja.deric|endri.goshi|hasanin.harkous|zikai.zhou|wolfgang.kellerer}@tum.de

Abstract—Critical applications, such as industrial control sys-
tems or remote medical applications, require highly reliable
networks. A key enabler of such applications are networks that
deliver the required strict performance guarantees. A prominent
tool for deriving such guarantees for networks and the involved
components is network calculus (NC). Device specifics may have
a stark influence on model characteristics, making modeling in
heterogeneous environments work-intensive. OpenFlow and P4
are two approaches that emerged from the Software-Defined
Networking (SDN) community making networks more flexible
and, consequentially, even harder to model.

In this work, we demonstrate a novel approach that uses
NC to model such SDN-based devices despite their increased
complexity. Abstracting away from overall device behavior, we
initially model only the fundamental building blocks of SDN
devices that define network device behavior. NC provides a
framework to compose different NC models into a single model,
which we use to combine the building blocks into a model that
describes a network device program built from these building
blocks. This approach allows for modeling a maximal number of
devices with a minimal amount of measurements. We apply our
approach to two different SDN devices, the Zodiac FX and the
NetFPGA SUME. A comparison between the prediction of our
composed models and real measurements reveals a prediction
error below 1 %, thereby proving the validity of our approach.

Index Terms—Network Calculus, SDN, OpenFlow, P4, Model-
ing, Performance measurements

I. INTRODUCTION

Industrial control applications, robots for medical appli-
cations, or self-driving cars are just a few applications that
require communication with real-time characteristics, such
as a 99.999 % delivery probability with sub-millisecond la-
tency [1]. In recent years, novel approaches emerged targeting
flexible, reconfigurable, and programmable networks. These
technologies allow tailoring networks to the specific needs
of the ultra-reliable, low-latency communication. A significant
step towards programmable networks was the introduction of
Software-Defined Networking (SDN) [2]. SDN proposes the
separation of control and data plane, thus enabling operators
to control and program networks. P4 advances this concept,
introducing a fine-grained platform-independent data plane
programmability of networking devices [3].

Both approaches increase the complexity of data plane
devices, making the provision of performance guarantees more
challenging. A common approach to describe deterministic

performance guarantees is Network Calculus (NC) [4], [5].
NC requires an appropriate performance description, i.e.,
an NC service curve, of each deployed networking device.
Determining such service curves was comparatively sim-
ple for traditional, non-programmable switches that rely on
fixed-function processing with constant or negligible process-
ing costs. However, finding an adequate model becomes a
complex problem for programmable network devices with
highly flexible processing pipelines. To apply NC concepts
in programmable networks, authors resorted to measuring
the performance of programmable devices while considering
only a specific set of functions and configurations [6]. The
corresponding service curves are then generated based on the
exhibited performance. Focusing only on a selected number of
functions and configurations limits the predictive capabilities
of the derived models to the previously investigated scenarios.

Motivated by the previous observation, we present a novel
modeling methodology based on NC to enable deriving per-
formance guarantees. Instead of modeling a device as a whole,
we advocate modeling internal functionalities of a device
separately. Our methodology constructs multiple curves, where
each curve represents the performance of a specific device
function. Utilizing the NC framework, we derive a single
service curve of a device by combining the internal service
curves. We aim for the following goals: (I) We study the
isolated performance of specific device functions, simplifying
device configuration and accelerating model derivation. (II)
We combine the derived models for specific device functions
to describe device behavior. These specific functions are
combined to perform complex packet processing algorithms
that create the device behavior. (III) We perform measurements
to check the validity of our approach on different platforms,
a P4 device realized on an FPGA-based platform — the
NetFPGA SUME — and an SDN-enabled device implemented
in software on the Zodiac FX board.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview of NC and programmable devices.
Section III describes our proposed methodology. Section IV
evaluates the application of our methodology to the two
aforementioned devices. Section V introduces related work.
Section VI concludes this work.

ISBN 978-3-903176-43-0 © 2021 IFIP

2021 33nd International Teletraffic Congress (ITC 33)

II. BACKGROUND

The following introduces background on NC and two
classes of programmable network devices: customizable Open-
Flow switches and fully programmable P4 switches following
the Portable Switch Architecture (PSA).

A. Network Calculus

NC is a framework utilizing min-plus and max-plus algebra
to calculate upper bounds for delay and backlog in commu-
nication networks consisting of one or multiple nodes. Such
a node is characterized by a service curve, a function of time
that describes the resources available at this node.

a) Minimum Service Curve: A minimum service curve β
is offered by a node with input function A and output function
D iff β is wide-sense increasing, β(0) = 0, and D ≥ A ⊗
β, where ⊗ is the min-plus convolution [4]. It describes the
minimal amount of resources available at a node.

b) Maximum Service Curve: A maximum service curve
β is offered by a node with input function A and output
function D iff β is wide-sense increasing, and D ≤ A⊗β [4].
It describes the maximal amount of resources available at a
node.

c) Service Curve Shapes: While service curves can be
arbitrarily complex, two shapes relevant for this paper are
the burst-delay- and rate-latency service curves as shown in
Equation (1) and Equation (2) respectively. In both examples R
describes the rate and T the latency. For the minimum service
curve they are the minimal rate and maximal latency, for the
maximum service curve they are the maximal rate and minimal
latency.

δT =

{
+∞ if t > T

0 else
(1)

βR,T =

{
R · (t− T) if t > T

0 else
(2)

d) Convolution of Rate-Latency Service Curves: The
min-plus convolution of n rate-latency service curves can be
described as shown in Equation (3), taking the minimum of
the rates and the sum of the latencies of all service curves.

βe2e
R,T = βmin({Ri|0≤i<n}),

∑n−1
i=0 Ti

(3)

B. Programmable Networking Devices

Different approaches are trying to introduce a common
standard for programmability to computer networks. In this
work, we consider two of those approaches: OpenFlow and
P4. In the following, both of them are briefly introduced.

1) OpenFlow Switch: OpenFlow was one of the first SDN
standards to manifest the benefits of control and data plane
decoupling. For this paper, we focus on the capabilities and
performance of the data plane implemented in OpenFlow
switches.

OpenFlow switches process packets according to the entries
in dedicated tables: their flow table. This kind of table spec-
ifies patterns and actions. OpenFlow switches match newly

arriving packets against the patterns contained in the flow
table, which defines parameters such as the protocol, header
entries, or values. If a packet matches successfully against
such an entry in the flow table, the specified action of the
associated table entry is performed. Actions can be functions
such as forwarding decisions or header manipulations on the
packet. The different combinations of table entries are used
to realize packet processing algorithms in OpenFlow. Non-
matching packets, on the other hand, may be either dropped,
forwarded to the control plane, or compared against a different
table, depending on the device configuration.

The OpenFlow standard defines the supported protocols,
match types, and actions of OpenFlow switches, setting the
limits which algorithms can be realized on such switches.
Controlling other components of the device’s pipeline, e.g.,
packet parsing and deparsing, requires a higher degree of
programmability and is outside the scope of OpenFlow.

2) P4: P4 follows the same fundamental approach as Open-
Flow. In other words, all algorithms in P4 are also realized us-
ing the previously introduced match-action principle. However,
P4 offers a higher degree of freedom for their programmers, as
it is not limited to a specified set of protocols and header fields
but allows the definition of arbitrary protocols and header
fields. This freedom requires additional functional entities
compared to OpenFlow, such as parsers and deparsers, before
and after the match-action processing units.

In addition, P4 is a device-independent programming lan-
guage, i.e., it tries to avoid requiring specific functions. Current
P4 programs enable writing programs for different network
devices, also referred to as hardware targets in context of P4.
Regardless of how different these P4 hardware targets, and
their P4 language support, may be. As a consequence of this
heterogeneity, portability of programs across hardware targets
suffers. To mitigate this conflict, PSA was introduced. PSA
defines a P4 functionality baseline for targets to support. If
a hardware target supports PSA, P4 programmers can assume
the availability and structure of certain features. P4, in the form
of the PSA, allows to model switch internals as a pipeline of
separate basic building blocks. Basic building blocks include,
e.g., parsing or modifying a header. Each of those basic
building blocks may have more than one characteristic, such
as the number of fields in a header or the size of those fields.

3) Comparison: Even though both approaches, OpenFlow
and P4, target a similar domain, they differ in fundamental
properties. OpenFlow offers a match-action pipeline with a
fixed set of supported protocols and allowed operations. P4,
on the other hand, offers a more flexible pipeline supported by
additional entities such as parsers and deparsers that allow ar-
bitrary protocols. However, parallels between both approaches
exist. At their core, both use the match-action principle. The
table-based match-action principle defines the basic building
blocks used in P4 and OpenFlow to realize more complex
algorithms. In the following sections, we investigate if this
similarity enables a common modeling approach.

Latency [s]

Fr
eq

ue
nc

y
[#

]

(a) Measurement

Time [s]
D

at
a

[#
]

(b) NC Model

f0

f1

f2

f3
DuT

(c) Device Model

Figure 1: Measurement results enable NC modeling with dif-
ferent service curve levels. Moreover, devices may be modeled
as series of functions.

III. METHODOLOGY

Our methodology consists of multiple steps: (1) a definition
of service curve levels, (2) measurements, (3) service curve
derivations, (4) basic function delta derivation, (5) combination
of functions to devices, and (6) verification by measurements.
The main advantage of this methodology is that it allows
modeling a wide range of different device functionalities with
a minimal number of measurements. This is achieved by first
measuring and later combining single components. Figure 1
shows the transition from measurement over service curve
description to basic function combination.

A. Service Curve Levels

Traditionally, service curves describe the minimum and
maximum service available at a node. The service curve
parameters of nodes have to be estimated, for example, by
measurements. For minimum and maximum rate Rmin and
Rmax, as well as minimum and maximum latency Tmin and
Tmax, respectively, these service curves can be defined as:

βmin(t) =

{
Rmin · (t− Tmax) if t > Tmax

0 else

βmax(t) =

{
Rmax · (t− Tmin) if t > Tmin

0 else

(4)

The service curves shown in Equation (4) are derived from
extrema in the measurement data. Since it is hard to determin-
istically find those parameters using measurements due to the
possibility of unrelated measurement artifacts, e.g., equipment
faults, we aim to provide different levels of minimum and
maximum service curves. Those different levels are based on
the type of data from our measurements used to derive them.
For example, the nth-percentile ηn of measurements can be
used instead of the extrema — with appropriate justifications
based on domain knowledge — in order to have a more
realistic service curve derivation. Additionally, we can use
mean or median values to extend the modeling approach to
other frameworks such as queuing theory.

B. Measurements

Our measurement methodology targets the logical function
level inside the device and not the physical device level. At the
logical level, the device is said to contain a certain number of
basic functions F = {f0, f1, . . .}. One of these basic functions
is the baseline function f0 that is required for the device
to operate. We measure f0 as well as each basic function
fi ∈ F′ = F \ {f0} in combination with f0. For each fi, a
measurement Mi is a set of pairs consisting of a measurement
packet pj ∈ P and the measured delay for that packet dj as
shown in Equation (5). While M0 measures f0, Mi measures
the combination of f0 with fi, ∀i ∈ N ∧ fi ∈ F′.

Mi =
{
(pj , dj) | ∀i∀j ∈ [0, |P| − 1] ⊂ N0

}
(5)

We also define the set containing all sets of measurement
results as M = {Mi|∀i ∈ N0 ∧ fi ∈ F}.

C. Service Curve Derivation

A service curve of any given level can be derived from a
measurement Mi extracting the associated percentiles, e.g., the
extrema or η99.999, from the distribution of delay values dj .
For example, the latency parameter of the minimum service
curve βmin

i — i.e., βmin of Mi — can be derived as shown
in Equation (6).

T i
max = max

({
dj | ∀(pj , dj) ∈Mi

})
(6)

The derived latency value is an upper estimation. Methods
for deriving the exact service curve parameters from a set
of arrival and departure times, considering cross-traffic and
measurement traffic, are surveyed in [7].

D. Basic Function Delta Derivation

Measurements contain delays for f0 as well as for each
fi ∈ F′ in combination with f0. To obtain service curve
parameters for each basic function fi in isolation, we calculate
the delta between the service curve function parameters deter-
mined from M0 and Mi. An example of the latency parameter
of the minimum service curve of basic function f1 is shown
in Equation (7).

T 1,0
max = T 1

max − T 0
max (7)

The same approach can be used for all elements in the
set M, resulting in service curve descriptions of each basic
function of the device.

E. Combination of Basic Functions to Device Models

Building on previous results, the different basic functions
can now, together with the baseline function, be combined into
devices of different functionalities. This approach allows us to
model a wide range of possible devices using a small number
of measurements because we only need to measure each basic
function in isolation and then create a model for any feed-
forward chaining of these basic functions representing a spe-
cific device with a certain functionality. A device consisting of

a baseline function f0 and an execution path of basic functions
f1, . . . , fn can be modeled by a convoluted service curve as
shown in Equation (3) where each function corresponds to a
single service curve. A depiction of an example convolution
of two rate-latency service curves is shown in Figure 2.

Tf0 Tf1 Tf0,f1 = Tf0 + Tf1

Rf0 Rf1 Rf0,f1 = min(Rf0 , Rf1)

Time [s]

D
at

a
[b

it]

βf0

βf1

βf0,f1 = βf0 ⊗ βf1

Figure 2: Convolution of two rate-latency service curves βf0

and βf1 .

F. Verification Measurements

To quantify the accuracy of our methodology, we use
derived models to make behavior predictions and perform
verifying measurements. We predict delay values for device
functionalities that consist of multiple basic functions and
are not contained in any Mi ∈ M. The absolute relative
error erel as shown in Equation (8) gives the accuracy of
our methodology for a device configuration consisting of any
number of basic functions fi ∈ F′.

erel =
|dpredicted − dmeasured|

dmeasured
(8)

G. Deriving Rate

The previously presented methodology focused on decom-
posing and deriving latency parameters of service curves. This
can be used to model a burst-delay service curve. To derive
a more complex service curve, such as a rate-latency service
curve, we also need the offered rate R. We need to consider
two different strategies to derive minimum and maximum rate.

1) Maximum Rate: Most of the networking devices usually
offer line rate throughput, or at least a value which is close to
it [8]. Therefore, to derive the maximum rate, comprehensive
measurements are not needed, as we can assume that each
decomposed maximum service curve also has the rate, which
corresponds to the line rate of the corresponding device.

2) Minimum Rate: The minimum guaranteed rate, which is
needed for the derivation of a minimum rate-latency service
curve can be approximated by detecting dropped frames.
Measuring with multiple increasing rates ri, the minimum
guaranteed rate is the last rate before we encounter a rate
where we observe dropped frames. This means we select ri−1
as the minimal guaranteed rate if we observe frame drops
at rate ri. Following this definition, we treat the investigated
system as lossless.

3) Additional Considerations: In contrast to high-cost net-
work devices, low-cost network devices often achieve through-
put values significantly lower than the line rate. The offered
rate can also vary depending on the considered scenario, e.g.,

the number of rules in the table. Additionally, based on the
processing time of each function, in some cases and for some
devices, it is possible to derive more precise rate estimates.
However, in this paper, we focus on deriving and evaluating
the processing time aspect of burst-delay service curves; thus,
we consider this as out of our scope.

IV. EVALUATION

In this section, we empirically verify the applicability and
achievable precision of our proposed methodology to arbitrary
devices. To this end, we deploy our methodology on two very
different devices. We use one SDN switch (Zodiac FX [9])
and one P4 device (NetFPGA SUME [8]).

LoadGen DuT
I

J

I

J

Timestamper

J J

(a) NetFPGA [10]

Controller

LoadGen
DuT

I I

I

J

I

J

I

J

I

J

Timestamper

J J J J

(b) Zodiac FX

Figure 3: Measurement setups employed for the evaluation.

Figure 3 shows the setup for both platforms, which require
different measurement setups due to their different require-
ments. The P4 platform uses 10G fiber optics and does not
require a separate controller; the OpenFlow setup uses twisted-
pair cables and requires an OpenFlow controller to manage the
investigated switch.

The setup for the NetFPGA uses three nodes (Figure 3a): A
load generator (LoadGen) running MoonGen [11], the Device
under Test (DuT), which is equipped with the NetFPGA
SUME, and a third node. This third node uses optical taps to
hardware-timestamp the packets between DuT and LoadGen.
All three nodes use an Intel quad-core SoC (Xeon-D 1518,
2.2 GHz) running Debian Buster. The LoadGen and timestam-
per use the integrated Intel 10G X552 dual port NIC.

The setup for Zodiac FX extends the previous setup (cf.
Figure 3b). This extended setup uses an additional Ryu-
based controller [12] which manages Zodiac FX through an
OpenFlow 1.0 connection. The data plane traffic is generated
by a scapy-based [13] packet generator. Furthermore, we
use two networking taps to mirror the traffic towards the
switch and a measurement card (Endace DAG7.5G4 [14]). The
measured processing time is obtained from the measurement
card. This processing time also includes the processing time
of an integrated switch and internal transmission times.

A. Proof of Concept — SDN Switch

1) Zodiac FX Architecture: The Zodiac FX is a hybrid
low-cost SDN switch supporting OpenFlow versions 1.0 and
1.3 [15]. It has in total four physical 100 Mbit/s Ethernet ports,
which are internally connected to an integrated L2 switch. The
fifth port of the integrated switch is connected to an ARM
Cortex-M4 single-core 120 MHz micro-controller (CPU), thus,
providing the connection between the CPU and the physical

ports. This kind of architecture is common in low-cost SDN
devices [6].

When the Zodiac FX is working in SDN enabled mode,
all traffic, i.e., data and control plane traffic, received on
the physical ports is forwarded to the CPU. The CPU runs
a single-threaded infinite software loop, which implements
both, OpenFlow control plane agent and OpenFlow data plane
pipeline. In other words, all the packet processing is done in
software.

2) Motivation & Scenario: As all the packet processing is
done in software, this suggests that processing time differs
significantly based on the considered scenario. For instance,
in OpenFlow 1.0, it is possible to match on 14 different packet
headers with varying lengths. The processing time increases
with the amount of data to be processed by the switch. Longer
headers typically increase the amount of data for processing,
hence, indicating that the processing time is highly correlated
with header lengths. [16], [17]

We consider the different OpenFlow actions and matches as
a basic building block for our modeling approach. In order to
evaluate the methodology’s applicability, we use all possible
combinations of parameters listed in Table I. Apart from
considering standard OpenFlow match types, like the transport
protocol destination port referred to as tp-dst, we also consider
two additional matching combinations: five-tuple, combining
all of ip-src, ip-dst, tp-src, tp-dst, and nw-proto; all which
conjoins five-tuple, in-port, nw-tos, dl-src, and dl-dst.

3) Offered Rate: For the aforementioned parameters, Zo-
diac FX exhibits a worst-case throughput of around 50 Mbit/s.
We use this value for modeling the rate part of each decom-
posed service curve, as discussed in Section III-G.

4) Measurement Data: We divide the entire set of mea-
surements M into two sets, training set (Mtraining) and testing
set (Mtesting). Mtraining contains the measurements of the basic
building blocks that we use to generate our models. We com-
pose these models to predict the performance of programs built
from the basic building blocks. Table I lists the investigated
building blocks. Mtesting contains the measurements that we use
to validate our composed models. The results of our validation
are shown in Figure 5.

Figure 4 shows the measurement results of Mtraining for
matches and actions separately. Figure 4a demonstrates the
measured data for the matches. We use the match on a specific
switch port as a baseline measurement. Compared to the
baseline measurement, the single-field matches, such as tp-dst,
dl-dst, and masked-nw-dst, increase matching time by approxi-
mately 2 µs. More complex matches, such as five-tuple and all,
took approximately 3 µs and 6 µs. These increasing numbers
indicate that the cost of the matches increase with the amount
of data to be matched. Figure 4b measures the latency of
the different actions. The baseline measurement, in this case,
outputs received packets on a specified switch port. Setting the
destination MAC address increases latency by approximately
2 µs. Manipulating the VLAN of a received packet increases
latency by approximately 4 to 5 µs. We attribute this increase
to the increased complexity of parsing the additional VLAN

Parameter Values

num. rules 1
packet size 64 B
match types port, tp-dst, dl-dst, masked-nw-dst, five-tuple, all
action types output, set-dl-src, strip-vlan, set-vlan-id, set-nw-src,

set-nw-tos, set-tp-src

Table I: SDN Switch Evaluation Parameters.

0
3
6
9

f
1

[µ
s] min median max

po
rt

tp
-d

st

dl
-d

st

m
as

ke
d-

nw
-d

st

fiv
e-

tu
pl

e al
l

0

44

48

52

56

60
f1,max(all)

f
1

[µ
s]

f0,max max(f1(all))

(a) Different match types with fixed action output

0
3
6
9

f
2
[µ
s] min median max

ou
tp
ut

se
t-
dl
-s
rc

st
ri
p-
vl
an

se
t-
vl
an
-id

se
t-
vl
an
-p
cp

se
t-
nw

-s
rc

se
t-
nw

-t
os

se
t-
tp
-s
rc

0

44

48

52

56

60
f2,max(set-tp-src)

f
2
[µ
s]

f0,max max(f2(set-tp-src))

(b) Different action types with fixed match port

Figure 4: Impact of match and action types on the processing
time of Zodiac FX.

header fields. Costs rise by approximately 9 µs if network or
transport protocol headers are manipulated.

We observed a difference between minimum and maximum
latencies of roughly 6 µs with the median being almost per-
fectly centered. This distance was almost the same for the
investigated matches and actions alike.

5) Modeling: Even though the worst-case processing la-
tency is crucial and the most important metric in NC, as
discussed in Section III-A, other metrics are just as important.
We use Equation (9) to generate three different processing time
estimation models, i.e., models based on minimum, median,
and maximum service curve.

f(m, a) = f0 + fm + fa (9)

f0 in Equation (9) is the baseline function. This function
represents the most basic program executable on the platform.

In the case of an OpenFlow switch, this is a program that
performs the action output and the match port. Thus, sending
out packets on a specified port that were received on a certain
switch port. The baseline program is the minimal OpenFlow
program for which we can determine the forwarding latency
described by f0. Here, m and a are variables representing
different match and action types, respectively. fm, fa ∈ F′
denote basic functions, as introduced in Section III. These
basic functions incorporate additional impact on processing
latency caused by different match and action types.

To derive one estimation model, e.g., worst-case-based, we
initially determine the value of a constant term f0. We consider
that the constant term f0 corresponds to the processing time —
minimum, median, or maximum. In case of the worst-case
model f0 = 51.058 µs. After determining this constant term
f0, we can determine fm and fa by subtracting the processing
times observed in the corresponding training set, see Figure 4,
with this constant.

6) Evaluation: Figure 5 demonstrates the absolute relative
error exhibited when applying our model to the training and
testing set. Overall, the absolute relative error is always below
1 %, indicating that our methodology is applicable to Zodiac
FX, while also expressing high prediction accuracy. Further-
more, we can conclude that our model performed equally well
in most cases. In other words, the observed errors do not
exhibit high correlation with different match or action types.

B. Proof of Concept — P4 Switch/Device

1) NetFPGA SUME Architecture: For our proof of concept,
we use the NetFPGA SUME [8] running a P4 implementation.
This FPGA’s P4 programmability is achieved by transpiling
P4 to VHDL as implemented by the P4→NetFPGA project.
Obtained translation results are then integrated into the Net-
FPGA architecture [18], [19]. As an FPGA-based platform,
the NetFPGA SUME employs a Xilinx Virtex-7 690T and
supports up to 4 × 10Gbit/s. To communicate with its host
system, a PCIe interface is used. When programmed with P4,
this interface is used to populate tables with match-action pairs
during runtime. Furthermore, NetFPGA SUME may forward
packets to the host’s CPU with this interface.

2) Motivation & Scenario: A translation from high- to low-
level languages, such as from P4 to VHDL, is challenging.
Even though the process of transpiling between these two
languages amounts to a translation between fundamentally
different programming paradigms, the thesis, which motivates
this research, is that a correlation between the structure of a P4
program and the observable performance of the programmed
FPGA exists. An advantage of the FPGA-based platform
compared to the CPU-based platform of the Zodiac FX is
the creation of a purpose-built packet processing pipeline. The
used P4 transpiler creates a processing pipeline that is specific
to the executed P4 program. This pipeline can be optimized
for a specific processing task in a way that is impossible
on CPUs. Also, the processing power is not shared between
different processes as it is the case for the switching software
on the Zodiac FX. These differences in the architecture lead

to higher performance and a highly stable processing latency
for NetFPGA-based packet processing tasks.

Based on measurements conducted for this work, we know
that the NetFPGA SUME is capable of handling up to and
including 9 Gbit/s constant bitrate input traffic consisting of
minimum-sized packets. Using this knowledge and applying
the approach presented earlier, a model of the board’s behavior
can be derived. While the methodology is independent of such
details, domain knowledge may simplify its application. In this
case, understanding of P4.

One of the selling points of P4 lies in its flexibility when
compared to OpenFlow. OpenFlow is, by its specification,
restricted to a fixed set of functionality. Hence, an investigation
of an OpenFlow device is limited to supported functions. Con-
trary to that, P4 devices allow combining more fundamental
building blocks almost arbitrarily. These building blocks of P4
offer a more fine-granular packet manipulation than OpenFlow
functions. To replicate OpenFlow functionality within P4, sev-
eral of these building blocks need to be combined. Modeling
the performance of a P4-based device only requires the models
of these fundamental building blocks that can be composed to
predict the performance of the device running a P4 program.

Following this behavioral abstraction, measurements target-
ing the individual building blocks were conducted. Still, the
focus on OpenFlow comparability was decisive. As a result,
we effectively conducted the same set of experiments as with
the Zodiac FX. One could object that, some measurements,
e.g., the action set-vlan-id and set-vlan-pcp, target the same
P4 building block. However, as mentioned, we argue compara-
bility with OpenFlow results outweighs the induced overhead
without influence on the necessary measurements.

3) Offered Rate: For all investigated parameter combina-
tions, NetFPGA SUME has a worst-case throughput equal
to the applied measurement rate, i.e., 6.6 Gbit/s. However,
additional experiments suggest, that this target is able to offer
even higher worst-case rates.

4) Measurement Data: Similar to the OpenFlow investi-
gations, data gained through measurements is divided into
two sets — training Mtraining and testing Mtesting — whose
elements remain as described. Results of our measurements
are summarized by Figure 6. Measurements were conducted
at two-thirds of NetFPGA SUME’s throughput capacity, i.e.,
6.6 Gbit/s with a packet size of 68 B, to avoid overloading the
DuT during a measurement.

Figure 6 shows the results of the NetFPGA measurements,
Figure 6a shows the results of the match measurements,
Figure 6b the results of the action measurements. We use the
same baseline scenarios as the Zodiac FX, i.e., a match on the
ingress port and forwarding to a specified switch port as an
action. The difference between the baseline and the other sce-
narios is below 0.01 µs. It should be noted that the employed
measurement equipment has a timer resolution of 0.0125 µs.
Considering the resolution of our measurement equipment,
the observed measurements were stable across all investigated
scenarios. The difference between the respective minimum
and maximum values lies within 0.025 µs, i.e., double the

ou
tp

ut

se
t-

dl
-s

rc

st
ri

p-
vl

an

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

nw
-s

rc

se
t-

nw
-t

os

se
t-

tp
-s

rc

port

tp-dst

dl-dst

masked-nw-dst

five-tuple

all

0.00

0.25

0.50

0.75

1.00

re
la

ti
ve

er
ro

r
[%

]

(a) Minimum

ou
tp

ut

se
t-

dl
-s

rc

st
ri

p-
vl

an

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

nw
-s

rc

se
t-

nw
-t

os

se
t-

tp
-s

rc

port

tp-dst

dl-dst

masked-nw-dst

five-tuple

all

0.00

0.25

0.50

0.75

1.00

re
la

ti
ve

er
ro

r
[%

]

(b) Median

ou
tp

ut

se
t-

dl
-s

rc

st
ri

p-
vl

an

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

nw
-s

rc

se
t-

nw
-t

os

se
t-

tp
-s

rc

port

tp-dst

dl-dst

masked-nw-dst

five-tuple

all

0.00

0.25

0.50

0.75

1.00

re
la

ti
ve

er
ro

r
[%

]

(c) Maximum

Figure 5: Absolute relative error illustrating the achieved precision of the three models (i.e., minimum, median, and maximum)
on the Zodiac FX. White parts of the heatmaps correspond to the training set; thus, the error is always 0 %.

0

0.01

0.02

0.03

|f
1
|[
µ

s]

min median max

po
rt

tp
-d

st

dl
-d

st

m
as

ke
d-

nw
-d

st

fiv
e-

tu
pl

e al
l

0

1.62

1.66

1.7

1.74
f1,max(all)

f
1

[µ
s]

f0,max max(f1(all))

(a) Different match types with fixed action output

0

0.01

0.02

0.03

|f
2
|[
µ
s]

min median max

ou
tp
ut

se
t-
dl
-s
rc

st
ri
p-
vl
an

se
t-
vl
an
-id

se
t-
vl
an
-p
cp

se
t-
nw

-s
rc

se
t-
nw

-t
os

se
t-
tp
-s
rc

0

1.62

1.66

1.7

1.74
f2,max(set-tp-src)

f
2
[µ
s]

f0,max max(f2(set-tp-src))

(b) Different action types with fixed match port

Figure 6: Impact of match and action types on the processing
time of NetFPGA SUME.

measurement resolution. This indicates that the measurement
scenarios are also highly stable within themselves.

5) Modeling: To derive a model from the presented data,
the approach presented in Sections III and IV-A is applied. The
baseline measurement for the P4 model consists of a port-
based match and the output action. From the measurements
follows that f0 = 1.867 µs. Costs of actions fa ∈ F′ lie within
the interval of 0 µs to 0.025 µs additional latency. Matching
fm ∈ F′ induces costs in the same order of magnitude.
As a result, that observed latency difference may amount

to measurement inaccuracies. However, even the combined
differences between the extrema indicate a worst-case devi-
ation below 0.05 µs. Therefore, by applying Equation (10),
processing time estimation models can be deduced reliably
with information gathered from the training set, as depicted in
Figure 6.

f(m, a) = f0 + fa + fm (10)

Considering the note on timer resolution, the observation-
based model Equation (10) suggests that neither the investi-
gated matches nor actions had a measurable influence on the
observed latency. Given the approximately constant impact of
the NetFPGA on overall latency (cf. Figure 6) across all tested
match-action types, the model can be simplified further — in
this scenario — to a constant offset.

6) Evaluation: Figure 7 shows the absolute relative error
we observed, when relying on the derived model to predict
performance for the measurements in our test set.

The measurement results suggest that the performance of
NetFPGA SUME is not notably impaired by any of the
investigated match-action-combination when using our P4 im-
plementation of the respective OpenFlow functionality. While
this result could be described as surprising, the rather low
prediction relative errors of ±1 % suggest a high prediction
accuracy of our derived model. As for the Zodiac FX, also for
the NetFPGA SUME, no correlation between match or action
types is apparent.

V. RELATED WORK

The approach presented in this paper relates to different
areas, network modeling in general but also the benchmarking
of network devices.

a) Modeling: Performance modeling of networking de-
vices is widely investigated. While stochastic models based
on queuing theory provide information about the mean of
different network metrics [20]–[22], network calculus based
models are concerned with the worst-case analysis [23].

These different models are applicable for single devices,
such as general software switches [24], software DPDK
switches [25], OpenFlow switches [20], [26], and virtual net-
work functions (VNF) [27]; and for networks of switches [21],

ou
tp

ut

se
t-

dl
-s

rc

st
ri

p-
vl

an

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

hw
-s

rc

se
t-

nw
-t

os

se
t-

tp
-s

rc

all
five-tuple

masked-nw-dst

dl-dst
tp-dst

port
0.00

0.25

0.50

0.75

1.00

re
la

ti
ve

er
ro

r
[%

]

(a) Minimum

ou
tp

ut

se
t-

dl
-s

rc

st
ri

p-
vl

an

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

hw
-s

rc

se
t-

nw
-t

os

se
t-

tp
-s

rc

all
five-tuple

masked-nw-dst

dl-dst
tp-dst

port
0.00

0.25

0.50

0.75

1.00

re
la

ti
ve

er
ro

r
[%

]

(b) Median

ou
tp

ut

se
t-

dl
-s

rc

st
ri

p-
vl

an

se
t-

vl
an

-i
d

se
t-

vl
an

-p
cp

se
t-

hw
-s

rc

se
t-

nw
-t

os

se
t-

tp
-s

rc

all
five-tuple

masked-nw-dst

dl-dst
tp-dst

port
0.00

0.25

0.50

0.75

1.00

re
la

ti
ve

er
ro

r
[%

]

(c) Maximum

Figure 7: Absolute relative error illustrating the achieved precision of the three models (i.e., minimum, median, and maximum)
on the NetFPGA SUME. White parts of the heatmaps correspond to the training set; thus, the error is always 0 %.

[28] and VNF chains [29]. Bredel et al. [30] derive network
calculus representations using extensive measurements. They
inspect both software and hardware routers, using guaranteed
rate and packet-scale rate guarantee models. Different error
terms based on the measurements are used to refine the derived
models. Runge et al. [31] propose a model for the resource
management of resource-constrained devices such as software
routers. Extending the intra-node model from simulation to
real systems, they are successful at predicting performance. Hu
et al. [32] take a modular approach using NC to model end-to-
end QoS in video transmissions. They derive parameter values
for NC curves of specific software and hardware components
on the end-to-end path. Fidler [7] provides an extensive survey
of service curve derivation methods. Different methods are
based on analyzing busy periods, the inversion of the min-
plus convolution, or Gaussian cross-traffic models.

Iyer et al. [33] demonstrate an approach that predicts
NF performance utilizing symbolic execution. Manousis et
al. [34] analyze and predict network performance based on
x86-CPU performance counters. Both models provide accurate
predictions, however, they require extensive knowledge about
the code of the NF itself or the underlying hardware platform.

Unlike previously mentioned papers, this work provides
a measurement methodology to derive best-, median-, and
worst-case values which can be used to parameterize NC
models as well as other approaches. We demonstrated that
it is applicable to different SDN-capable switches, such as
OpenFlow and P4 programmable devices. In addition, our
solution relies on simple black-box measurements and can
be applied independent of the underlying hardware platform.
Furthermore, we use a methodology that allows us to measure
internal functions in isolation and combine them into different
devices with a small relative error. This allows for modeling
a large range of devices off a comparatively small number of
measurements.

b) Benchmarking: Rotsos et al. [16] provide a frame-
work for evaluating different OpenFlow switch implemen-
tations based on the NetFPGA platform. They demonstrate
an automated framework to benchmark the capabilities of
OpenFlow switches. Dang et al. [17] present a benchmarking
suite to analyze the performance of P4-enhanced devices.

Their framework supports different P4 target platforms, such
as FPGA or ASIC, by splitting their suite into target-specific
benchmarks, which are executed only for a specific platform,
and target-independent benchmarks, which are used across all
the available platforms. Further, their benchmarking approach
investigates the performance of specific P4 functions. Harkous
et al. [35], [36] propose a method for estimating the packet
processing latency as a function of the configured P4 program
when running on different P4 targets. First, they measure the
latency cost of basic P4 constructs when running on three
different P4 targets. Then, the measurement results are used
to estimate the processing latency of realistic P4 programs,
composed of the surveyed P4 constructs. Scholz et al. [37]
focus on modeling the critical aspects of devices. For example,
ASICs have stable performance, but resources are limited,
while for software targets, it is the opposite. They propose
performance models, focusing on throughput and latency for
the software target and resources for the ASIC. Furthermore,
the model focuses on the match-action table component of P4
programs, deepening the understanding of influencing factors
and features.

Our methodology tries to bridge the gap between OpenFlow
and P4-related benchmarking. Like the papers mentioned
before, we investigate specific components of SDN devices.
However, we focused on the common functionality between
OpenFlow and P4 to be applicable to a wider range of devices.

VI. CONCLUSION

This paper investigated a methodology that can model
modern SDN-capable devices despite their increased flexibility
that makes them hard to predict. We cover two different
techniques for realizing SDNs: OpenFlow and P4. OpenFlow
is a technique that relies on powerful, complex functions
that perform the packet manipulation, while P4 relies on a
smaller set of less powerful operations that can be combined
to describe complex packet processing tasks. Further, we
choose devices that cover a wide range of bandwidth demands,
an embedded OpenFlow switch platform called Zodiac FX
offering 100 Mbit/s ports and the NetFPGA platform that
supports P4 with bandwidths of 10 Gbit/s and more.

The advantages of our methodology are twofold. First, we
demonstrate the broad applicability. The investigated devices

may differ in their capabilities. However, our investigations
show that the discussed methodology is not impacted by this.
Second, we introduce a methodology consisting of composable
models. Both investigated approaches for SDN consist of basic
building blocks. By measuring and modeling these building
blocks separately, we can derive simple models for the indi-
vidual building blocks. These simple models can be combined
to describe the performance of a more complex program
consisting of the original building blocks. We demonstrate
that these composed models predict the performance of the
real program with an error rate below 1 % for all investigated
devices and scenarios.

Given that precision of conducted measurements benefits
from expertise in this area, a trait not everybody attributes
to themselves, future work should focus on applying the
presented methodology to other devices and discussing results
in extensive case studies. An increasing number of modeled
devices would not only remove obstacles stopping network
operators from adopting this approach. Moreover, the NC com-
munity would likely benefit from models of devices deployed
in real-world scenarios. Additionally, methodologies from re-
lated work, such as inversion of the min-plus convolution, can
be applied to obtain more precise service curves.

ACKNOWLEDGMENT

The German Research Foundation partially funded this
project (Modanet, grant no. CA595/11-1 and KE1863/8-1).
Moreover, this work has received funding by the Bavarian
Ministry of Economic Affairs, Regional Development and
Energy as part of the project 6G Future Lab Bavaria.

REFERENCES

[1] 3GPP, “22.104 Service requirements for cyber-physical control appli-
cations in vertical domains V17.3.0,” http://www.3gpp.org/ftp//Specs/
archive/22 series/22.104/22104-h30.zip, accessed: 2021-04-30.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, 2008.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, 2014.

[4] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet, 2001, vol. 2050.

[5] Y. Jiang and Y. Liu, Stochastic network calculus, 2008, vol. 1.
[6] A. V. Bemten, N. Deric, J. Zerwas, A. Blenk, S. Schmid, and W. Kellerer,

“Loko: predictable latency in small networks,” in CoNEXT, 2019.
[7] M. Fidler, “Survey of Deterministic and Stochastic Service Curve

Models in the Network Calculus,” IEEE Communications Surveys &
Tutorials, vol. 12, no. 1, pp. 59–86, 2010.

[8] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE
Micro, vol. 34, no. 5, 2014.

[9] N. Networks. [Online]. Available: https://northboundnetworks.com/
[10] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G QoS: Impact of

Security Functions on Latency,” in NOMS. IEEE, 2020.
[11] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,

“Moongen: A scriptable high-speed packet generator,” in IMC, K. Cho,
K. Fukuda, V. S. Pai, and N. Spring, Eds., 2015.

[12] S. Ryu, “Framework community: Ryu SDN framework,” http://osrg.
github. io/ryu, 2015.

[13] P. BIONDI, “Packet generation and network based attacks with scapy,”
CanSecWest/core05, 2005.

[14] D. Endace, “7.5 G2 datasheet,” 2012.
[15] NorthboundNetworks, “Northboundnetworks/zodiacfx.” [Online]. Avail-

able: https://github.com/NorthboundNetworks/ZodiacFX
[16] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,

“OFLOPS: An Open Framework for OpenFlow Switch Evaluation.” in
PAM, vol. 7192, 2012.

[17] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A p4 language
benchmark suite,” in Proceedings of the Symposium on SDN Research.
ACM, 2017.

[18] N. Zilberman, Y. Audzevich, G. Kalogeridou, N. Manihatty-Bojan,
J. Zhang, and A. Moore, “NetFPGA: Rapid Prototyping of Networking
Devices in Open Source,” SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, 2015.

[19] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The P4-> Net-
FPGA Workflow for Line-Rate Packet Processing,” in SIGDA. ACM,
2019.

[20] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and Performance Evaluation of an OpenFlow Architecture,”
in ITC. IEEE, 2011.

[21] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation
of openflow-based software-defined networks based on queueing model,”
Computer Networks, vol. 102, 2016.

[22] G. Shen, Q. Li, S. Ai, Y. Jiang, M. Xu, and X. Jia, “How Powerful
Switches Should be Deployed: A Precise Estimation Based on Queuing
Theory,” in INFOCOM. IEEE, 2019.

[23] A. K. Koohanestani, A. G. Osgouei, H. Saidi, and A. Fanian, “An
analytical model for delay bound of openflow based sdn using network
calculus,” Journal of Network and Computer Applications, vol. 96, 2017.

[24] K. Suksomboon, N. Matsumoto, S. Okamoto, M. Hayashi, and Y. Ji,
“Configuring a software router by the erlang-k-based packet latency
prediction,” IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, 2018.

[25] T. Begin, B. Baynat, G. A. Gallardo, and V. Jardin, “An accurate and
efficient modeling framework for the performance evaluation of dpdk-
based virtual switches,” IEEE Transactions on Network and Service
Management, vol. 15, no. 4, 2018.

[26] Y. Goto, B. Ng, W. K. Seah, and Y. Takahashi, “Queueing analysis of
software defined network with realistic openflow–based switch model,”
Computer Networks, vol. 164, 2019.

[27] J. Prados-Garzon, P. Ameigeiras, J. J. Ramos-Munoz, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Analytical modeling for virtualized
network functions,” in ICC Workshops. IEEE, 2017.

[28] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel, “Modelling of
openflow-based software-defined networks: the multiple node case,” IET
Networks, vol. 4, no. 5, 2015.

[29] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for
embedded vnf chains in 5g core networks,” IEEE Internet of Things
Journal, vol. 6, no. 1, 2018.

[30] M. Bredel, Z. Bozakov, and Y. Jiang, “Analyzing router performance
using network calculus with external measurements.” in IWQoS, 2010.

[31] T. M. Runge, B. E. Wolfinger, S. Heckmüller, and A. Abdollahpouri,
“A modeling approach for resource management in resource-constrained
nodes,” Journal of Networks, vol. 10, no. 1, 2015.

[32] X. Hu and Z. Lu, “End-to-End System QoS Modeling Based on Network
Calculus: A Multi-Media Case Study,” in ICICSE, 2020.

[33] R. R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. J. Argyraki, and
G. Candea, “Performance contracts for software network functions,” in
NSDI, J. R. Lorch and M. Yu, Eds., 2019.

[34] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,” in
SIGCOMM, H. Schulzrinne and V. Misra, Eds., 2020.

[35] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer, “Towards un-
derstanding the performance of p4 programmable hardware,” in ANCS.
IEEE, 2019.

[36] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8: P4
with predictable packet processing performance,” IEEE Transactions on
Network and Service Management, 2020.

[37] D. Scholz, H. Stubbe, S. Gallenmüller, and G. Carle, “Key Properties
of Programmable Data Plane Targets,” in ITC, Osaka, Japan, 2020.

