
Parsimonious Edge Computing to Reduce
Microservice Resource Usage

Mathieu Simon∗, Alessandro Spallina†, Loı̈c Dubocquet∗, Andrea Araldo∗
∗Télécom SudParis - Institut Polytechnique de Paris, first-name.last-name@telecom-sudparis.eu

†Dept. of Electrical, Electronics and Information Engineering, University of Catania

Abstract—Cloud Computing (CC) is the most prevalent
paradigm under which services are provided over the Internet.
The most relevant feature for its success is its capability to
promptly scale service based on user demand. When scaling,
the main objective is to maximize as much as possible service
performance. Moreover, resources in the Cloud are usually so
abundant, that they can be assumed infinite from the service
point of view: an application provider can have as many servers
it wills, as long it pays for it.

This model has some limitations. First, energy efficiency is
not among the first criteria for scaling decisions, which has
raised concerns about the environmental effects of today’s ”wild”
computations in the Cloud. Moreover, it is not viable for Edge
Computing (EC), a paradigm in which computational resources
are distributed up to the very edge of the network, i.e., co-located
with base stations or access points. In edge nodes, resources are
limited, which imposes different parsimonious scaling strategies
to be adopted.

In this work, we design a scaling strategy aimed to instantiate,
parsimoniously, a number of microservices sufficient to guarantee
a certain Quality of Service (QoS) target. We implement such
a strategy in a Kubernetes/Docker environment. The strategy
is based on a simple Proportional-Integrative-Derivative (PID)
controller. In this paper we describe the system design and a
preliminary performance evaluation.

I. INTRODUCTION

Despite the many improvements in resource optimization
for cloud computing, these remote systems fall victim to
unexpected variations in service demands. In order to always
guarantee service requirements, overprovising of computation
resources can be adopted in the Cloud, with consequent eco-
nomic and environmental costs. Due to the limited resources
in the Egde, overprovisioning is not an option for Edge
Computing (EC), where instead allocation strategies should
be parsimonious, i.e., use only the resources that are needed
by a certain service and not more than those.

Microservice architectures have been proposed to easily
maintain and scale a service with respect to the demand and
have also been considered for EC [1]. While infrastructure
owners/administrators usually aim to guarantee a good QoS
we believe that, additionally, microservice architectures are an
opportunity to achieve parsimony and finely tune the resource
consumption of an application by dynamically allocating the
right amount of microservices. In our vision, parsimony is
particularly important in edge nodes, where computational
resources are limited (not infinite, as assumed in the cloud). In
such cases, if multiple applications co-exists in the same edge
node, it is crucial that each of them consumes the right amount

of resources, not more, in order to leave room to the other
applications. At the same time, energy consumption can be
dramatically reduced by reducing the number P of processing
microservices running [2], [3]. However, if the number P of
microservices is reduced too much, service requirements could
not be met anymore. Therefore, a cautious control law must be
adopted in order to find the “right” P . The calculation of this
law must be light enough not to impact resource consumption
at the edge. The process of scaling up and down the number
P of microservices is called horizontal scaling.

Our contribution in this paper is to demonstrate the feasi-
bility of Parsimonious Edge Computing (PEC). To this aim,
we present a proof of concept of a microservice architecture
managed to limit the consumed resources. We implement it in
a Docker / Kubernetes-orchestrated environment, where clients
generate a load of requests and multiple microservices can
serve such requests. Requests are placed in a queue. A con-
trol law, based on Proportional-Integrative-Derivative (PID),
performs horizontal scaling with the goal of maintaining such
a queue on a certain target level. Differently from adopting
PID in the Cloud, where we can afford complex monitoring
systems [4], we propose a lightweight architecture.

Preliminary results obtained in a small scale testbed show
that the system is able to dynamically orchestrate cre-
ation/removal of microservices in order to center the target.
Our architecture and experiments are reproducible and the
code is released as open source [5].

II. MODEL

Fig. 1. Design of the model

Fig. 1 depicts the implemented system. Users generate a
sequence of service requests, e.g., antivirus calculations, or

ISBN 978-3-903176-43-0 © 2021 IFIP

2021 33nd International Teletraffic Congress (ITC 33)



livecast video transcoding offloaded from end devices to an
edge node [6]–[8]. Requests are placed at the edge in a queue.
There are P microservices, denoted with µservices hereafter,
able to process such requests. While in our experiments
they are Docker containers, they could also be ephemeral
execution environments in the context of serverless computing.
Immediately after a µservice becomes free, it dequeues a
request and serves it, which takes a certain processing time.
In other words, our system is a multiserver queue.

A Controller dynamically adjusts the number P of
µservices. The controller monitors at several instants t the
queue size W (t), i.e., how many requests are still waiting in
the queue to be served. Based on this observation, it adjusts
the number P of µservices. This adjustment is calculated
with a simple PID control law. In particular, the Propor-
tional–Integral–Derivative controller (PID) issues a correction
Pout(t) (see (2)), i.e., how many µservices should be added (if
Pout > 0) or removed (if Pout < 0). This correction Pout(t) is
added to the number P (t) of currently deployed µservices and
gives the number of µservices wanted (see (1)), i.e., the ones
that are necessary to drive the queue length W (t) close to a
pre-fixed target T (which is equivalent to keep the error (3)
as low as possible). The control law is summarized by the
following equations:

µservices wanted Pw(t) = P (t) + Pout(t) (1)

Control variable Pout(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dτ
e(t)

(2)
Error value e(t) =W (t)− T (3)

By imposing the number W (t) to be close to the target,
we can limit the response time since we prevent the queue
to explode. Consider a low latency application, with real time
requirements, i.e. requests have deadlines of few milliseconds
and failing to serve them within the deadline is equivalent to
losing the requests. In this case, we can set the target queue
size T to a very small number. Our control law will aim to
achieve such a target by deploying just the right amount of
µservices, in order not to over-use computational resources.

III. IMPLEMENTATION

We create a Docker/Kubernetes cluster that implements the
concept of Parsimonious Edge Computing. In what follows,
we denote with italic font the service requests generated by
users (simply request hereafter) and with underelined font the
signaling messages needed to manage the system.

a) Service request handling.: We emulate users, by
generating a sequence of service requests directed to the
Gateway. Although we do not deal with encryption in this
preliminary work, in the future extensions the Gateway would
act as TLS termination proxy. This latter (i) places the requests
into a Kafka queue [9] of one topic (therefore, the gateway
acts as a “Kafka producer”) and (ii) sends a notification to
the Controller, via another HTTP GET, with an ID of the

Fig. 2. Number of requests in queue and µservices (moving average, 10
samples per window.

request. The gateway increments these IDs at every request so
that consecutive requests have consecutive IDs. The Controller
is a Docker container, which implements a web server able
to handle HTTP requests. The controller is the only Kafka
“consumer”, i.e., it dequeues requests from the queue via
Kafka Python API [10]. The Controller computes the queue
length W (t) as the difference between the ID of the last
arrived request in the queue and the ID of the lastly dequeued
request. The µservice that processes the service requests
is a microservice implemented as a Docker container. We
implement a pull-based mechanism: (i) whenever the µservice
becomes free (it has finished to process the previous request),
it asks for a new requests by sending an HTTP GET to the
Controller, (ii) the Controller dequeues a request from the
queue and (iii) sends it to the µservice via an HTTP Reply.

b) Dynamic microservice deployment.: Each µservice
has an ID assigned by the Controller, which keeps a list of
active µservices.

Whenever the Controller receives a notification by the
Gateway of a new request arriving in the queue, it checks
the number P (t) of active µservices and compare it with the
number Pw(t) of µservices wanted, established by PID control
law. If Pw(t) > P (t), the Controller creates Pw(t) − P (t)
new µservices, assigning new IDs using Kubernetes primitives.
Suppose that t1 and t2 are the arrival times of two consecutive
requests. In the interval t ∈ [t1, t2[, by construction (1)-
(3), W (t) ≤ W (t1) because requests can only leave the
queue. Therefore, e(t) ≤ e(t1), i.e., the PID law would never
trigger creation of new µservices between two service requests
arrivals.

At any instant t when a µservice s asks the Controller for
a new service request, the latter first checks if Pw(t) < P (t):
in this case, there are in the system more µservices than
needed and the controller destroys µservice s via Kubernetes
primitives. This mechanism ensures that we never destroy any
µservice that is currently processing a request.

IV. EVALUATION

We generate requests with exponentially distributed inter-
arrival time with mean 1 second. The time for one µservice to
process one request is exponentially distributed with mean 5
seconds. We fix the target T of requests waiting in the queue



to 25. Based on observation, we tune the PID parameters
to Kp = −0.9, Ki = 0 and Kd = −0.2. Note that the
creation of µservices requires some non-negligible startup
time [11], and thus the effects of the control values coming
from the PID controller are delayed. Moreover, to keep you
monitoring environment lightweight, we only get the current
queue length W (t) when new requests arrive or a µservice
asks for a new request to consume. Therefore, we sample
the queue at non-regular time intervals. Moreover, there is
an imbalance between creation and destruction of µservices:
we destroy them, at most one at a time, when a µservice has
finished processing its current request. On the other hand, we
can create many µservices in one shot. This results in the
visible imbalance between the above-target and the below-
target values of W (t) in Fig. 2. Despite such difficulties, our
system is able to get the queue length W (t) around the target.

V. OTHER HORIZONTAL SCALING STRATEGIES FOR
MICROSERVICE ARCHITECTURES

The subject of our work is horizontal autoscaling (Sec. I)
to which we limit our discussion. Vertical autoscaling [12] is
out of scope.

The standard horizontal scaling strategy in Kubernetes [13]
requires the administrator to decide a threshold on CPU
utilization. Once a µservice exceeds such a threshold, new
µservices are created. However, there is no clear relation
between application QoS and CPU utilization, so that it is
difficult, if not impossible, for the administrator to set the
right threshold for different classes of applications. As a
consequences, if the administrator wants to be sure a certain
QoS is satisfied, he needs to set stringent threshold, which
may deploy more µservices than actually needed, and which
goes against the parsimony that we advocate here.

In Knative autoscaling [14], instead, the administrator sets a
“concurrency” value x, and the strategy deploys the amount of
µservices so that each one gets x requests. As for the standard
Kubernetes horizontal scaling, understanding what is the right
value to set is challenging. Similarly, OpenFaaS triggers
µservices based on thresholds, defined on incoming requests
per second (RPS). It has been found that such concurrency- or
RPS- based approaches are inefficient to meet request demand
while limiting the number of triggered µservices [15, Sec. 5].

The horizontal scaling of a recent strategy, called Libra [16],
scales µservices based on heuristic rules, which consists in
thresholds on the requests served per second and request
serving time. It will be interesting in our future work to
compare our control-theoretical low with Libra’s heuristic.

VI. CONCLUSION

We have proposed a lightweigt architecture and control
law for Parsimonious Edge Computing. We have shown an
implementation based on Docker/Kubernetes/Kafka and re-
leased it as open source. We have numerically verified that
our system manages to meet some pre-defined system-level
performance target while limiting the amount of microservices,
via dynamic allocation/destruction. In future work, we will

compare our strategy with other horizontal scaling techniques
(Sec. 5). We will implement with this model different classes
of real services, with different requirements (low latency, high
throughput). We will also consider different concurrent ser-
vices running at the same node and competing for resources.
Other control strategies, e.g., Reinforcement Learning, will be
considered.

VII. ACKNOWLEDGMENT

This work has been carried out in the context of the Chaire
“Les Réseaux du Future pour les Services de Demain” at the
Très Haut Débit (THD) Platform of Télécom SudParis.

REFERENCES

[1] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via
docker container migration,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, 2017, pp. 1–13.

[2] E. A. Santos, C. McLean, C. Solinas, and A. Hindle, “How does docker
affect energy consumption? Evaluating workloads in and out of Docker
containers,” Journal of Systems and Software, vol. 146, no. July, pp.
14–25, 2018.

[3] P. E. N, F. J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of
docker containers based on hardware utilization,” in 2015 International
Conference on Control Communication Computing India (ICCC), Nov
2015, pp. 697–700.

[4] M. Cerqueira De Abranches and P. Solis, “An algorithm based on
response time and traffic demands to scale containers on a Cloud
Computing system,” in IEEE International Symposium on Network
Computing and Applications, NCA, 2016.

[5] M. Simon, “Parsimonious Edge Computing: GitHub Repository,”
https://github.com/hemesipp/MDP-container-scaling-prevision, 2021.

[6] Y. Kim, H. W. Lee, and S. Chong, “Mobile Computation Offloading
for Application Throughput Fairness and Energy Efficiency,” IEEE
Transactions on Wireless Communications, vol. 18, no. 1, pp. 3–19,
2019.

[7] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for
computation offloading in mobile edge computing,” IEEE Transactions
on Communications, vol. 66, no. 12, pp. 6353–6367, 2018.

[8] Q. He, C. Zhang, X. Ma, and J. Liu, “Fog-Based Transcoding for Crowd-
sourced Video Livecast,” IEEE Communications Magazine, vol. 55,
no. 4, pp. 28–33, 2017.

[9] R. Shree, T. Choudhury, S. C. Gupta, and P. Kumar, “Kafka: The modern
platform for data management and analysis in big data domain,” in
2017 2nd International Conference on Telecommunication and Networks
(TEL-NET). IEEE, 2017, pp. 1–5.

[10] “Kafka Python client,” https://github.com/dpkp/kafka-python, 2020.
[11] C. C. Spoiala, A. Calinciuc, C. O. Turcu, and C. Filote, “Performance

comparison of a webrtc server on docker versus virtual machine,” in
2016 International Conference on Development and Application Systems
(DAS). IEEE, 2016, pp. 295–298.

[12] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring potential
for non-disruptive vertical auto scaling and resource estimation in
kubernetes,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 2019, pp. 33–40.

[13] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, “Horizon-
tal pod autoscaling in kubernetes for elastic container orchestration,”
Sensors, vol. 20, no. 16, p. 4621, 2020.

[14] “Configuring Knative Serving autoscal-
ing,” https://docs.openshift.com/container-
platform/4.5/serverless/knative serving/configuring-knative-serving-
autoscaling.html.

[15] J. Li, S. G. Kulkarni, K. Ramakrishnan, and D. Li, “Understanding open
source serverless platforms: Design considerations and performance,” in
Proceedings of the 5th International Workshop on Serverless Computing,
2019, pp. 37–42.

[16] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of Kubernetes
pods,” in EEE/IFIP Network Operations and Management Symposium
- Management in the Age of Softwarization and Artificial Intelligence,
no. 1, 2020, pp. 8–12.


