
The Effectiveness and Efficiency of Model
Driven Game Design

Joris Dormans

Amsterdam University of Applied Sciences

Abstract. In order for techniques from Model Driven Engineering to be
accepted at large by the game industry, it is critical that the effective-
ness and efficiency of these techniques are proven for game development.
There is no lack of game design models, but there is no model that has
surfaced as an industry standard. Game designers are often reluctant
to work with models: they argue these models do not help them design
games and actually restrict their creativity. At the same time, the flexibil-
ity that model driven engineering allows seems a good fit for the fluidity
of the game design process, while clearly defined, generic models can be
used to develop automated design tools that increase the development’s
efficiency.

1 Introduction

Games are hard to design and develop. Game audiences expect a higher level of
quality year after year. For contemporary triple-A console titles this means that
development teams easily consists of more than a hundred designers, program-
mers, and artist, and a production period that spans multiple years. Even for
casual games, which up until a few years ago could be developed within a couple
of months by a team of under five people, we see changes. The current gener-
ation of mobile and social games is already developed by experienced studios
that assign twenty to thirty developers to the task and year-long development
times are no longer uncommon. In order to keep producing better quality for
less money, the games industry needs to find ways to either increase revenues, or
improve the efficiency and effectiveness of the development process. This paper
investigates how modeling techniques can be used to do the latter, but also at
the obstacles that need to be overcome to get model driven techniques accepted
by the game development community.

2 Abstract Game Development Tools

For a while, within the game design community there has been a careful push
for the development of abstract tools and methods for game. In a 1999 article
Doug Church called for the development of ‘formal abstract design tools’ [1].
Since then, a number of frameworks and tools have sprung up. Many of them



are primarily design vocabularies, created to help understand and identify com-
mon structures in games, and avoiding to be prescriptive in their description of
games.1 Berndt Kreimeier suggested to apply the design pattern approach from
architecture and software engineering to game design [2]. In contrast to vocabu-
laries, design patterns are prescriptive; they describe ‘good’, generic solutions to
common problems. However, the most prominent work on design patterns within
the domain of game design to date [3], is explicitly distanced from a prescriptive
approach, creating a hybrid approach that is closer to a design vocabulary than
a pattern language. At the same time, Raph Koster experimented with a graphi-
cal grammar to express game mechanics [4], this approach was followed by [5–7].
In contrast to the design vocabulary approach, the focus of these grammars has
not been the collections of descriptions they allow, but the design lore that they
capture. For example, the Machinations framework [7] sets out to visualize the
structures in game mechanics that create emergent gameplay; in other words,
it departs from theoretical vision on quality in games, and constructs a tool set
that allow game designers to interact with the structures that contribute to that
quality more directly.

In the Machinations framework the diagrams expressing game mechanics act
as a domain specific language (DSL) for a subset of game development; in this
case for a game’s “internal economy” [8]. Using similar DSLs for level design
opens up the possibility of applying techniques and ideas from Model Driven
Engineering (MDE) [9] to game design. Graph transformations might be used
to transform machinations diagrams to graphs outlining interactive missions
for level design or vice versa [10]. Similar ideas have been explored by Reyno
and Carśı Cubel from a more technical perspective focusing on automatically
generating code for games [11, 12]. The techniques typically used in a MDE
approach to game development (transformational grammars, UML, Petri nets,
and so on) require a considerable effort to use for game designers that do not
have a background in software engineering. In fact, one of the biggest challenges
to introduce any abstract game development tool, is to convince game designers
of its value in the first place.

3 Design versus Engineering

Leaving aside the much longer history of board games, game development is a
very young field. The current generation of prominent game developers got to
the place they are today because of hard work, entrepreneurship, and bravura.
For the early pioneers of the field there were no abstract tools to guide them.
Nonetheless, they have created an industry. As a result there is a certain level
of animosity towards abstract design tools. A fair number of game designers
dismiss design tools because they do not think the tools are effective enough,
they fear the tools might actually harm the creative process, or both [13, 14].

1 Most notably among these are the Game Ontology Project (see www.gameontology.

com and the 400 Project (see www.theinspiracy.com/400_project)



The lack of proven, effective design methods is a serious concern. The current
DSLs and design vocabularies for games tend to have a steep learning curve,
and are anything but widespread. Although many are designed for actual design
work, few have found frequent use outside universities. However, effectiveness is
not an argument against design tools, it is a requirement: the effectiveness of
a game design tool versus the effort required to master it should be apparent.
Typically, this means that using a design tool should lead to better games built
in less time, and the time reduction should be more than the time required to
learn the tool.

The negative effects on the creative process are trickier to deal with. Many
advocates of game design tools argue that they are designed to support the
creative process, while many designers experience tools as rigid and restrictive
instruments. Although, it can be reasoned that this argument against abstract,
theoretical methods for game design stems from a näıve perspective on art and
creativity. After all, practitioners of any form of art, from painting and sculpture
to cinema and performance, use abstract tools such as the theory of perspective,
composition, and editing techniques, to teach and improve their form. However,
it is equally important to make clear in what ways game design tools support
rather than restrict game design.

By nature game design is a flexible process. It is impossible to plan and design
a game on paper and expect good results from simply building the game as per
specification. Too often, what looks good on paper does not work as expected, or
simply lacks fun. Gameplay is the emergent result of players interacting with a
dynamic system. Until that system exists in some prototype form, it is impossible
to say whether or not it works. This means that an important task of the game
designer is to spot opportunities as they arise during the development of a game.
A famous illustration of this effect is the development of SimCity from the editor
for another game (Raid on Bungeling Bay). While working with the editor, game
designer Will Wright discovered that it was much more fun to build the urban
environment than it was to fly around it and shoot enemies as the original game
intended.

MDE is a suitable approach to deal with the dynamic process of designing
games. By capturing different aspects of games in different models and describing
how one model can be transformed into a different model allows for a sufficient
level of agility: for one game mechanics might be the natural starting point, while
for another game interactive missions might be. At the same time, using models
forces designers to think about their game at an abstract level. In addition,
different models foreground different structures in the game’s design; in a way,
each model acts as a different lens. Machinations diagrams foreground feedback
loops that operate in a game’s economy, by building such a diagram, the designer
will have to deal with these structures consciously. Daniel Cook’s skill chains [6]
visualize the dependencies between the skills players must master to successfully
play the game: it is a useful lens that should be used to investigate tutorial stages
and learning curves in any game.



However, model driven engineering has not been applied to game design
extensively. As discussed above, within the game design community there are no
widely accepted abstract models for game development, not even for specialized
tasks such as level design or interactive storytelling. Without clearly defined,
widely accepted models that have a proven positive impact on the development
process, it will be hard to convince the games industry to start applying model
driven engineering techniques on a larger scale. Yet, it is the argument of this
paper that the game development community would do good to investigate the
opportunities presented by MDE, as these opportunities could lead to a more
efficiently designed games which in turn leaves more room to elevate creative
game design to the next level.

4 Applying Models Effectively

Looking at the common problems encountered during game development, prob-
lems regarding design and managing game features are the most prominent [15].
Traditionally, the content and scope of a game’s design is recorded using a game
design document. However, these documents have a poor track record: they are
considered to be a burden to create while they are hardly consulted by the
development team.

Using generic, abstract models can increase the effectiveness of game de-
velopment far beyond the current practice of writing game design documents.
Clearly defined, generic models are less open to different interpretations by dif-
ferent team members. In the most ideal case, the model’s syntax is completely
unambiguous. When done right it is even possible to use formal models such as
Petri nets [16, 17] to identify structural strengths and weaknesses of a design in
an early stage. Although similar effects can be reach with relative simple and
informal models such as the skill chain diagrams (see above). These diagrams
expose a number of structural characteristics such as the number of connections
between individual skill nodes and the relative width and depth of the diagram,
which are indications of the relative steepness and length of the learning curve,
respectively.

The Machinations framework is a good example a generic, abstract model
that foregrounds structural qualities of a game’s design. The number of nodes,
connections, but also the number of feedback loops in a Machination diagram,
are all important indications of the complexity of the game and the quality of the
gameplay that emerges from it. The pattern library that is part of the frame-
work catalogues common structures that are indicative of particular dynamic
effects. The use of these patterns helps designers to understand and improve
the dynamic gameplay. At the same time the patterns are flexible enough to
enhance creativity. There are many ways to implement each single pattern, and
the number of ways to combine patterns is infinite.

The wide range of levels of abstraction the Machinations diagrams are able
to express can be leveraged to create a design strategy. A game designer can
start out with a fairly simple model of the game and elaborate on it by slowly



increasing the complexity by replacing simple constructions with more complex
ones. The design patterns can be used as a guide for this process. Relative simple
patterns can be replaced by more complex ones. Within the Machinations frame-
work this process is referred to as elaboration, and each pattern in the library
indicates what patterns it elaborates and by what patterns it is elaborated.

5 Applying Models Efficiently

The application of model driven engineering techniques also creates opportuni-
ties to increase the efficiency of the game development process. Generic, abstract
models can act as quick, early prototypes that would normally require more time
and effort to build. They can be used to simulate games and collect gameplay
data at a very early stage. In addition, these models can be used to develop au-
tomated design tools that can speed up the process and freeing designers from
manual work to focus on those aspects of the development process that benefit
most from their creative labor.

These days, all game developers are convinced that prototyping is a critical
aspect of developing games. Because gameplay is an emergent result of the game
as a dynamic system, the best way to find out whether or not a game works is
to build the system and set it in motion. Visual representations such as Machi-
nations diagrams can help identify important structural features that create the
emergent gameplay and help designers to shape the gameplay towards a target
form, they can never fully replace a play test session using a playable prototype.
Fortunately, Machinations diagrams can be executed and allow user interaction
when running. This means that they can actually serve as abstract, low fidelity
prototypes. At the same time, the diagrams allows the designer to define artifi-
cial players and quickly run many simulated play sessions to collect data. This
helps designers to balance games in a very early stage. Although, there remains
a gap between the model and the real game. Data collected in this way primes
designers for gameplay effects that might occur, and already allows them to find
out what measures can be taken to counter-act certain unwanted effects.

With sufficient sophisticated models and tools, MDE for game design can
be taken much further. Recent experiments with mixed initiative procedural
content generation (PCG) [18, 19] sketch the possibility of creating design tools
that automate certain tasks to speed up the process of design. Procedural content
generation is already being used in commercial games, in most cases to generate
levels either during design time, or every time the player starts a new session. The
mixed initiative approach to PCG has the computer algorithm collaborate with
a human designer in order to get better results. However, PCG techniques are
typically tailored towards a specific game. Using generic and abstract models, the
same techniques can be applied to multiple games, and hopefully will lead to the
development of intelligent, generic design tools. MDE and model transformations
seem to be a perfect match for this development as they offer enough flexibility
to deal with the agility of the game development process while they are defined
clearly enough to be automated [10]. Ideally a game designer will be able to go



back and forth through and make changes to different, connected models of the
same game, although it is a considerable technical challenge to create a system
that allows a designer to step back to an early model of a game, make changes
to it, and automatically reapply all transformations that generated the current
state of the game.

6 Discussion

However promising the prospect of applying MDE to game design is, the current
state of the art of MDE in game design still faces many challenges. A lack
of widely accepted models to represent different aspects of games means that
currently no one can expect game designers understand and apply these models.
Successful models need to be expressive enough to be able to deal with an infinite
variety of games, while still be intuitive to game designers. In addition, they
should not require too much effort to master. At this moment is remains unclear
whether or not models like this are going to surface soon. No one should expect
one single model for the entire process of game development, or every aspect
of a game, to emerge. It is better to focus on different models for particular
aspects of games and game design. Using multiple models creates a more flexible
frame work that and allows designers to adopt MDE techniques one step at a
time. However, multiple models also present a problem. It is not always clear
how transformations can be defined that allow a model of a certain type to be
transformed into a model of another type. For example, a graph based model
might be used to express mechanics or missions, but there is no transformational
grammar that specifies how a graph can be transformed into a spatial map
representing a game level.

MDE can be used to develop generic, automated design tools. These should
be build to support designers in their task. Ideally a design tool manages trivial,
repetitive task and foregrounds potential structural strengths and weakness of
a design. No tool should require trivial, repetitive task from the designer. This
allows the designer to focus on the creative tasks. It is critical that the designer
stays in control of the creative aspect of the design process at all times. Model
transformations are a good way of codifying design strategies for a particular
game or a game genre. Using automated design tools, development teams should
expect a considerable effort to get the tool up and running. For this reason it is
unlikely that the entire process can be automated at once. Small steps should
be taken for each new development cycle, starting with steps are more generic
and can be easily reused in subsequent projects.

Finally, we have very little experience of applying these techniques to actual
games. Currently, many game development studios have settled into particu-
lar ways to develop games that are not necessarily suited to MDE. They have
set up content pipelines and follow milestone plans. Further research on how
to integrate MDE techniques and automated design tools into this process is
needed.



References

1. Church, D.: Formal abstract design tools. Gamasutra (1999)
2. Kreimeier, B.: The case for game design patterns. Gamasutra (2002)
3. Björk, S., Holopainen, J.: Patterns in Game Design. Charles River Media, Boston,

MA (2005)
4. Koster, R.: A grammar of gameplay: game atoms: can games be diagrammed?

Presentation at the Game Developers Conference (2005)
5. Bura, S.: A game grammar. (2006)
6. Cook, D.: The chemistry of game design. Gamasutra (2007)
7. Dormans, J.: Machinations: Elemental feedback structures for game design. In:

Proceedings of the GAMEON-NA Conference. (2009)
8. Adams, E., Rollings, A.: Fundamentals of Game Design. Pearson Education, Inc.,

Upper Saddle River, NJ (2007)
9. Brown, A.: An introduction to model driven architecture. (2004)

10. Dormans, J.: Level design as model transformation: A strategy for automated con-
tent generation. In: Proceedings of the Foundations of Digital Games Conference
2011, Bordeaux, France. (2011)

11. Reyno, E.M., Carśı Cubel, J.A.: Model-driven game development: 2d platform
game prototyping. In: Proceedings of the GAME ON Conference, 2008. (2008)

12. Reyno, E.M., Carśı Cubel, J.A.: Automatic prototyping in model-driven game
development. ACM Computers in Entertainment 7(2) (2009)

13. Guttemberg, D.: An academic approach to game design: Is it worth it? Gamasutra
(2006)

14. Sheffield, B.: Defining games: Raph koster’s game grammar. Gamasutra (2007)
15. Petrillo, F., Pimenta, M., Trindade, F., Dietrich, C.: What went wrong? a survey

of problems in game development. ACM Computers in Entertainment 7(1) (2009)
16. Brom, C., Abonyi, A.: Petri nets for game plot. In: Proceedings of AISB. (2006)
17. Araújo, M., Roque, L.: Modeling games with petri nets. In: Proceedings of DiGRA

2009. (2009)
18. Smith, G., Whitehead, J., Mateas, M.: Tanagra: A mixed-initiative level design

tool. In: Proceedings of the Foundations of Digital Games Conference 2010, Mon-
terey, CA. (2010) 209–216

19. Smelik, R., Turenel, T., de Kraker, K.J., Bidarra, R.: Inegrating procedural gen-
eration and manual editing of virtual worlds. In: Proceedings of the Foundations
of Digital Games Conference 2010, Monterey, CA. (2010)


