
Out of Context Augmented Navfields :
Designing Crowd Choreographies

Guillaume Levieux1, Stéphane Natkin1, and Alexandre Topol1

Centre d’Etudes et de Recherches en Informatique du CNAM
Conservatoire National des Arts et Métiers, Paris, France

forename.lastname@cnam.fr

Abstract. This paper presents a way to dynamically influence the shape
and movements of a simulated crowd. We propose a tool and system that
allows to modify a crowd’s dynamics in an intuitive, semantically rich
and out of context fashion, while being independent from the global path
finding architecture and having a low computational cost. We follow a
mixed approach where user-specified navigation fields are combined with
steering and global A* pathfinding.
Key words : crowd, choreography, navfield, simulation.

1 Influencing Crowds Dynamics

Many crowd simulation systems have been developed in the past few years. They
have multiple goals like the study of sociological or psychological principles,
simulation of a crowded building’s evacuation, as well as digital entertainment
or military training [1], [2]. These systems use different crowd models, ranging
from fluids [3], particles [4], to basic entities influenced by a simple set of rules
[5] or even autonomous agents with rich decision models [6] [7] [8].

The choice of a crowd simulation model depends on many factors. One of the
biggest trade-off in crowd simulation is computing cost. The more complex an
agent decision is to calculate, the lowest the number of agents can be simulated
in real time. It may always be useful to have the most realistic agents, but the
model has to scale with the number of simulated agents.

Moreover, as Zhou et al stated it, a crowd simulation system needs to be
considered from the designer point of view [2] [9]. Having a complex decision
system may lead to more realistic agents, but also make these agents less pre-
dictable and harder to manipulate. Indeed, using autonomous agents leads to
a bottom up architecture, where the crowd’s global behavior depends on the
many local decision made by the agents. When a designer wants to influence the
crowd’s global dynamics, that is, the global shape and movement pattern of a
large group of agents, we should provide him with a high level tools that directly
deals with these dynamics. Our goal is to propose such a tool.

Our research takes place within the context of the Terra Dynamica project,
in whichF a consortium of industrials and researchers got together to built a
virtual version of Paris city. This simulator has a wide application scope, ranging



from urban planning to artistic experiments, and follows an autonomous agents
approach. In this project, our goal is to propose a simulation technique that can
seamlessly be integrated in an autonomous agent architecture, and let a designer
easily influence the shape and moving patterns of a crowd.

Designing tools to control a crowd simulation is a particularly interesting
topic. Indeed, the crowd’s dynamics emerges from the more and more complex
agents behaviour models we set up, but still need simple methods to influence
the crowds behaviour, especially in entertainment purposes, where the goal is
not to always have a realistic simulation but to reach specific aesthetic goals.
Researchers have already proposed such kind of tools. Crowd Brush allow to
modify crowd scenes in Real Time [9]. Oshita and Ogiwara’s system allows to
sketch a crowd’s path [10]. ARCrowd allows to control a crowd in real time using
augmented reality [11]. Kwon et al systems let the user customize the motion of
a group of individuals [12]. Many systems use navfields, that is, grids of direction
vectors, to author the navigation of a crowd [13] [14] [3] [15].

Unfortunately, neither of these systems completely addresses our design goals
for the Terra Dynamica project, that we describe as follows :

1. Intuitive: our representation of the crowds dynamics needs to be easy to
author, and represented in the most intuitive way.

2. Provide a rich semantic : we do not only want to specify a direction an
agent in the crowd should follow, but also allow this direction to be modified
within time, or have some stochastic properties.

3. Out of context: we want to specify a crowd’s dynamic for a group of agents,
regardless of the size of the group, of it’s absolute location and without
knowing the agents that will be involved. That way we can define reusable,
generic movements and instantiate them when needed.

4. Independent: we want our system to be used in combination with standard
A* path finding and state of the art steering. We need it to be activated only
when needed, and to be integrated seamlessly in the standard navigation
architecture.

5. Not computationally expensive: as we use this system in addition with
a complex AI system, and as we need to modify the simulation in real time,
we need our system to be as light as possible in term of computational cost.

We extend the navfield principle to provide the designer with a more expres-
sive tool. We call these specific navfields ”Out of Context Augmented Navfields
(OCANs)”. In the next section, we show how OCANs addresses the needs we
have specified in this section.

2 Out of Context Augmented Navfields

We draw inspiration from navfields based systems. Defining a grid of vectors is
an intuitive way to represent a crowd’s dynamics. Given the right tools, one can
paint the vectors on the grid, and easily define the desired movement [15, 14].
The vector field is indeed a nice way to represent a crowd’s dynamics, as the



information displayed on screen is the resulting movement influence we try to
specify. The basic navfield given in fig 1 (left one) could easily be encoded as a
mathematical function or a piece of scripted code but we think that the navfield
itself is the most intuitive representation to show and manipulate.

Fig. 1. Two OCANs

We created a GUI tool to define OCANs (fig. 2). The user can easily define
an OCAN and edit the various properties that makes OCANs semantically rich.
The user can edit the vectors one by one or using a brush. The different tools
on the right side of the screen allows to modify the OCAN properties that we
define in the reminder of this article. The user can then save all OCAN’s in an
XML file that will be imported by the choreography manager.

In our system, the user can define a sequence of OCANs. Each OCAN in
the sequence has a pre-defined life span, and when this lifespan is over, the
next OCAN of the sequence is instantiated. Thus, we can define a follow up of
grids, which allows to define more complex crowd movements. Moreover, each
OCAN is annotated by the user. It can be continuous or discrete, which means
that the direction vector given to a specific agent only depends on it’s discrete
position within the grid. When continuous, the direction vector is the mean of
surrounding vectors, weighted by the distance between the location of each cell
center and the agent. The user can also assign a probability to each cell of the
OCAN. That way, and agent will have a given probability to be influenced by
the cell, and thus only a portion of the surrounding crowd will be affected. Last,
any grid cell can be defined as a placeholder. If there is no agent in this cell,
the nearest agent in the OCAN will be assigned a direction vector toward the
placeholder. That way, it is possible to define formations that the agents within
the grid will try to assume, in a best effort way.

OCANs are thus defined out of a specific context. One can define a grid
representing a specific crowd movement, and instantiate it later at any loca-
tion, in real time. Then, it will automatically impact the crowd at this location,



Fig. 2. OCAN’s Editor GUI

influencing their predefined direction vector. We use a specific software compo-
nent, the choreography manager, that dynamically instantiate OCANs during
the simulation, with the desired location, scale and orientation. An OCAN can
be instantiated on various requests: for instance a scenario manager can ask for
it, or an agent that is a squad leader and want his group to follow a specific
dynamic.

However, as OCANs are defined out of a specific context and instantiated
on demand, we must be able to integrate them regardless of the navigation
algorithm that is used. Our only recommendation is that path planning and
steering have to be defined as two different navigation steps. This is very often
the case: in video games for instance A* is very often used to generate a global
path, while different steering algorithms compute the fine grain movement of
the agent [16]. As a result, OCANs will only override the global path finding
direction when an agent steps on the grid. The steering mechanism will always
be active and let the agent move in a way that is coherent with the other dynamic
and static colliders, but it’s main direction will be defined by the OCAN. When
the agent leaves the OCAN, he will rely again on it’s previous path-finding
algorithm.

When under an OCAN’s influence, the agent’s direction is mainly determined
by the cell he’s in. We thus just have to convert the agent’s position in the
OCAN’s local space to get this vector, defined by a 4*4 matrix, which is a
very cheap calculus. If the grid is continuous, the calculation cost is just a bit
higher because we compute a weighted sum of the surrounding vertices. The
calculation cost is the highest with placeholder cells, because we need to find the
closest agent. This process is speeded up by a previous space partitioning [17],
allowing to find the closest agents without parsing all of them.



3 Integration Flow

Fig. 3. The OCAN System

The previous diagram shows more in details how the OCAN system integrates
into a standard path finding architecture, as provided by the TerraDynmica sim-
ulation engine (fig. 3). Using our dedicated tool, the designer creates sequences
of OCANs. Each OCAN sequence is identified by a unique number and stored
in a common XML file. When started, the choreography manager, part of the
simulation engine, loads the XML file. The simulated agents can go to a desired
location using the pathfinding system. The global pathfinding engine will gen-
erate a path, that will be filtered by the steering engine to accommodate with
local constraints.

But when requested, the choreography engine will instantiate a specific OCAN.
It will have the same properties than when designed in the editor, with a spe-
cific location and orientation decided at runtime. Many instances of the same
OCAN can thus be active at the same time, at different locations. For evey agent
whose position is inside one of the instantiated OCANs, global path finding will
be replaced by a vector calculated by the choreography manager, based on the
current agent position in the OCAN.

As a result, the choregraphy manager, the pathfinder and steering algorithm
all work at the same time in an integrated fashion. The OCAN is just a way to
by pass the agent decision process with regard to it’s current global direction,
only where and when needed. For instance, we plan to use OCANs to simulate
military tactics in crowd management simulation. Indeed, extract a leader from
a civilian crowd responds to a specific choreography : a first sqad runs toward the
leader in a triangle shape to penetrate the crowd, expand it’s position to make



the crowd step back and isolate the leader. Meanwhile, another group follows
and catches the leader. Then the first group concentrate again to secure the
leader and everybody get back out of the crowd. This kind of choreography can
be easily described using a sequence of OCANs, spawned by the squad leader
when needed.

4 Conclusion

In this article, we propose a simple way to alter the dynamics of a crowd, using
Out of Context Augmented Navfields. As we have shown, such a system can
provide an intuitive, semantically rich way to define the shape and movement
of a crowd, while having a low computational cost and be integrated in a stan-
dard navigation system. The OCAN system place itself between the global path
finding algorithm and the local steering algorithm, overriding the global path
finding only when needed. As a result, we do not have to take into account the
global goal of the agents or the way they avoid obstacles, but just apply a local,
smooth influence on their moving dynamics.

The next step of these research is to broadly evaluate the usability of our
system, and to enhance it with an even richer semantic.

References

1. Musse, S.R., Ulicny, B., Aubel, A., Thalmann, D.: Groups and crowd simulation.
In: ACM SIGGRAPH 2005 Courses. SIGGRAPH ’05, New York, NY, USA, ACM
(2005)

2. Zhou, S., Chen, D., Cai, W., Luo, L., Low, M.Y.H., Tian, F., Tay, V.S.H., Ong,
D.W.S., Hamilton, B.D.: Crowd modeling and simulation technologies. ACM
Trans. Model. Comput. Simul. 20 (November 2010) 20:1–20:35

3. Chenney, S.: Flow tiles. In: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. SCA ’04, Aire-la-
Ville, Switzerland, Switzerland, Eurographics Association (2004) 233–242

4. Chen, Y., Wang, Z.: Formation control: A review and a new consideration. In: 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems. (2005)
3181–3186

5. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. PHYSICAL
REVIEW E 51 (1995) 4282

6. Jiang, H., Xu, W., Mao, T., Li, C., Xia, S., Wang, Z.: A semantic environment
model for crowd simulation in multilayered complex environment. In: Proceedings
of the 16th ACM Symposium on Virtual Reality Software and Technology. VRST
’09, New York, NY, USA, ACM (2009) 191–198

7. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM
(2005) 19–28

8. Sakuma, T., Mukai, T., Kuriyama, S.: Psychological model for animating crowded
pedestrians. COMPUTER ANIMATION AND VIRTUAL. WORLDS 16 (2005)
3–4



9. Ulicny, B., de Heras Ciechomski, P., Thalmann, D.: Crowdbrush: interactive
authoring of real-time crowd scenes. In: ACM SIGGRAPH 2005 Courses. SIG-
GRAPH ’05, New York, NY, USA, ACM (2005)

10. Oshita, M., Ogiwara, Y.: Sketch-based interface for crowd animation. In Butz, A.,
Fisher, B., Christie, M., Krüger, A., Olivier, P., Therón, R., eds.: Smart Graphics.
Volume 5531 of Lecture Notes in Computer Science. Springer Berlin - Heidelberg
(2009) 253–262

11. Zheng, F., Li, H.: Arcrowd-a tangible interface for interactive crowd simulation. In:
Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International Symposium
on. (oct. 2010) 287 –288

12. Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. ACM Trans.
Graph. 27 (August 2008) 80:1–80:8

13. Jin, X., Wang, C.C.L., Huang, S., Xu, J.: Interactive control of real-time crowd
navigation in virtual environment. In: Proceedings of the 2007 ACM symposium
on Virtual reality software and technology. VRST ’07, New York, NY, USA, ACM
(2007) 109–112

14. Patil, S., van den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd
simulations using navigation fields. IEEE Transactions on Visualization and Com-
puter Graphics 99(RapidPosts) (2010)

15. Alexander, B.: Flow fields for movement and obstacle avoidance. In: AI Game
Programming Wisdom 3. Steve Rabin (2006)

16. Rabin, S.: Movement and Pathfinding. In: AI Game Programming Wisdom 4.
Course Technology, Cengage Learning. (2008) 59–203

17. Reynolds, C.: Big fast crowds on ps3. In: Proceedings of the 2006 ACM SIG-
GRAPH symposium on Videogames, ACM (2006) 113–121


