
Robust Wireless Scheduling under Arbitrary
Channel Dynamics and Feedback Delay

(Invited Paper)
Jiatai Huang

IIIS, Tsinghua University
hjt18@mails.tsinghua.edu.cn

Longbo Huang
IIIS, Tsinghua University

longbohuang@tsinghua.edu.cn

Abstract—Designing efficient scheduling algorithms is crucial
to the development of modern wireless networks. In this paper,
we study a wireless network model consisting of one central
base-station and K mobile users. Each time the base-station can
simultaneously transmit to 1 ≤M ≤ K users. The channel states
change over time adversarially, and the feedback of transmission
outcome can experience arbitrary delays. The objective of the
base-station is to search for a policy to maximize the overall
transmission success rate. We propose a scheduling algorithm
named Banker-OMD-Scheduling for this setting, based on
a recent banker online mirror descent technique [1]. We show
that Banker-OMD-Scheduling guarantees that the total regret
over a finite time horizon T is O(

√
MK(

√
T+
√
D logD)) where

D is the total feedback delay.
Index Terms—wireless, scheduling, online bandit optimization,

delayed feedback

I. INTRODUCTION

In the past decade, due to the rapid development of mobile
technology, wireless networks have become an irreplaceable
part of the world-wide communication infrastructure. Among
the many technical challenges, scheduling has been one of the
most fundamental problems in wireless network control and
has been extensively studied, e.g., [2], [3], [4], [5] and [6].
However, existing results often focus on stochastic settings and
assume instantaneous feedback for the transmissions. Thus,
they do not directly apply to scenarios where the system
dynamics are non-stationary.

In this paper, we study a model for wireless network
under adversarial channel dynamics with delayed feedback.
Specifically, we consider the following discrete-time model.
There is a base-station and K mobile users. In each time step,
the base-station can choose 1 ≤ M ≤ K users and transmit
to them. The channel states can change over time arbitrarily.
The base-station has very limited knowledge on the current
channel states, and needs to schedule only based on bandit
feedback about the amount of data transmitted. That is, the
base-station can only know the number of bits transmitted to
the M selected users after the decision has been made, and it
gets no information about the links of the remaining K −M
users. Moreover, due to dynamics, the transmission feedback
may arrive with delays. Furthermore, the base-station is given
no knowledge about the delay length of each time step until
this feedback arrives. The objective of the base-station is to

find a scheduling policy to decide which users to transmit and
optimize the total throughput.

This setting is very general and can be used to model
many different communication processes built on different
physical media. However, it is also challenging due to the
arbitrary channel dynamics and feedback delay. To address
the difficulties, we propose a scheduling algorithm based
on the Banker-OMD framework recently developed in [1],
and design Banker-OMD-Scheduling. We prove that
Banker-OMD-Scheduling achieves an Õ(

√
T +

√
D)

total regret under any finite time horizon length T .1 Here D
denotes the total feedback delay of all transmissions over the T
time steps, and the regret is defined as the difference between
total amount of data transmitted under our algorithm and an
optimal static policy serving a fixed subset of M users. Note
that under moderate delays, for example, D = O(T), our
algorithm achieves Õ(

√
T) total regret, which means that for

a sufficiently large time horizon length, the relative overhead
of our scheduling is vanishing.

Online learning based scheduling algorithms have been
proposed and studied in the scheduling literature, e.g., [7],
[8] and [9], where regret is also adopted as the primary
performance metric. Compared to these prior results, our work
differs in that we allow serving multiple users simultaneously
under arbitrary channel conditions, and our algorithm is robust
to feedback delay. Our formulation is similar to the M -
set adversarial semi-bandit problem [10], where there is no
feedback delay and there have been algorithms achieving
O(
√
MKT) total regret, e.g., [10]. In the terms of bandit

optimization problems, each user in our setting is a bandit
arm, the base-station is an agent that needs to select a subset
of arms of size M at each time step. Another previous online
optimization problem similar to our setting is the adversarial
MAB problem with feedback delays, which is a special case
of our setting where M = 1, and there have been algorithms
achieving O(

√
KT +

√
D logK) total regret [11]. Hence, our

setting can be viewed as a hybrid generalization of these two
aforementioned online optimization problems.

1Throughout this paper, we use the Õ notation to suppress poly-logarithmic
factors in T .

1

ISBN 978-3-903176-43-0 © 2021 IFIP

2021 33nd International Teletraffic Congress (ITC 33)

II. NOTATION

We use [K] to denote the set {1, 2, . . . ,K}. 0 denotes the
zero vector. Let f be any strictly convex function defined on
some convex A ⊆ RK . For any x, y ∈ A, if ∇f(x) exists, we
use Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉 to denote the
Bregman divergence between y and x induced by f . We use

f∗(y) := sup
x∈RK

{〈y, x〉 − f(x)}

to denote the convex conjugate of f . Define ∆[M,K−1] to be
the following set

∆[M,K−1] :=

{
x ∈ RK+ :

K∑
i=1

xi = M

}
.

Unless stated otherwise, for any strictly convex function f , we
define f̄ as follows: for all x ∈ RK ,

f̄(x) :=

{
f(x) x ∈ ∆[M,K−1]

∞ x /∈ ∆[M,K−1].

We say a convex function f is Legendre if
1) int(A) is non-empty;
2) f is differentiable on int(A);
3) limn→∞ ‖∇f(xn)‖2 → ∞ for any sequence (xn)∞n=1

in int(A) converging to some x ∈ ∂ int(A).

III. PROBLEM SETTING

We consider a slotted-time system containing a central base-
station and K users. We assume the base-station can serve
1 ≤M ≤ K users at a time, by performing data transmission
over the M channels to the users. Denote by A the set of
all feasible choices of subset of users to serve, i.e., A :=
{S ⊆ [K] : |S| = M}.

The state of each channel at each time slot is assumed to
vary arbitrarily. Specifically, denote by rt,i the amount of data
that will be transmitted to user i if the base-station decides to
serve user i at time t. rt,i is determined by the environment
at the beginning of time slot t, simultaneously when the base-
station makes its decision (that is, to choose a subset of users
of size M to serve). We assume all rt,i values are in [0, 1] and
make no further assumptions on rt,i’s. i.e., the environment
can be arbitrary.

Denote by St the set of users the base-station chooses to
serve at time t, and let At,i be the indicator of whether user
i is served at time slot t, i.e., At,i := 1[i ∈ St]. For any time
horizon of finite length T , the total amount of data successfully
transmitted is

UT :=

T∑
t=1

∑
i∈St

rt,i =

T∑
t=1

K∑
i=1

At,irt,i.

For each time index t, the values of rt,· are not known
to the base-station. Only values of the served users at time t
will be revealed to the base-station eventually. To be specific,
there is a delay length sequence (dt)

∞
t=1, dt ∈ N, chosen by

the environment beforehand (unknown to the base-station a-
priori). Suppose at time t the base station serves users in Si.

Then, at the end of time slot t+dt, the base-station will receive
a vector

r̃t = (At,1rt,1, At,2rt,2, . . . , At,Krt,K)

from the environment.
The design objective of a scheduling policy is to maximize

UT , the total data transmitted. Since in many cases we are
dealing with an indefinite time horizon rather than optimize
over a fixed finite T , it is more convenient to introduce
the classical performance metric called the pseudo-regret
(referred to as regret below for convenience):

Definition 1 (Pseudo-regret of a Scheduling Policy). We define

RT := max
S∈A

E[

T∑
t=1

∑
i∈S

rt,i −
T∑
t=1

∑
i∈St

rt,i] (1)

to be the pseudo-regret of an MAB algorithm, where the ex-
pectation is taken with respect to both the scheduling policy’s
internal randomness and randomness from the environment.

It is easy to see that maximizing UT is equivalent to min-
imizing RT . Following the convention in bandit optimization
problems, we are asking for a scheduling policy achieving
o(T) total regret.

Our formulation can be viewed as a bandit optimization
problem, where each user in our setting is a bandit arm,
the base-station is an agent that needs to select a subset of
arms of size M at each time step, and the reward received
is total amount of data transmitted. In this regard, our model
generalizes the M -set adversarial semi-bandit problem [10],
where there is no feedback delay, i.e., all dt’s are equal to
0, and there have been algorithms achieving O(

√
MKT)

total regret, e.g., [10], and the adversarial MAB problem
with feedback delays, which is a special case of our setting
where M = 1, and there have been algorithms achieving
O(
√
KT +

√
D logK) total regret, e.g., [11].

Follow the convention of online optimization problems with
delayed feedback, we will heavily use the following two
quantities in derived regret bounds, the individual delay upper
bound d := maxt∈[T] dt and total delay D :=

∑T
t=1 dt.

Unless stated otherwise, we will use

Ft = σ (S1, . . . , St, r̃11[1 + d1 ≤ t], . . . , r̃t1[t+ dt ≤ t])

to denote the filtration of σ-algebra when studying random
quantities indexed by time.

Below, we will present our algorithms and results. For ease
of presentation, all proofs are presented in the appendix.

IV. PRELIMINARIES

Our proposed algorithm for this wireless scheduling prob-
lem is based upon a recent novel Online Mirror Descent
(OMD) framework called Banker-OMD [1], which is a
natural generalization of classical OMD method to robustly
handle feedback delays in online optimization problems. In
this section we present a brief overview of the classical OMD
method and Banker-OMD, and apply them to solving the

2

M -set Semi-Bandit problem. The algorithms here will serve
as the building block for designing the scheduling algorithm.

A. Online Mirror Descent for Non-delayed M-set Semi-Bandit

Mirror descent is a concept originated in classical optimiza-
tion [12]. To apply mirror descent in online bandit optimization
problems, the typical approach is to design an unbiased
estimator for the true reward (or loss) vector, which is rt in
our setting. Then, regard this loss estimator as a “gradient”
and use it to take a gradient descent step, where the update
is performed in the dual space induced by some Legendre
function Ψ rather than in the primal space. Algorithm 1 below
presents our algorithm for solving the M -set Semi-Bandit
problem based on OMD.

Algorithm 1: Online Mirror Descent for Non-delayed
M -set Semi-Bandit
Input: Number of arms K, Number of arms to pull at

each time step M , time horizon length T ,
Legendre function Ψ : RK+ → R, initial mixed
action x1 ∈ ∆[M,K−1], action scales σ1, . . . , σT

Output: A sequence of actions S1, S2, . . . , ST ∈ A
1 for t = 1, 2, . . . , T do
2 Let pt be a distribution on A such that

xt,i = PS∼pt [i ∈ S] for all i ∈ [K];
3 Sample St ∈ A according to pt, serve the M users

in St, receive the feedback vector r̃t;
4 Compute the importance sampling loss estimate

vector l̃t by l̃t,i ← (1−r̃t,i)At,i

xt,i
;

5 xt+1 ← ∇Ψ̄∗(∇Ψ(xt)− 1
σt
l̃t);

6 end

The choice of l̃t in Algorithm 1 (Line 4) guarantees that
E[l̃t | Ft−1] = 1 − rt. Recall that in our problem setting, all
reward values picked by the environment are [0, 1]-bounded,
equivalently we can regard serving user i at time t as an action
that incurs a loss of 1− rt,i, and in this sense the l̃t in Line 4
is an unbiased estimate for the true loss vector lt := 1− rt.

To establish the performance of Algorithm 1, we make use
of the following lemma, which concerns the regret incurred in
a single time-step to the OMD update happened in that time-
step. This lemma is a standard result and can be found in many
OMD textbooks and literatures (e.g., [13] and Chapter 28 of
[14]).

Lemma 1. For any σt > 0, xt, y ∈ ∆[M,K−1], lt ∈ RK+ and
Legendre function Ψ : RK+ → R, we have

〈lt, xt − y〉 ≤ σtDΨ(y, xt)−σtDΨ(y, zt)+σtDΨ(x, z̃t) (2)

where

zt = arg min
x′∈∆[M,K−1]

〈lt, x′〉+ σtDΨ(x′, xt), (3)

z̃t = arg min
x′∈RK

+

〈lt, x′〉+ σtDΨ(x′, xt), (4)

or equivalently,

zt = ∇Ψ̄∗(∇Ψ(xt)−
1

σt
lt), z̃t = ∇Ψ∗(∇Ψ(xt)−

1

σt
lt).

(5)

We see that Algorithm 1 is effectively obtained by taking an
OMD step on the last mixed action xt using l̃t as the gradient
and 1/σt as the step size, and then taking the computed zt in
Lemma 1 as the next mixed action. This procedure naturally
leads to a telescoping sum regret upper-bound when all σt’s
are set to the same constant. Then, by properly choosing the
constant we can achieve O(

√
T) (factors in K and M omitted)

total regret.
By summing up the inequality in Lemma 1, we get the

following regret bound for Algorithm 1:

Theorem 2. The total regret of Algorithm 1 satisfies

RT ≤ sup
y∈A

E
[T∑
t=1

{σtDΨ(y, xt)− σtDΨ(y, xt+1)

+ σtDΨ(xt, z̃t)}
]

where z̃t = ∇Ψ∗(∇Ψ(xt)− 1
σt
l̃t).

In particular, when Ψ(x) = −
∑K
i=1 2

√
xi, x1 =

(M/K, . . . ,M/K) and σ1 = · · ·σT =
√
T , we have the

following regret bound for Algorithm 1:

Theorem 3. If Algorithm 1 is running with Ψ(x) =
−
∑K
i=1 2

√
xi, x1 = (M/K, . . . ,M/K) and σ1 = · · ·σT =√

T , then we have

RT ≤ O(
√
MKT).

Remark. Under this particular choice of Ψ and x1, Algo-
rithm 1 and our novel Algorithm 3 presented in Section V
become identical when running on problem instances without
delay. Therefore Theorem 3 is a direct corollary of Theorem 6
in Section V, our main regret bound for Algorithm 3.

B. The Banker-OMD Framework

A key observation in Theorem 2 is that when σ1, . . . , σT
are all chosen to be a constant, the sum

∑T
t=1{σtDΨ(y, xt)−

σtDΨ(y, xt+1)} in Theorem 2 will become a telescoping sum
and equal to σ1DΨ(y, x1) − σ1DΨ(y, xT+1). However, in
order to compute zt, we need to compute the loss estimator l̃t
first, which relies on the observed feedback vector r̃t. In the
general case where there are feedback delays, i.e., dt can take
a positive value, we will not be able to compute zt in time at
the end of t-th time slot, and therefore unable to directly set
xt+1 to zt.

To tackle this drawback of classical OMD method, [1]
proposed the Banker-OMD framework, which is capable of
naturally proceeding even when there are absent feedback due
to delay. Banker-OMD builds upon the core observation that
Lemma 1 applies to any mixed action sequence x1, . . . , xT
and action scale sequence σ1, . . . , σT and gives a valid upper-
bound for the pre-expectation total regret

∑T
t=1〈l̃t, xt − y〉.

3

Under Banker-OMD, the task of getting a tight regret bound
reduces to designing a policy to choose xt’s and σt’s to make∑T
t=1{σtDΨ(y, xt) − σtDΨ(y, zt)} small. In Banker-OMD

the σtDΨ(y, xt) term is called a “withdrawal cost,” for it
is a valid upper-bound for (besides the immediate cost term
σDΨ(xt, z̃t)) the loss incurred due to taking the action xt,
without the need of knowing the action feedback r̃t. After
receiving r̃t, we can refine this upper-bound to σtDΨ(y, xt)−
σtDΨ(y, zt), where the term −σtDΨ(y, zt) is called the
“saving term” and is some resource we can leverage only
after receiving the action feedback rt. From this reasoning,
the task of getting a tight regret bound can be further reduced
to properly covering the withdrawal cost of a new action with
savings at hand.

The next key observation of Banker-OMD is that, sup-
pose at some moment we have available saving terms
σ1DΨ(y, z1), . . . , σhDΨ(y, zh) at hand, then a new action
obtained from “convex combination in the dual space” over
available zt’s always has its withdrawal cost properly covered.
This fact is formally stated in the following Lemma 4, which is
an adapted version of Lemma 2 of [1], extending the feasible
action set from ∆[1,K−1] in Lemma 2 of [1] to ∆[M,K−1].

Lemma 4. For any h ≥ 1, z1, . . . , zh ∈ ∆[M,K−1],
σ1, . . . , σh > 0 and Legendre convex function Ψ : RK+ → R,
let σ =

∑h
i=1 σi and

x = ∇Ψ̄∗(

h∑
i=1

σi
σ
∇Ψ(zi)), (6)

then we have σDΨ(y, x) ≤
∑h
i=1 σiDΨ(y, zi) for any y ∈

∆[M,K−1].

The Banker-OMD framework in [1] works as follows.
Lemma 4 states that if at the beginning of time t we have
available saving terms σt1DΨ(y, zt1), . . . , σthDΨ(y, zth), i.e.,
feedback of actions at time t1, . . . , th have all arrived and
zt1 , . . . , zth have not been utilized in any form. Let σ =∑h
i=1 σti , then we are allowed to pick a new action xt with

scale σt = σ specified by xt = ∇Ψ̄∗(
∑h
i=1

σti

σt
∇Ψ(zti)). The

withdrawal term introduced by playing this xt at scale σt is
then guaranteed to be covered by those h saving terms.

It can happen that in a time slot, savings can fall short, e.g.,
no feedback has arrived, but we still need to make a decision
in run-time. In this case, we can use a scale σt > σ. To
do so, let bt = σt − σ. Then, consider an x0 ∈ ∆[M,K−1].
We can add two new terms +btDΨ(y, x0) − btDΨ(y, x0)
(sum to zero) to the current upper-bound for the total regret.
Then, we can regard the minus-signed term −btDΨ(y, x0)
as an additional saving term, and use it together with the
h available previous saving terms to form the new xt by
xt = ∇Ψ̄∗(

∑h
i=1

σti

σt
∇Ψ(zti) + bt

σt
∇Ψ(x0)). Lemma 4 then

asserts the net effect of playing xt of scale σt is to use up
the h saving terms and add a +btDΨ(y, x0) term into the
upper-bound. This operation can be interpreted as: when the
total savings are not enough for the new action we want to

form, we can invest in some x0 to make up the difference and
proceed.

Based on the above banker idea and the Banker-OMD
algorithm from [1], we design Algorithm 2 Banker-OMD-M
for our delayed M -set semi-bandit problem. We emphasize
that Banker-OMD-M is a general algorithm framework, it
offers great flexibility in algorithm design, i.e., the regularizer
Ψ and the scales σt, bt,mt. In Banker-OMD-M, S is a
policy to choose action scales σt, in practice σt is chosen
to a function of the current time index t and statistics of
experienced delays. P is the policy for deciding the desired σt
based on available savings and possible new investment. At the
beginning of each time step t, P needs to output t non-negative
numbers bt,mt,1, . . . ,mt,t−1 such that bt +

∑t−1
i=1 mt,i = σt

and mt,i ≤ vi for all 1 ≤ i ≤ t− 1.
The difference between Banker-OMD-M and

Banker-OMD is that the feasible action set is ∆[M,K−1]

rather than the unit simplex, and we need to appropriately
sample actions (Line 13) and compute loss estimates
(Line 17). Similar to the original Banker-OMD framework,
the key feature of Banker-OMD-M is that it explicitly
maintains an OMD-style upper-bound for cumulative pseudo-
regret. At any time during the execution, its internal state
variables directly give a regret upper-bound stated in the
following Theorem 5, which adapts Theorem 3 of [1] and
extends the feasible action set to ∆[M,K−1].

Theorem 5 (Banker-OMD-M Regret Bound). For Algo-
rithm 2, at the end of any time T , for any y ∈ ∆[M,K−1],
we have

T∑
t=1

〈l̃t, xt − y〉

≤ BT ·DΨ(y, x0) +

T∑
t=1

σtDΨ(xt, z̃t)−
T∑
t=1

vtDΨ(y, zt)

(7)

where BT , l̃1, . . . , l̃t, x1, . . . , xt, z1, . . . , zt are variable values
in Algorithm 2 at the end of time T , z̃t = ∇Ψ∗(∇Ψ(xt)− 1

σt
l̃t)

for any 1 ≤ t ≤ T .

V. THE BANKER-OMD-SCHEDULING ALGORITHM

We are now ready to present our algorithm for the wire-
less scheduling problem with channel variation and feedback
delay. The proposed algorithm Banker-OMD-Scheduling
(Algorithm 3) is an application of the Banker-OMD-M frame-
work introduced in Section IV-B using the regularizer capable
to achieve O(

√
MKT) total regret in the non-delayed setting,

described in Section IV-A.
Comparing to the general framework Algorithm 2,

Banker-OMD-Scheduling chooses a specific regular-
izer Ψ(x) = −2

∑K
i=1

√
xi, which is known as the 1/2-

Tsallis entropy function [13], and default investment option
x0 = (M/K, . . . ,M/K). In Banker-OMD-Scheduling,
the subroutine used to make plan of integrating available
savings and possible new investment to the desired new action

4

Algorithm 2: Banker-OMD-M
Input: Number of arms K, number of arms to pull at

each time step M , regularizer Ψ, default
investment option x0 ∈ ∆[M,K−1], subroutine
to pick action scales S, subroutine to pick
portfolio P

Output: A sequence of actions S1, S2, . . . ∈ A
1 B0 ← 0 ; // B· will be maintained as the total

investment to x0

2 for t = 1, 2, . . . do
3 at ← 0 ; // at indicates whether time t’s

feedback has arrived

4 ht ← (S1, . . . , St−1, a1, . . . , at−1,
r1, . . . , rt−1, σ1, . . . , σt−1, v1, . . . , vt−1);
// history to up time t− 1

5 σt ← S(t, ht) ; // decide the scale for the

new action

6 vt ← σt ; // vt is the current coefficient of

the minus-signed DΨ(y, zt) term

7 bt,mt,1, . . . ,mt,t−1 ← P(t, ht, σt) ; // determine

to use how much volume of available saving

terms to form xt

8 xt ← ∇Ψ̄∗(1
σt

∑t−1
i=1 mt,i∇Ψ(zi) + bt

σt
∇Ψ(x0)) ;

9 Bt ← Bt−1 + bt ;
10 for i = 1 to t− 1 do
11 vi ← vi −mt,i ; // spend mt,i units of the

saving term DΨ(y, zi)

12 end
13 Let pt be a distribution on A such that

xt,i = PS∼pt [i ∈ S] for all i ∈ [K];
14 Sample St ∈ A according to pt, serve the M users

in St;
15 for upon receiving each new feedback (s, r̃s) do
16 Compute the importance sampling loss estimate

vector l̃s by l̃s,i ← (1−r̃s,i)As,i

xs,i
;

17 zs ← ∇Ψ̄∗(∇Ψ(xs)− 1
σs
l̃s);

18 as ← 1 ; // the saving term −σsDΨ(y, xs)

becomes available

19 end
20 end

scale σt is the following procedure GreedyPick (simply
ported from [1]), which chooses mt,i’s greedily as large as
possible and minimizes the new bt:

Algorithm 3 maintains dt, the number of feedback that have
not arrived at the beginning of time t, and computes Dt =∑t
s=1 ds to keep track of the cumulative experienced delay

up to time t at run-time. Algorithm 3 then uses the action
scale σt = (

√
1
t + dt

√
ln(Dt+1)

Dt
)−1.

Remark. The last degree of freedom in Algorithm 3 is how
to construct of the distribution pt in Line 13 and how to
implement a corresponding sampling scheme in Line 14. [15],
[16] showed that sampling according to mean vector xt can be

Algorithm 3: Banker-OMD-Scheduling
Input: Total number of users K, number of users to

serve at each time step M
Output: A sequence of actions S1, S2, . . . ∈ A

1 Let Ψ be the function Ψ(x) = −2
∑K
i=1

√
xi;

2 D0 ← 0;
3 for t = 1, 2, . . . do
4 dt ← the number of previous actions whose

feedback has not arrived;
5 Dt ← Dt−1 + dt;

6 σt ← (
√

1
t + dt

√
ln(Dt+1)

Dt
)−1;

7 vt ← σt; at ← 0;
8 bt,mt,1, . . . ,mt,t−1 ←

GreedyPick(σt, v1, . . . , vt−1, a1, . . . , at−1);
9 xt ← ∇Ψ̄∗(1

σt

∑t−1
i=1 mt,i∇Ψ(zi)) ;

// equivalent to choosing

x0 = ∇Ψ̄∗(0) = (M/K, . . . ,M/K)

10 for i = 1 to t− 1 do
11 vi ← vi −mt,i;
12 end
13 Let pt be a distribution on A such that

xt,i = PS∼pt [i ∈ S] for all i ∈ [K];
14 Sample St ∈ A according to pt, serve the M users

in St;
15 for upon receiving each new feedback (s, r̃s) do
16 Compute the importance sampling loss estimate

vector l̃s by l̃s,i ← (1−r̃s,i)As,i

xs,i
;

17 zs ← ∇Ψ̄∗(∇Ψ(xs)− 1
σs
l̃s) ;

18 as ← 1;
19 end
20 end

Procedure GreedyPick (from [1])
Params: Time index t; Current available saving

coefficients v1, . . . , vt−1; Availability flags
a1, . . . , at−1; Target scale σt.

Output: bt,mt,1, . . . ,mt,t−1.

1 ∀1 ≤ i ≤ t− 1 : mt,i ← 0;
2 bt ← σt;
3 for i = 1 to t− 1 do
4 if ai = 1 then
5 if vi ≤ bt then
6 mt,i ← vi; bt ← bt − vi;
7 else
8 mt,i ← bt; bt ← 0;
9 break;

10 end
11 end
12 end

5

achieved in O(K2) time, [17] further proposed an O(K logK)
sampling algorithm.

The regret bound for Algorithm 3 is summarized in the
following theorem.

Theorem 6. For the wireless scheduling problem under ar-
bitrary channel dynamics and total feedback delay D, over
any time horizen length T , Banker-OMD-Scheduling
guarantees that

RT ≤ O(
√
MK(

√
T +

√
D logD)).

To our knowledge, this is the first work achieving Õ(
√
T +√

D) regret in this delayed M -set semi-bandit optimization
problem and our scheduling problem. In most real-world
scenarios, the individual delay dt is o(tα) for any α > 0,
under which Algorithm 3 guarantees that the relative overhead
is vanishing as T →∞.

VI. CONCLUSION

In this paper, we present the Banker-OMD-Scheduling
algorithm for solving the scheduling problem under arbi-
trary channel state dynamics and delayed feedback in down-
link transmission. Banker-OMD-Scheduling is designed
based on a recent banker online mirror descent framework in
[1]. We prove that Banker-OMD-Scheduling achieves a
sublinear regret and allows efficient implementation.

ACKNOWLEDGEMENT

This work is supported in part by the Technology and
Innovation Major Project of the Ministry of Science and
Technology of China under Grant 2020AAA0108400 and
2020AAA0108403.

REFERENCES

[1] J. Huang and L. Huang, “Banker online mirror descent,” arXiv preprint
arXiv:2106.08943, 2021.

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” in 29th IEEE Conference on Decision and
Control. IEEE, 1990, pp. 2130–2132.

[3] M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 8, pp. 1489–1501, 2006.

[4] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM Transactions on Networking, vol. 19, no. 3, pp. 841–854,
2010.

[5] R. Singh and P. Kumar, “Throughput optimal decentralized scheduling
of multihop networks with end-to-end deadline constraints: Unreliable
links,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp.
127–142, 2018.

[6] K. Chen and L. Huang, “Timely-throughput optimal scheduling with
prediction,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp.
2457–2470, 2018.

[7] Q. Liang and E. Modiano, “Minimizing queue length regret under
adversarial network models,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 2, no. 1, pp. 1–32, 2018.

[8] T. Choudhury, G. Joshi, W. Wang, and S. Shakkottai, “Job dispatching
policies for queueing systems with unknown service rates,” arXiv
preprint arXiv:2106.04707, 2021.

[9] W.-K. Hsu, J. Xu, X. Lin, and M. R. Bell, “Integrate learning and
control in queueing systems with uncertain payoffs,” Purdue University,
available at https://engineering. purdue. edu/% 7elinx/papers. html,
Tech. Rep, 2018.

[10] J.-Y. Audibert, S. Bubeck, and G. Lugosi, “Regret in online combinato-
rial optimization,” Mathematics of Operations Research, vol. 39, no. 1,
pp. 31–45, 2014.

[11] J. Zimmert and Y. Seldin, “An optimal algorithm for adversarial bandits
with arbitrary delays,” in International Conference on Artificial Intelli-
gence and Statistics. PMLR, 2020, pp. 3285–3294.

[12] A. S. Nemirovskij and D. B. Yudin, “Problem complexity and method
efficiency in optimization,” 1983.

[13] J. D. Abernethy, C. Lee, and A. Tewari, “Fighting bandits with a
new kind of smoothness,” Advances in Neural Information Processing
Systems, vol. 28, pp. 2197–2205, 2015.

[14] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[15] M. K. Warmuth and D. Kuzmin, “Randomized online pca algorithms
with regret bounds that are logarithmic in the dimension,” Journal of
Machine Learning Research, vol. 9, no. Oct, pp. 2287–2320, 2008.

[16] D. Suehiro, K. Hatano, S. Kijima, E. Takimoto, and K. Nagano, “Online
prediction under submodular constraints,” in International Conference
on Algorithmic Learning Theory. Springer, 2012, pp. 260–274.

[17] J. Zimmert, H. Luo, and C.-Y. Wei, “Beating stochastic and adversarial
semi-bandits optimally and simultaneously,” in International Conference
on Machine Learning. PMLR, 2019, pp. 7683–7692.

APPENDIX

TECHNICAL PROOFS

We present the detailed proofs in the appendix. To begin
with, we review some useful properties of Legendre functions.

Lemma 7. Let C ⊆ Rn be a convex set, f : C → R be a
Legendre function. Then,

1) ∇f is a bijection between int(C) and int(dom(f∗))
with the inverse (∇f)−1 = ∇f∗;

2) Df (y, x) = Df∗(∇f(x),∇f(y)) for all x, y ∈ int(C);
3) the convex conjugate f∗ is Legendre.

The proof for Lemma 7 can be found in many convex
analysis textbook, e.g., Chapter 26 of [14]. We are now ready
to give proofs for lemmas and theorems in the main text.

A. Proof of Lemma 1

Lemma 1 is a basic property of mirror descent update steps,
the proof is a combination of some basic properties of convex
functions and Bregman divergences, and it can be found in
many OMD textbooks and literatures, e.g., [13] and Chapter
28 of [14]. For completeness, we also present a proof here.

Proof of Lemma 1. Since Ψ is Legendre, ∇Ψ will explode
on ∂RK+ , which guarantees that the minimizer x′ in the
definition of z̃t in (4) will lie in int(RK+) and ∂

∂x′ [〈lt, x
′〉 +

σtDΨ(x′, xt)] = 0. The bijection property in Lemma 7 then
asserts this arg min definition is equivalent to the definition in
(5) using mirror maps ∇Ψ and ∇Ψ∗. Since Ψ̄ is a Legendre
function on ∆[M,K−1], a similar argument suggests that the
definitions for zt in (3) and (5) are equivalent.

The definition of z̃t in (5) implies lt = σt(∇Ψ(xt) −
∇Ψ(z̃t)). The first order optimality condition of zt in (3)
implies that 〈 1

σt
lt + ∇Ψ(zt) − ∇Ψ(xt), y − zt〉 ≥ 0 for any

y ∈ ∆[M,K−1]. Hence we have

〈lt, xt − y〉
= 〈lt, xt − zt〉+ 〈lt, zt − y〉
≤ σt〈∇Ψ(xt)−∇Ψ(z̃t), xt − zt〉

6

+ σt〈∇Ψ(zt)−∇Ψ(xt), y − zt〉
(a)
= σt(DΨ(zt, xt) +DΨ(xt, z̃t)−DΨ(zt, z̃t))

− σt(DΨ(y, zt) +DΨ(zt, xt)−DΨ(y, xt))

= σtDΨ(y, xt)− σtDΨ(y, zt) + σtDΨ(x, z̃t)− σtDΨ(zt, z̃t)

≤ σtDΨ(y, xt)− σtDΨ(y, zt) + σtDΨ(xt, z̃t)

where (a) uses the following “three-point identity” of Breg-
man divergences:

DΨ(a, b) +DΨ(b, c)−DΨ(a, c) = 〈∇Ψ(c)−∇Ψ(b), a− b〉.

B. Proof of Lemma 4 and Theorem 5

Lemma 4 is Lemma 2 of [1], we adapt the result to M -set
semi-bandit and provide a formal proof below.

Proof of Lemma 4. Let x̃ = ∇Ψ∗(
∑h
i=1

σi

σ ∇Ψ(zi)), we have

σDΨ(y, x)
(a)

≤ DΨ(y, x̃)

(b)
= σDΨ∗(∇Ψ(x̃),∇Ψ(y))

= σDΨ∗(

h∑
i=1

σi
σ
∇Ψ(zi),∇Ψ(y))

(c)

≤ σ ·
h∑
i=1

σi
σ
DΨ∗(∇Ψ(zi),∇Ψ(y))

(d)
=

h∑
i=1

σiDΨ(y, zi)

where (a) is due to the Pythagorean theorem for Bregman
divergences (DΨ(y, x̃) = DΨ(y, x) +DΨ(x, x̃) ≥ DΨ(y, x)),
(b) is due to the duality property of Bregman divergences,
(c) is due to the convexity of the first argument of Bregman
divergences, and (d) uses again the duality property.

The general regret bound for Banker-OMD-M (Theorem 5)
can now be obtained by a summation over the single-step
regret bounds in Lemma 4 (see [1] Appendix A for a formal
inductive proof).

C. Technical Lemmas for Theorem 6

We have the following Lemma 8 stating that we can uni-
versally bound DΨ(y, x0) for all y ∈ A and E[σtDΨ(xt, z̃t) |
Ft−1] for all t ≥ 1.

Lemma 8. For Ψ(x) = −2
∑K
i=1

√
xi and x0 =

(M/K, . . . ,M/K), we have

DΨ(y, x0) ≤ 2
√
MK

for any y ∈ A.
In Algorithm 3, for any t ≥ 1, we have

E[σtDΨ(xt, z̃t) | Ft−1] ≤
√
MK

σt

where z̃t = ∇Ψ∗(∇Ψ(xt)− 1
σt
l̃t).

Remark. This upper-bound is
√
M times larger than the

classical MAB setting (i.e., M = 1), and the argument need
is also similar. To prove Lemma 8, we adapt the proof from
Lemma 11 of [1] to fit our feasible action set ∆[M,K−1] and
the choice x0 = (M/K, . . . ,M/K).

Proof of Lemma 8. The first bound is quite immediate, for
x0 = (M/K, . . . ,M/K), we have

DΨ(y, x0) = Ψ(y)−Ψ(x0)− 〈∇Ψ(x0), y − x0〉
= Ψ(y)−Ψ(x0)

≤ 2

K∑
i=1

√
x0,i

= 2
√
MK

for any y ∈ ∆[M,K−1].
For the second bound, in fact, for any choice of Ψ and t ≥ 1

we have

σtDΨ(xt, z̃t) = σtDΨ∗(∇Ψ(z̃t),∇Ψ(xt))

= σtDΨ∗(∇Ψ(xt)−
l̃t
σt
,∇Ψ(xt))

= Ψ∗(∇Ψ(xt)−
l̃t
σt

)

−Ψ∗(∇Ψ(xt))− 〈xt,−
l̃t
σt
〉

=
‖l̃t‖2∇2Ψ∗(θt)

2σt
, (8)

where in the last step we write the Bregman divergence into a
second order Lagrange remainder, θt is some element inside
the line segment connecting ∇Ψ(xt)− 1

σt
l̃t and ∇Ψ(xt).

Note that under this particular Ψ(x) = −2
∑K
i=1

√
xi, we

have
• ∇2Ψ∗(·) is diagonal,
• The diagonal elements of ∇2Ψ∗(·) are non-decreasing on

the line segment [∇Ψ(xt)− 1
σt
l̃t,∇Ψ(xt)],

and we can further upper-bound (8) by 1
2σt
‖l̃t‖2∇2Ψ∗(∇Ψ(xt))

=
1

2σt
‖l̃t‖2∇2Ψ(xt)−1 . Therefore,

E[σtDΨ(xt, z̃t) | Ft−1]

≤ E[
1

2σt
‖l̃t‖2∇2Ψ(xt)−1 | Ft−1]

=
1

σt

K∑
i=1

x
3/2
t,i E[l̃2t,i | Ft−1]

=
1

σt

K∑
i=1

x
3/2
t,i E

[
l2t,At

At,i

x2
t,i

∣∣∣ Ft−1

]

≤ 1

σt

K∑
i=1

x
−1/2
t,i P[i ∈ St | Ft−1]

=
1

σt

K∑
i=1

x
1/2
t,i

7

≤
√
MK

σt

where the last step is due to Cauchy-Schwatz inequality.

The second result we need is an upper-bound of the sum of
σ−1
t and the final value of BT , both from [1]:

Lemma 9 (Theorem 6 of [1]). For any time horizon length
T ≥ 1, let D =

∑T
t=1 dt denote the total delay during the

first T time steps, then we have
T∑
t=1

σ−1
t ≤ O(

√
T +

√
D logD).

Furthermore, at the end of the T -th time slot, we have

BT ≤ O(
√
T +

√
D logD).

To obtain Theorem 6, we plug the bounds in Lemma 8 and
Lemma 9 into Theorem 5 and then take expectation.

8

