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Abstract—We analyze traffic exchange between Internet Ser-
vice Providers (ISPs) at an Internet Exchange Point (IXP) as
a non-cooperative game with ISPs as self-interested agents.
Each ISP has the choice of exchanging traffic either using
the shared IXP facilities, or outside the IXP – through their
transit providers or private peering. We analyze the efficiency
(social cost optimality) of the traffic exchange equilibrium at the
IXP taking into consideration the congestion cost experienced
by the ISPs at the IXP, under a proportional pricing model
where the per-unit price charged to ISPs is proportional to the
aggregate level of congestion at the IXP. We obtain worst case
bounds on the efficiency at traffic exchange equilibrium under
two different models of the congestion cost (delay) functions.
Simulations conducted using data for actual IXPs obtained from
PeeringDB demonstrate that the theoretical bounds derived for
social cost optimality at equilibrium (measured as the Price of
Anarchy) are fairly tight, and correctly capture the performance
trends against the variation of key model parameters. Further,
the results show that for a certain range of the proportionality
constant, proportional pricing not only results in significantly
better efficiency compared to zero pricing, but also attains near-
optimal social cost and near-optimal IXP revenue simultaneously.

I. INTRODUCTION

A. Background and Motivation

ISPs typically connect (mostly peer) with each other at
Internet eXchange Points (IXPs). In most basic terms, an
IXP is a data center with network switches through which
ISPs form connections (peering relationships) to exchange
traffic [1], [2]. In return, IXPs recover their operating costs by
charging fees to each member/client ISP. A number of IXPs,
especially in Europe, operate on a non-profit basis [3], and the
operating costs of an IXP is largely determined by the cost of
the infrastructure needed for traffic exchange [4]. Other IXPs,
both in Europe and particularly US, operate for profit, e.g.,
Equinix [5]. In both cases, while IXPs provide the platform
for ISPs to connect (peer) with each other, they play a passive
role focused on infrastructure cost recovery or profit-making,
and the peering decisions are determined bilaterally by the
ISPs themselves. Nevertheless, ISPs at an IXP make these
peering decisions taking into account the potential quality of
service improvements due to peering, the prices charged by the
IXP, and comparing those with alternatives such as sending the
traffic through their transit providers.

In recent years, transit prices per unit bandwidth have been
steadily declining [6]. Despite falling transit costs, peering

between ISPs has been on the rise, and content and access
ISPs are increasingly getting into peering relationships with
each other [7], [8], a phenomenon known as the flattening of
the Internet [2], [9]–[11]. It has been shown [12] that almost
80% of the IP addresses can be reached via public peering,
and 20% of all the traffic traces go through IXPs. Peering
between ISPs, which is typically settlement-free, can help
bring content closer to customers, resulting in lower delays and
losses, and thus better Quality-of-Experience (QoE) for the end
users (content consumers). Some of the recent literature has
therefore argued that paid peering is necessary for overall sta-
bility and efficiency of inter-domain traffic flows [13], though
its interplay with traditional settlement-free peering needs
careful treatment [14]. Even if the IXPs play a passive role
by providing peering facilities for a price, the pricing policy
applied by the IXP to facilitate this traffic exchange needs to
be designed carefully for making the peering relationships and
traffic flows between the ISPs stable and efficient.

B. Contribution of this Paper

This paper investigates how the pricing policy at an IXP
impacts the efficiency of the peering relationships that form
between the ISPs as a result of that policy. We define the
traffic exchange problem between ISPs (at an IXP) as a non-
cooperative game between ISPs (selfish agents), where each
pair of ISPs have a certain pre-determined amount of traffic
to exchange, and the strategic decision involves determining
whether to send this traffic through the IXP or through the
external routing option. We consider a proportional pricing
policy, where the price charged by the IXP per unit traffic
is proportional to the aggregate level of congestion at the
IXP (shared switch). The benefit of proportional pricing – as
discussed later in more detail – is that it can be implemented
with only aggregate load information at the shared switch
used for public peering. In other words, choosing a good
pricing does not require the IXP to know the transit options or
other details about the participating ISPs. We also analyze the
performance benefits of proportional pricing over zero pricing
where the IXP does not charge any price at all.1

1Even with zero pricing, ISPs still face congestion costs at the shared switch
and must determine its routing/peering choice taking into account how that
cost compares with its alternate routing option. The zero pricing model is
applicable to non-profit IXPs.
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More specifically, this work makes the following contribu-
tions. First, we characterize the pricing policy that is economi-
cally efficient, i.e., attains the socially optimal traffic exchange
solution (Section II). Then in Section III, we characterize
the traffic flow efficiency (i.e., social cost optimality) of the
equilibrium solutions – measured by the Price of Anarchy
(PoA) of the system – under proportional pricing, where IXPs
charge traffic a per-unit price that is proportional to the average
level of congestion experienced by traffic in the public switch
operated by the IXP. The quality of service experienced by
the ISPs also suffers due to this congestion, and is taken
into account as well. The PoA for zero pricing, where the
traffic through the IXP only experiences a congestion cost,
but no additional price is charged by the IXP, also follows
from this result as a special case. We quantify the PoA
under these pricing systems using two broad classes of delay
functions (polynomial delay and queuing delay functions),
and also discuss how the PoA results generalize when the
external routing costs between ISPs are asymmetric. Finally,
in Section IV, we simulate real-world scenarios of public
peering in IXPs, and compare the actual performance values
obtained against their respective theoretical bounds for a wide
range of model parameters. Proofs of all theoretical results are
omitted due to space limitations, and will be included in the
full version of this paper.

C. Comparison with Prior Work

Our game-theoretic model and analysis is inspired by a
prior line of work on network formation games (introduced
in [15]), where the stability of networks was modeled and
analyzed when two nodes can build links mutually but can
sever links individually. These types of network formation
games and their extensions have been studied extensively for
different settings (e.g., [16]–[24]). Unlike these prior studies,
in our model the cost of forming these (peering) connections
is not fixed, but depends on both the congestion (measured
by the total number of connections already formed), and the
prices charged by the planner (IXP). In this sense, our work
is a generalization of the previous work on network formation
games, as it includes a central planner (the IXP), who can
greatly affect the quality of outcomes by choosing different
pricing schemes. There are many prior works on pricing
network services and traffic (see for example, [25]–[31] for an
overview), and network routing and flow control games (see
for example, [32], [33]), but these models do not consider an
IXP setting and are not directly related to ours.

Our work is most related to the model in [34], but differs
from this existing work in several important aspects. First,
while [34] considers the question of how the operational
cost of the IXP should be shared among the ISPs (which
is more representative of non-profit IXP operations), in our
model the IXP directly charges the ISPs for their traffic.
Secondly, we also analyze the revenue earned by IXPs at
equilibrium, and the trade-offs between social cost and IXP
revenue. Finally, our work also models congestion cost at
the IXP, considers asymmetric external routing costs and paid

TABLE I
SUMMARY OF COMMONLY USED NOTATION.

Term Description
yij Traffic of ISP pair (i, j) sent publicly through the IXP.
yi

∑
j yij , total traffic of ISP i going through the IXP.

y 1
2

∑
i

∑
j yij , total traffic flowing through the IXP.

−→y Total traffic allocation vector (vector of values yij )
λij Per-unit cost incurred by (i, j) for routing traffic externally
d(y) Congestion cost per unit traffic incurred at the IXP
p(y) Price per unit traffic set by the IXP

peering, and evaluates social optimality and IXP revenue for
the pricing policies through extensive simulations.

II. SYSTEM MODEL AND PROPERTIES

A. Game-Theoretic Model

We consider an IXP, and a set N of ISPs (agents in our
game-theoretic model) that are involved in traffic exchange
through a public switch offered by the IXP. An ISP pair (i, j)
has a total traffic demand of Bij between themselves; part
of this traffic, yij , is routed through the public switch, while
the rest is sent externally. The traffic sent externally (i.e.,
outside of the public switch) is typically done in one of two
ways: (a) through private peering between ISPs i and j;2 (b)
through the use of the ISPs’ transit service providers. The
traffic that is exchanged through the public switch incurs a
congestion cost of d(y) per unit traffic, which depends on
the total traffic y sent through the switch. This congestion
cost will typically be reflected in terms of average delay
experienced by the traffic (and therefore we will sometimes
use the terms ‘congestion cost’ and ‘delay’ interchangeably);
however, d(y) could also represent other Quality-of-Service
(QoS) parameters (or a combination of them) that are affected
by the overall load at the public switch. Additionally, each ISP
has to pay a price of p(y) to the IXP per unit traffic, for the
use of the public switch. We assume that d(y) and p(y) are
given functions (i.e., not part of the strategy); however, we will
explore the efficiency of the equilibrium for different forms of
the functions p(y) and d(y). For the traffic sent externally, ISP
i encounters a per-unit cost of λij for traffic exchange with
ISP j. This cost may be in terms of additional traffic delays
due to longer routes, transit price paid to the ISP’s provider,
or the cost ISP i incurs for private peering with ISP j. The
strategy of each agent (ISP) involves deciding how much of
its traffic it should send through the public switch, as opposed
to sending externally. In making this decision, we assume that
each ISP acts selfishly, focusing on minimizing its own cost.
The decisions of ISPs i and j are coupled, and they must
agree upon the amount of traffic yij of the Bij units that is
sent through the IXP. Table I summarizes some of the most
commonly used terms and notations in our model.

Remarks on the model: In the following, by ‘traffic sent
through the IXP’, we refer to the traffic sent through the public
switch at the IXP. Thus any traffic that is sent through private

2The private peering can happen at an IXP (if the IXP offers private peering
services), or separately.



peering (even if the private peering happens at the same IXP
under consideration) is considered a part of the externally
routed traffic, i.e., included in Bij − yij for ISP pair (i, j).
Finally, we do not distinguish between the traffic sent from
i to j and traffic sent from j to i. In general, an ISP (or
the customers of the ISP) benefits from the traffic in both
directions, and the two ISPs involved in an exchange must
jointly decide whether to exchange this traffic via the IXP
or outside of it. The quantity yij can be interpreted as the
amount of port capacity that ISP i (ISP j) must provision for
traffic exchange with ISP j (ISP i) through the IXP3. Since
the pricing policies at IXPs heavily depend on port capacities
[6], we assume that the price paid by both ISPs i and j for
their traffic exchange is p(y)yij . For easy exposition, in the
following, both terms yij and yji are utilized, but with the
understanding that they represent the same quantity. If the
remaining traffic, Bij − yij , is routed through private peering,
it is reasonable to assume that the cost of purchasing or
leasing any links, ports, etc., to enable this exchange will be
proportional to Bij−yij for both ISPs i and j. Similarly, if this
remaining traffic is routed through the ISPs’ transit providers,
the cost each ISP needs to pay its transit provider, λij and λji,
can be assumed to be proportional to Bij−yij . We first assume
that λij = λji; however, in Section III-B, we consider a more
general model which allows for asymmetric per-unit external
routing costs; thus λij can be different from λji. This allows
for possible differences between the two ISPs’ transit costs,
or their individual costs to privately peer with each other.4

Typically in practice, an ISP pair (i, j) will either send all
of their traffic through peering at an IXP, or use the external
routing option for all of their mutual traffic. However, our
model is more general in that it allows the ISP pair to split
their traffic between the two options. This relaxation eases
our mathematical discourse and enables us to explore regimes
beyond the current practice in traffic exchange between ISPs.
Interestingly, from our model it turns out that at equilibrium
almost all ISP pairs use only one of the two options (the IXP
or external routing), verifying the current practice.

Some definitions: Given the above model setup, we next
define the Social Cost (SC) in order to gain insight into
pricing efficiency of the IXP. Overall, SC can be split into the
costs incurred by the ISPs at the IXP, and the total payments
received by the IXP. The cost for an ISP i, denoted by
Pi(~y, p(y), d(y)), is calculated as

p(y)
∑
j

yij + d(y)
∑
j

yij +
∑
j

(Bij − yij)λij , (1)

where the first and second terms are the costs of sending peer-
ing traffic through the public switch – the first is the amount
paid to the IXP, and the second is the (implicit) loss of the

3Although not necessary for the analysis, for the sake of concreteness, yij
can be considered to be either the max or the sum of the traffic in the two
directions.

4While we usually assume a fixed per-unit cost λij , all our findings also
extend to λij being a distribution, with different traffic units between i
and j having different costs. We omit this model generalization for ease of
exposition.

ISP’s revenue caused by the congestion at the switch. The third
term is the cost of sending the remaining traffic externally.
Denoting c(y) = p(y)+d(y) and Li(~y) =

∑
j λij(Bij −yij),

the cost of ISP i is expressed as

Pi(~y, c(y)) = c(y)yi + Li(~y). (2)

Note that c(y) can be viewed as the aggregate cost seen by
the ISPs per unit traffic, and therefore equals the sum of the
per-unit price charged by the IXP (p(y)) and the congestion
(delay) cost (d(y)). The total cost for all the ISPs is just the
summation of Pi for all i. If we denote

∑
i Li(~y) = 2L(~y),

then the total cost of ISPs becomes

P (~y, c(y)) = 2(c(y)y + L(~y)), (3)

where the multiplier of 2 comes from the fact that yi and yj
both include yij , i.e., yij is counted twice.

The IXP receives ISP payments, so the cost Q(~y, p(y))
incurred by the IXP is:

Q(~y, p(y)) = −p(y)
∑
i

∑
j

yij = −2p(y)y. (4)

Thus, we define the social cost (SC) for the given network
model as the total cost of the ISPs and IXP cumulatively,
which is

SC(~y) = P (~y, c(y)) +Q(~y, p(y)),

= 2d(y)y + 2L(~y) = 2E(y) + 2L(~y), (5)

where E(y) = d(y)y. The first term of this SC is the cost
of the congestion at the shared switch in the IXP, and the
second is the cost of sending the traffic via external means.
Intuitively, both of these components are detrimental to the
efficiency of the IXP, and should be minimized. For the rest
of the paper, unless otherwise stated, we will assume E(y)
to be a continuous, piece-wise differentiable function with
E(0) = 0 and E′(y) to be a non-decreasing function with
E′(0) = 0. Note that SC does not consist of p(y) which is
the price of per-unit traffic charged by the IXP to the ISPs,
and therefore the minimum Social Cost (SCOPT ) does not
depend on the pricing policy. However, any change of p(y)
will in general affect the traffic flows through the IXP, thereby
changing SC(~y).

B. Equilibrium Properties

In this paper we assume price-taking ISPs, i.e., they see the
current cost per unit traffic is c(y), and will only exchange
traffic (as a pair) which is worth paying that cost. Our notion
of stability (equilibrium) is similar to that in network formation
games where any two agents (ISPs in our case) at equilibrium
are not able to decrease their cost either unilaterally or as
a pair [15], [21], [23]. Since, we assumed λij = λji , this is
equivalent to any ISP pair (i, j) exchanging traffic through the
IXP as long as λij ≥ c(y), and routing the rest of the traffic
externally.5 Of course, sending more traffic changes the “price”

5Our definition of equilibrium is extended later to the more general case
of λij 6= λji, which is considered in Section III-B



Fig. 1. λ(y) curve with E′(y) and c(y).
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Fig. 2. PoA bounds for SC (polynomial delay
function).

0 0.2 0.4 0.6 0.8 1

Utilization Factor (U
f
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
o
A

 o
f 
S

o
c
ia

l 
C

o
s
t

Zero Pricing ( =1)

Prop Pricing ( =2)
Prop Pricing ( =3)

Prop Pricing ( =4)

Fig. 3. PoA bounds for SC (queuing delay function).

that the ISPs see per unit of traffic, c(y), since it changes y.
This leads to the notion of equilibrium traffic flow, defined as
follows:

Definition II.1. A traffic flow ~ye with ye = |~ye| is said to be an
equilibrium flow if and only if all the traffic with λij > c(ye)
is sent and the traffic with λij < c(ye) is not sent.

Based on this definition, we simplify our terminology and use
the term ‘equilibrium traffic flow’ to refer to the total flow
through the IXP at equilibrium (a scalar), and denote it by ye.

Next, we state two important properties of equilibrium
traffic flows that will be useful in our PoA analysis. We first
define the notion of the inverse demand curve, denoted as
λ(y). Loosely speaking, λ(y) shows the inverse of the total
traffic of the IXP as a function of the cost of external traffic.
Illustrated by Figure 1, this curve is constructed as follows.
First, the λij values are arranged in a decreasing order (ties
broken arbitrarily); let λk be the kth highest value, and Bk

be the corresponding traffic demand. Then, the λ(y) curve
is a non-increasing step-function, with the step of height λk

having a width of Bk. Let λ(y−) denote the limit of λ(x) as x
approaches y from below, and similarly λ(y+) if it approaches
y from above. We then have the following property:

Theorem II.1. ye is an equilibrium traffic flow if and only if
λ(y−e ) ≥ c(ye) ≥ λ(y+e ). Moreover, such a flow always exists.

Notice also that multiple equilibria may exist. First, there
could be several flow amounts ye with λ(y−e ) ≥ c(ye) ≥
λ(y+e ) if the function c(y) is not strictly increasing. Second,
even for a fixed total flow ye, there could be several different
traffic pairs with equal λij = c(ye) values, and sending any
subset of them (as long as the total flow amount equals ye)
will yield an equilibrium flow.

Finally, we derive an important property of the optimal
traffic vector (OPT), one that minimizes the total Social Cost,
with which the equilibrium solution will be compared. Again,
with slight abuse of terminology, by ‘optimal traffic flow’ we
refer to the total traffic flow at the social optimum, denoted
by yp, since we know that in such a traffic vector the traffic
with largest λij will be sent in order to minimize social cost.

Theorem II.2. At social optimality, all the traffic with λij >
E′(yp) flows through the IXP and all traffic with λij < E′(yp)
does not. Also, λ(y−p ) ≥ E′(yp) ≥ λ(y+p )).

III. EQUILIBRIUM SOCIAL COST ANALYSIS

In this section, we analyze the Price of Anarchy (PoA) for
the traffic exchange game defined in Section II, calculated as
the ratio of Social Cost (SC) at the worst equilibrium to the SC
at the optimal solution (OPT) that minimizes social cost. We
first show that under an “optimal” pricing scheme, the PoA
equals unity, i.e., all equilibria of the traffic exchange game
attain social optimality. We then analyze the PoA attained by
two other natural pricing policies, under two broad classes of
delay functions.

Theorem III.1. The pricing policy p(y) = d′(y)y attains a
PoA of 1.

However, using the social-cost optimal pricing policy (as
given by Theorem III.1) can result in very poor revenue.
To see this, consider a simple (linear) inverse demand curve
λ(y) = 1 − y, where yT = 1. Now let d(y) be small
enough (which also makes E′(y) very small) such that yp
is 0.99 (refer to Figure 1), and hence λ(yp) = 0.01. Then
the social-cost optimal policy (ye = yp) results in an IXP
revenue of at most 0.0099, since the price the IXP charges
is p(yp) ≤ c(yp) = 0.01 and 0.99 units of traffic pay this
price. However, the maximum achievable revenue is about
0.25, which is attained when the per-unit price is chosen to
be about 0.5 resulting in equilibrium traffic of ye = 0.5.
So, the ratio between the maximum achievable revenue to
the achieved revenue for this pricing scheme (which will be
defined as PoA of Revenue in Section IV) is 25.25. Now,
say we set the price so that it results in a slightly lower
equilibrium traffic ye = 0.95 than in the socially optimum
solution; this corresponds to a price that is slightly lower than
0.05. Then we get the PoA of Revenue as approximately 5.26,
which is obviously a lot better than before, without sacrificing
much social welfare. This motivates us to look for alternative
pricing policies that may be slightly sub-optimal in terms of
social cost, but result in good revenue. Our consideration of
proportional pricing, which is analyzed next, is guided by this.



In Section IV we demonstrate that for an appropriately chosen
proportionality constant, proportional pricing is able to attain
good PoA for both social cost and revenue simultaneously.

A. PoA Analysis for Social Cost under Proportional Pricing

Definition III.1. Proportional Pricing with a proportionality
factor β ≥ 1 has a per-unit price p(y) defined as p(y) =
(β−1)d(y). In other words, the effective cost seen by the ISPs
sharing the IXP per unit traffic is c(y) = p(y)+d(y) = βd(y).

Definition III.2. Zero Pricing has a pricing function p(y) = 0,
thus making the effective per-unit cost for ISPs consist only
of congestion cost: c(y) = d(y).

Clearly, zero pricing can be viewed as a special case of
proportional pricing with β = 1.

In the PoA analysis for social cost that follows next,
we consider two broad classes of congestion cost (delay)
functions: 1) polynomial delay functions, 2) queuing delay
functions.6

1) PoA for Social Cost under Polynomial Delay Functions:
The PoA for social cost in our model crucially depends on the
properties and convexity of the congestion cost function d(y).
We make no assumptions about the λij distribution, but only
about the congestion cost functions. We begin by considering
congestion cost (delay) functions which exhibit polynomial
growth rates.

Theorem III.2. For Proportional Pricing (i.e., c(y) = βd(y)),
if congestion cost (delay) function d(y) = ayn with a > 0, n ≥
1, and
i) β ≤ n+1, then PoA is bounded by [β−n( β

n+1 )
(n+1)/n]−1 ≤

n+1
β ;

ii) β > n + 1, then PoA is bounded by β
n+1 [

βn
(β−1)(n+1) ]

n ≤
β
n+1 .

Corollary III.2.1. For Zero Pricing (i.e., c(y) = d(y)), if
congestion cost (delay) function d(y) = ayn for some constant
a > 0, then the PoA is bounded by (1−n(1+n)−(n+1)/n)−1.

Corollary III.2.2. If the delay cost, d(y), satisfies d
dy (by

n) ≤
d′(y) ≤ d

dy (ay
n) for some positive constant b, then the PoA

bounds of Theorem III.2.1 and Corollary III.2 hold with an
additional multiplicative factor of γ = a

b .

Corollary III.2.1 follows directly from part i) of Theo-
rem III.2, and taking β = 1. Corollary III.2.2 shows how our
results generalize when the congestion cost (delay) function
can be sandwiched between two polynomial functions with
the same exponent n.

For convex congestion cost (delay) functions, we can derive
an additional bound on the PoA for social cost, as follows.

6Our PoA results on social cost hold even if there is some internal
operational cost r(y) which the IXP has, and passes it on to its ISPs by
charging each ISP i a value r(y)yi/y. To obtain the same results, we redefine
d(y) to be the total of the congestion (delay) cost to the ISPs and the price
they are paying to the IXP, and p(y) to be the additional profit that the IXP
demands from the ISPs in addition to recovering its operational cost. In other
words, we redefine d(y) to be d(y) + r(y)/y, and then all the same results
hold.

Lemma III.1. For Proportional Pricing (i.e., c(y) = βd(y)),
if congestion cost (delay) is any convex function with d(y) ≤
ayn, then with β > n+ 1, the PoA is bounded by β

2 .

Characteristics of the PoA bounds: The PoA bounds for
different values of n with d(y) = ayn are shown for Zero and
Proportional Pricing in Figure 2. We can see that, although
the equations of the bounds were quite complicated, both the
bounds are quite well-behaved. With Zero Pricing (which is a
special case of Proportional Pricing with β = 1), if the delay
cost is a linear function (n = 1), then the PoA is 1.33, which
means irrespective of the shape of the λ(y) curve (i.e., the
values of the external routing costs of ISPs and the IXP), the
worst equilibrium will only cost 33% more than the optimum
cost. The results also show that the social cost benefits of
proportional pricing (for a well chosen β value) over zero
pricing can be quite significant.

For Proportional Pricing, the case is a bit more complicated
with two variables n and β, still the bounds exhibit a simple
linear-like behavior. If the value of n is increased from 1, then
with β > n+1, the PoA starts to decrease and goes to 1 when
β = n+1; after that with β < n+1 the PoA starts to increase.
The value of PoA becoming 1 at β = n + 1 coincides with
the cost function c(y) becoming equal to E′(y). Overall, the
PoA for social cost remains very small for reasonable values
of n and β, showing that it is possible for IXPs to make a nice
profit while still attaining a traffic exchange solution between
ISPs that is close to optimal in terms of social cost.

2) PoA for Social Cost under Queuing Delay Functions:
Next we consider the queuing delay function7 (modeling the
public switch at the IXP as a single server) expressed as:

d(y) =
1

µ− y
, (6)

where µ is the processing rate of traffic at the public switch.
Note that d(y) can become unbounded as the aggregate traffic
load on the switch approaches capacity µ. These type of
congestion cost (delay) functions are not analyzable in the
same framework as polynomial delay functions considered
earlier; they need to be treated separately, as we do here.
Normally, switches are operated under 60-70% of the full
capacity, as otherwise congestion delays would become too
high to exchange traffic smoothly. This fact will be utilized in
deriving the PoA for social cost.

Definition III.3. Utilization factor, Uf , satisfying 0 < Uf < 1,
is the ratio of traffic load on a network to the total capacity
of the network. If the total traffic at equilibrium is ye, then we
define it to be Uf = ye/µ.

The following results provide the PoA bounds for social
cost under Proportional Pricing and Zero Pricing with queuing

7Note that the queuing delay function we consider represents that of the
basic M/M/1 queue. The PoA results easily generalize to functions up to a
multiplicative constant, i.e., delay functions of the form a/(µ−y); extension
of the results to other more general forms of delay functions remains open
for future investigation.



delay functions. The result for Zero Pricing again follows as
a special case (β = 1) of the Proportional Pricing result.

Theorem III.3. For Proportional Pricing (i.e., c(y) = βd(y))
and congestion cost (delay) function d(y) = 1

µ−y , the PoA is
bounded by

i)
Uf

√
1−Uf
β

(1−Uf )[2−
√

1−Uf ( 1+β√
β
)]

, when Uf ≥ 1− 1
β ;

ii)

(√
β−
√
Uf (β−1)

)2

1−Uf , when Uf < 1− 1
β .

Corollary III.3.1. For Zero Pricing (i.e., c(y) = d(y)) and
congestion cost (delay) function d(y) = 1

µ−y , the PoA is

bounded by
Uf
√

1−Uf
2(1−Uf )(1−

√
1−Uf )

.

Characteristics of the PoA bounds: Figure 3 shows the PoA
upper bound with the increase of utilization factor, Uf of
the switch. We see that the upper bound on PoA becomes
1 when Uf = 1 − 1/β. Also, PoA upper bound increases at
an exponential rate on both sides of Uf = 1 − 1/β, but the
rate of increment is higher on the side where Uf > 1− 1/β.
Typically, routers and switches maintain a utilization factor in
the range of 40% to 70%, and for that operational range we
see that PoA is below 1.2 for β = 2 and 3. This means that
the worst equilibrium has social cost only 20% higher than
the optimum under normal operating loads at the IXP.

B. PoA under Asymmetric External Routing Costs

All the results given until now had the assumption of
λij = λji. However, as mentioned earlier, it is possible
that the two ISPs i and j may encounter different per-unit
costs for routing traffic externally between themselves, due to
differences in transit pricing, or cabling/leasing cost associated
with private peering. In this subsection, we will discuss the
effect of λij 6= λji on the PoA bounds calculated. The
consideration of asymmetry between the external routing costs
makes the proofs substantially longer and more difficult.

The consideration of asymmetric external routing costs
requires us to revisit the definition of equilibrium. From the
discussion of Section II-A, we know that when an ISP i has
some traffic to exchange with ISP j, it compares the value
λij of that traffic with the cost c(y) of exchanging that traffic
via the IXP. As for the current case λij 6= λji, suppose that
λij > c(y) > λji. Hence, ISP i will want to exchange traffic
(since, then, its cost will decrease by λij and increase by
c(y)), whereas ISP j will not want to (since, then, its cost will
decrease by λji and increase by c(y)). Since both participants
are needed to form a peering connection at an IXP, the traffic
exchange will not happen in this case. Thus, in an equilibrium
state, exchange of traffic between two ISPs is only possible
when min(λij , λji) > c(y).

Definition III.4. A traffic flow ~yn with yn = |~yn| is said to
be an equilibrium flow for the case of λij 6= λji, when all the
traffic with min(λij , λji) > c(yn) is sent and the traffic with
min(λij , λji, ) < c(yn) is not sent.

We will now jump directly to the PoA results for the
three cases: socially optimal pricing (Theorem III.4), and
Proportional Pricing (Theorem III.5 and Theorem III.6, which
discusses the cases of polynomial and queuing delay functions,
respectively). Recall that c(y) = p(y) + d(y), and note that
PoA results for Zero Pricing follows from Theorems III.5 and
III.6 by setting β = 1.

Theorem III.4. If c(y) = E′(y), i.e., p(y) = d′(y)y, when
λij 6= λji with α = max{λijλji }, PoA is bounded by 1+α

2 .

Theorem III.5. If c(y) = βd(y) (i.e., Proportional Pricing)
and d(y) = ayn, when λij 6= λji with α = max{λijλji }, PoA is
bounded by
I) ( 1+α2 )( β

n+1 )×(PoA bounds for λij = λji); when β > n+1;
II) ( 1+α2 )× (PoA bounds for λij = λji); when β ≤ n+ 1.

Theorem III.6. If c(y) = βd(y) (i.e., Proportional Pricing)
and d(y) = 1

µ−y , when λij 6= λji with α = max{λijλji }, PoA
is bounded by
I) 1+α

2 ×β(1−Uf )×(the PoA bound when λij = λji) ; when
Uf < (1− 1

β );
II) 1+α

2 × (the PoA bound when λij = λji); when Uf ≥
(1− 1

β ).

Roughly speaking, Theorems III.4-III.6 state that when the
notion of equilibrium is defined as in Definition III.4, the
PoA bounds for the asymmetric external routing cost scenario
differs from the symmetric case by about 1+α

2 , where α
represents the degree of asymmetry between the costs. Note
that in the above theorems, the degree of asymmetry α
is calculated only over ISP pairs i, j at the IXP that are
interested in sending traffic to one another, i.e., Bij > 0.

Paid Peering. Note that the PoA bounds in Theorems III.4-
III.6 are large when the degree of asymmetry in the external
routing costs is high. However, our simulation results in
Section IV show that, in practice, the efficiency at equilibrium
compared with the optimum is typically much better than
these worst case bounds. Further, when one ISP encounters
a much higher cost than the other in enabling traffic exchange
between the two, paid peering would make sense. Indeed,
paid peering has been suggested by some as a solution to
growing asymmetry in costs experienced (or benefits realized)
between two peering ISPs [14]. The following result states
that in the case of asymmetric costs, if every pair of ISPs
share the external routing costs via Nash Bargaining [35], it
results in the same PoA as in the symmetric case. This is
because if i pays λij and j pays λji (where λji > λij , say)
in external routing costs, it is not difficult to see that the Nash
Bargaining solution would result in a payment (“settlement”)
of (λji − λij)/2 from i to j. Thus, when using a Nash
Bargaining protocol, one ISP would pay the other exactly
enough so that the effective external costs for not using the
IXP would become equal, thus resulting in the same bounds
as if λij were always equal to λji.

Theorem III.7. If ISPs are allowed to pay each other (paid



TABLE II
SUMMARY ON IXPS AND ISPS IN THE USA

Total IXPs (PoP locations) 140
Total Facilities 1078
Facilities supporting public peering only 293
Facilities supporting both type of peering 830
Total ISPs 2821
ISPs doing public peering only 723
ISPs doing private peering only 728
ISPs doing both types of peering 1370

peering), and use Nash Bargaining to determine payments,
then the PoA bounds are the same as in the symmetric case
(i.e., as in Section III-A).

IV. SIMULATION RESULTS

A. Data Collection

To achieve realistic traffic demand values Bij and external
routing costs λij , data from PeeringDB and CAIDA databases
were collected and analyzed. PeeringDB was utilized for
obtaining information about the locations of the IXPs, the
ISPs peering in that location (also called Point-of-Presence
(PoP)) and the port capacity each ISP has purchased. A short
summary of the current statistics of ISPs and IXPs in the
USA is given in Table II; note that an IXP can constitute
of multiple facilities, which are typically located close to one
another. Moreover, a map of the USA showing the location of
the IXPs and the number of ISPs in those IXPs are shown in
Figure 5. On the other hand, we utilized CAIDA to obtain the
number of active routers and their approximate location (at a
city level) for each ISP, to approximate the amount of traffic
that may be generated for that ISP at that location.

B. Simulation Setup

1) Generating External Routing Cost (λ) values: To gen-
erate the λ(y) curves we need two sets of values: i) the
traffic demand between ISPs (Bij), and ii) the per-unit external
routing costs (λij) for that traffic. While the exact values
for these are very difficult to estimate closely, we make
several reasonable approximations based on the PoP locations
(obtained from PeeringDB), router densities (obtained from
CAIDA) and previously published models on traffic demand
and pricing. The traffic demand between two ISPs serving at
two different PoP locations is determined using the gravity
model [36]. If ISP i has RA number of routers serving at
location A and ISP j has RB number of routers serving at
location B, then the traffic demand between these two ISPs for
these two locations is thus approximated as YAB = RA×RB

d2AB
.

Then the summation of all these values over all the possible
pairs of PoP locations gives us the total traffic demand between
these two ISPs, hence Bij =

∑
A,B YAB . To calculate the

external routing cost for Bij we follow [29], which models
transit costs as being linearly or logarithmically proportional
to the distance that traffic has to travel. Since traffic between
different locations of the same ISP pair (say YAB) is going
to travel different distances (dAB), we use the weighted
average of these distances: for some ISP pair (i, j), we set

dij =
∑
A,B YABdAB∑
A,B YAB

. Thus, we have the per-unit external
routing cost as, λij = a × dij or λij = a × log(dij), for
an appropriately chosen constant a.

Note that the total traffic Bij of ISP pair (i, j) may be
split across the different PoP locations that the two ISPs have
in common. To find how much of of this traffic will flow
through each of these common points, we used three different
approaches. The first approach sends all the traffic through the
IXP that minimizes the total end-to-end geographical distance;
the second approach divides the traffic equally among all
common IXP locations; and third approach splits the traffic
as inversely proportional to total end-to-end geographical
distance of each path. Although these three methods yielded
different traffic values at the IXPs, the nature of the external
routing cost curves (λ(y) curves) were quite similar. Since
our performance results mainly depend on the shape of these
λ(y) curves and they ended up being similar across the three
approaches; therefore, in the following we only present the
results for the third approach. Figure 4 shows the λ(y) curves
for the largest (in terms of number of participating ISPs) 28
IXPs in USA, as generated by this approach.

2) Simulations: Simulations were done for the largest 28
IXPs among the 140 IXPs present in USA. Most of the remain-
ing (smaller) IXPs have a very small number of participating
ISPs, resulting in a few discrete λ(y) values and making
the study of the equilibrium uninteresting. Also, from the
PeeringDB port capacity data, it was found that more than 95%
of the total port capacities (which can be seen as an indicator
of the traffic flowing through these IXPs) are accounted for by
considering the largest 28 IXPs. To find the PoA values for
proportional pricing with polynomial delay functions, we used
different values of a, where d(y) = ayn; the PoA value was
calculated considering the delay function (or, equivalently, the
value of a) that resulted in the worst PoA. Since the PoA value
also critically depends on the λ(y) curves which will differ
across IXPs, both worst and average case PoA values were
calculated by taking the the worst value and average values
over all the λ(y) curves, respectively. Due to space limitations,
we only show the average PoA; the worst-case PoA results
were quite close of the theoretical bounds derived in Section III
showing that the bounds are fairly tight. For the case of
queuing delay functions, the λ(y) curves were normalized with
respect to the value of µ (recall that d(y) = a

µ−y ), from which
results for different utilization factors (Uf ) were generated.

C. Results and Discussion

The average value of PoA (which we denote as Avg(PoA))
for Proportional pricing obtained from simulation, along with
their corresponding theoretical bounds are plotted in Fig-
ures 6 to 9. To find Avg(PoA), the value of a (recall,
d(y) = ayn) that resulted in the worst PoA value for each
λ(y) curve was considered; the corresponding PoA values
were then averaged over all 28 λ(y) curves. In other words,

Avg(PoA) =

∑N
i=1 max

a
PoAi

N , where PoAi is the PoA values
found using the ith λ(y) curve and N is the total number



Fig. 4. Generated external routing cost (λ(y))
curves.
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of λ(y) curves, once for each of the N = 28 IXPs under
consideration. In addition to the PoA for social cost (SC),
we also plot the PoA for the revenue (Rev) earned by the
IXP. The definition of PoA of revenue is similar to the
definition of PoA of social cost: we define it as the ratio
of maximum achievable revenue for some λ(y) curve to the
revenue attained at equilibrium, where revenue of the IXP
is, Rev(~y, p(y)) = p(y)

∑
i

∑
j yij = 2p(y)y. In Figures (6

to 9), the curves marked Theo represents the corresponding
theoretical bounds; whereas the curves marked Sim are the
PoA values found through simulation.

We note from Figures 6 and 8, that the Avg(PoA) values
obtained through simulation are well below their correspond-
ing theoretical bounds. For the case of Max(PoA) values,
the same trend was observed, but unlike the Avg(PoA)
values, the Max(PoA) values followed the theoretical bounds
very closely. From Figures 6 and 7 we can observe that
the Avg(PoA(SC)) and Avg(PoA(Rev)) for proportional
pricing with polynomial delay are quite small for a wide range
of β (from 1 to 8) and n (from 1 to 4). The same can be said
about Avg(PoA(SC)) and Avg(PoA(Rev)) for proportional
pricing with queuing delay functions as well, where instead
of n, the value of Uf is varied (Figures 8 and 9). Looking
closely at Avg(PoA(SC)) for both type of delay functions
we see that if β is chosen to be within a value of 2 to 4,

then the PoA values are less than 1.5. On the other hand,
the Avg(PoA(Rev)) for both type of delay functions is quite
small (less than 1.5) for β = 3 to 5. Since IXPs may want
to make good revenue while also keeping a low social cost,
we observe from our results that β = 3 or 4 can be a good
choice for any IXP to get a good balance between Revenue
and Social Cost. From Figures 6 and 8, we also observe that
proportional pricing with an appropriate value of β (say 2 to
4) attains better social cost compare to zero pricing (the β = 1
case), while providing the IXP with a positive profit. Note that
zero pricing only lets the IXP recover its costs (i.e., the IXP
makes no profit), and is therefore suited for non-profit IXPs.
Our results show that if for-profit IXPs employ proportional
pricing (with a carefully chosen proportionality constant) they
can not only attain near-optimal profit, but can also induce
traffic exchanges that are near-optimal in terms of social cost.

V. CONCLUSION

We considered the question of pricing of ISP traffic at
IXPs, with the goal of attaining an equilibrium solution that
ensures efficient social cost (smaller value of PoA). Through
theoretical analysis we have bounded the PoA(SC) values
for proportional pricing, which maintained a small value for
a wide range of model parameters. Simulations generated
from real data showed that a good tradeoff can be achieved



where both the SC and IXP Revenue are close to the max-
imum achievable values. A practical benefit of proportional
pricing is that a good choice of the price (proportionality
constant) does not require the IXP to know the external
routing costs of the participating ISPs. This corresponds to
the price proportionality factor (β − 1) being about 2 to 3
times the congestion cost, for which the PoA for both social
cost and revenue end up being quite small (i.e, less than 2 in
general, and often quite close to 1), for both polynomial and
queuing congestion cost (delay) functions. Our results also
show the performance benefits of proportional pricing (with
the proportionality constant chosen appropriately) over a zero
pricing scheme where the ISPs experience congestion but no
additional price is charged by the IXP.
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[12] T. Böttger, G. Antichi, E. L. Fernandes, R. di Lallo, M. Bruyere,
S. Uhlig, and I. Castro, “The Elusive Internet Flattening: 10
Years of IXP Growth,” arXiv e-prints, 2018. [Online]. Available:
https://arxiv.org/abs/1810.10963

[13] M. S. Schwartz and E. Mershon, “Paid Internet Peering on the Rise,
Disputes Possible,” Communications Daily, vol. 33, no. 126, 2013.

[14] X. Wang, Y. Xu, and R. T. B. Ma, “Paid Peering, Settlement-Free
Peering, or Both?” in IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, 2018, pp. 2564–2572.

[15] M. O. Jackson and A. Wolinsky, “A Strategic Model of Social and
Economic Networks,” Journal of economic theory, vol. 71, no. 1, pp.
44–74, 1996.

[16] V. Bala and S. Goyal, “A Noncooperative Model of Network Formation,”
Econometrica, vol. 68, no. 5, pp. 1181–1229, 2000.

[17] J. Derks, J. Kuipers, M. Tennekes, and F. Thuijsman, “Local Dynamics
in Network Formation,” in Proc. Third World Congress of The Game
Theory Society. Citeseer, 2008.

[18] B. Dutta, S. Ghosal, and D. Ray, “Farsighted network formation,”
Journal of Economic Theory, vol. 122, no. 2, pp. 143–164, 2005.

[19] M. O. Jackson, “A Survey of Network Formation Models: Stability
and Efficiency,” Group formation in economics: Networks, clubs, and
coalitions, vol. 664, pp. 11–49, 2005.

[20] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and
S. Shenker, “On a Network Creation Game,” in Proceedings of the
twenty-second annual symposium on Principles of distributed comput-
ing, 2003, pp. 347–351.

[21] J. Corbo and D. Parkes, “The Price of Selfish Behavior in Bilateral
Network Formation,” in Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, 2005, pp. 99–107.

[22] E. Tardos and T. Wexler, “Network Formation Games and the Potential
Function Method,” in Algorithmic Game Theory, N. Nisan and et. al.,
Eds. Cambridge University Press, 2007, ch. 19, pp. 487–516.
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