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Abstract. Many communication networks such as wireless networks
only provide stochastic service guarantees. For analyzing stochastic ser-
vice guarantees, research efforts have been made in the past few years
to develop stochastic network calculus, a probabilistic version of (min,
+) deterministic network calculus. However, many challenges have made
the development difficult. Some of them are closely related to server
modeling, which include output characterization, concatenation property,
stochastic backlog guarantee, stochastic delay guarantee, and per-flow ser-
vice under aggregation. In this paper, we propose a server model, called
stochastic service curve to facilitate stochastic service guarantee analysis.
We show that with the concept of stochastic service curve, these chal-
lenges can be well addressed. In addition, we introduce strict stochastic
server to help find the stochastic service curve of a stochastic server,
which characterizes the service of the server by two stochastic processes:
an ideal service process and an impairment process.

1 Introduction

Many communication networks such as wireless networks only provide stochas-
tic service guarantees. Due to the increasing deployment and application of such
networks to support real-time and multimedia applications, which require QoS
guarantees, the development of an information theory for stochastic service guar-
antee analysis in these networks has been identified as a grand challenge for fu-
ture networking research [22]. Towards it, stochastic network calculus, the proba-
bilistic generalization of (min, +) (deterministic) network calculus [6][5][14], has
been considered as a fundamental and important step [17].

Many challenges have made stochastic network calculus difficult. Some of
them are closely related to server modeling, which include output characteriza-
tion, concatenation property, stochastic backlog guarantee, stochastic delay guar-
antee, and per-flow service under aggregation. In particular, the experience from
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the development of the (min, +) network calculus for deterministic service guar-
antee analysis tells that a server model with the following properties is desired:

– (P.1) (Output Characterization) The output of a server can be repre-
sented using the same traffic model as the input.

– (P.2) (Concatenation Property) The concatenation of servers can be rep-
resented using the same server model.

– (P.3) (Service Guarantees) The server model can be used to derive backlog
and delay guarantees.

– (P.4) (Per-Flow Service) The service received by a flow in an aggregate
can be characterized using the same server model.

For the (deterministic) network calculus, its service curve server model has all
these properties (P.1) - (P.4).

For stochastic service guarantee analysis, to the best of our knowledge, no
server model satisfying (P.1) - (P.4) has been available in the literature. The
most widely used one, which we shall call weak stochastic service curve, was
introduced by Cruz [9]. Although authors in [18] have adopted weak stochastic
service curve as the server model and derived interesting results for stochastic
service guarantee analysis, the weak stochastic service curve model, while having
property (P.3), generally does not support properties (P.1), (P.2) and (P.4).

The purpose of this paper is to propose a server model having properties (P.1)
- (P.4). The proposed model is called stochastic service curve. In the paper, we
first introduce the idea behind extending (deterministic) service curve to weak
stochastic service curve and stochastic service curve, and discuss the relationship
between them. We then prove properties (P.1) - (P.4) for stochastic service curve.
In addition, to help find the stochastic service curve of a stochastic server, we
introduce the concept of strict stochastic server. In a strict stochastic server,
the service behavior of the server is characterized by two stochastic processes:
an ideal service process and an impairment process. This characterization is
inspired by the nature of a wireless channel: data is sent and received when the
channel is in good condition, and no data is sent or received when the channel
is in bad condition or impaired. We prove that a strict stochastic server under
some general impairment condition has a stochastic service curve.

2 Network Model and Background

2.1 Network Model and Notation

We consider a discrete time model, where time is slotted as 0, 1, 2, . . .. The traffic
of a flow is represented by A(t) denoting the amount of traffic generated by the
flow in (0, t]. In addition, we use A(s, t) to denote the amount of traffic generated
by the flow in (s, t]. The service provided by a server is represented similarly.
Particularly, we let S(s, t) be the amount of service provided by the server to its
input in (s, t] and use S(t) to represent S(0, t). By convention, we let A(0) = 0,
S(0) = 0, and A(t, t) = 0 and S(t, t) = 0 for all t ≥ 0.



When we consider the input and output of a network node, we use A to
represent the input , A∗ the output and S the service. Wherever necessary, we
use subscripts to distinguish between different flows, and use superscripts to
distinguish between different network nodes. Specifically, An

i and An∗
i represent

the input and output of flow i from node n respectively, and Sn
i the service

provided to flow i by node n.
For stochastic service guarantee analysis, we shall focus on backlog and (vir-

tual) delay, which are defined as [5] [14]:
(i) The backlog B(t) at time t(≥ 0) is B(t) = A(t) − A∗(t);
(ii) The delay D(t) at time t(≥ 0) is D(t) = inf{d ≥ 0 : A(t) ≤ A∗(t + d)}.

A function f is said to be wide-sense increasing if f(s) ≤ f(t) for all s ≤ t
and to be wide-sense decreasing if f(s) ≥ f(t) for all s ≤ t. We denote by
F the set of wide-sense increasing functions defined for t ≥ 0 with f(t) = 0
for t < 0; �F the set of wide-sense decreasing functions defined for t ≥ 0 with
f(t) = +∞ for t < 0. By definition, A(t) and S(t) belong to F and are additive,
i.e. A(s, u)+A(u, t) = A(s, t) and S(s, u)+S(u, t) = S(s, t) for all 0 ≤ s ≤ u ≤ t.

The convolution of two functions f and g, denoted by f ⊗ g, is defined as

f ⊗ g(x) = min
0≤y≤x

[f(y) + g(x − y)]. (1)

If both f and g belong to F , (1) is the same as the (min, +) convolution [14] and
many properties of it have been proved [14]. These properties include: closure
property, i.e. ∀f, g ∈ F , f ⊗ g ∈ F ; commutativity, i.e. ∀f, g ∈ F , f ⊗ g = g ⊗ f ;
associativity, i.e. ∀f, g, h ∈ F , (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h). In this paper, we shall
use (1) also for functions in �F . Similarly, we can prove the following properties
of ⊗ for functions in �F [14]:

Lemma 1. Basic properties of ⊗ in �F :

– Closure property: ∀f, g ∈ �F , f ⊗ g ∈ �F .
– Commutativity: ∀f, g ∈ �F , f ⊗ g = g ⊗ f.
– Associativity: ∀f, g ∈ �F , (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h).
– Monotonicity: ∀f1, f2, g1, g2 ∈ �F , if f1 ≤ f2 and g1 ≤ g2, f1⊗g1 ≤ f2⊗g2.

We now present the definitions of (deterministic) arrival curve and (deter-
ministic) service curve used in (deterministic) network calculus (e.g. [14]).

Definition 1. A flow is said to have an arrival curve α ∈ F iff for all 0 ≤ s ≤ t,
there holds

A(s, t) ≤ α(t − s). (2)

Definition 2. A server is said to provide service curve β ∈ F to its input A,
iff for all t ≥ 0, its output A∗ satisfies

A∗(t) ≥ A ⊗ β(t). (3)

Literature results show that service curve has all the properties (P.1) - (P.4)
(e.g. see [14]). The concept of service curve, its these properties, together with
the concept of arrival curve have helped the development of the (min, +) deter-
ministic network calculus [6] [7] [8] [13] [5] [14].



2.2 Background on Stochastic Service Guarantee Analysis

Many applications, such as Internet video and audio, can tolerate some delay
and loss, and may only require stochastic service guarantees. In addition, many
networks such as wireless networks only provide stochastic service guarantees.
Because of these, stochastic service guarantee analysis has become an increas-
ingly important issue and attracted a lot of research attention in recent years.
Towards it, stochastic network calculus, the probabilistic generalization of deter-
ministic network calculus has been considered as an important step and several
attempts have been made [23] [15] [21] [9] [3][16][18][2].

Most of these attempts assume deterministic server and have focused on the
extension or generalization of arrival curve to the stochastic case. These exten-
sions have generally resulted in two versions of stochastic arrival curve, which are
called traffic-amount-centric (t.a.c) stochastic arrival curve and virtual-backlog-
centric (v.b.c) stochastic arrival curve respectively [12]. A representative special
case of t.a.c stochastic arrival curve is Exponentially Bounded Burstiness (EBB)
[23] and its generalization Stochastically Bounded Burstiness (SBB)[21]. There
are two limitations with t.a.c stochastic arrival curve, as investigated in [24]
[16]. One is the difficulty in applying t.a.c stochastic arrival curve to the net-
work case; the other is t.a.c stochastic arrival curve cannot be directly used to
derive stochastic backlog and delay guarantees. To overcome these difficulties,
t.a.c stochastic arrival curve needs to be converted to v.b.c stochastic arrival
curve, or requires some additional restriction on traffic (e.g. [16]). In contrast,
v.b.c stochastic arrival curve does not have these limitations. A representative
special case of v.b.c stochastic arrival curve is generalized Stochastically Bounded
Burstiness (gSBB)[24] (also called stochastic smoothness constraint in [9]). Un-
der deterministic server assumption, v.b.c stochastic arrival curve has been used
to analyze stochastic backlog and delay guarantees in both single node and net-
work cases [18][12]. In addition, it is shown in [12] that many well-known types
of traffic can be readily represented using v.b.c stochastic arrival curve. In this
paper, we adopt v.b.c stochastic arrival curve as the traffic model.

Definition 3. A flow is said to have a virtual-backlog-centric (v.b.c) stochastic
arrival curve α ∈ F with bounding function f ∈ �F , denoted by A ∼vb 〈f, α〉, iff
for all t ≥ 0 and all x ≥ 0, there holds

P { max
0≤s≤t

{A(s, t) − α(t − s)} > x} ≤ f(x). (4)

The following result introduced in [20] [5] [12] can be used to find the v.b.c
stochastic arrival curve of a flow:

Lemma 2. Suppose a(t) ≡ A(t) − A(t − 1) is stationary and ergodic. Then, if
E{a(1)} < r, there holds, for all t ≥ 0 and x ≥ 0,

P {W (t; r) > x} ≤ P {W (t + 1; r) > x} ≤ · · · ≤ P {W (∞; r) > x}, (5)

where W (t; r) ≡ max0≤s≤t[A(s, t) − r(t − s)] and W (∞; r) denotes the steady
state of W (t; r) as t → ∞.



Note that max0≤s≤t[A(s, t)− r(t−s)] can be interpreted as the queue length
at time t of a virtual single server queue (SSQ) with service rate r fed with the
same traffic [24][12]. Then, the monotonicity property implies that if the traffic
of the flow is stationary and ergodic, the steady-state queue length distribution
of the SSQ can be used as the bounding function f(x). Consequently, if the
steady-state queue length distribution of a flow in a SSQ is known, then it has
a v.b.c stochastic arrival curve A ∼vb 〈f, α〉 with f(x) = P {q > x}, the steady
state compliment queue length distribution. With these, many well-known types
of traffic, including Poisson, Markov Modulated Process, effective bandwidth,
α−stable, etc., can be shown to have v.b.c stochastic arrival curves [12].

While many attempts have been made for stochastic traffic modeling and
analysis as discussed above, only a few have considered stochastic server and
stochastic service guarantee in networks of such servers [15][9][18][16]. Essen-
tially, the stochastic server models proposed or used in these attempts can be
mapped to the following model, which we call weak stochastic service curve and
is based on a stochastic server model used in [9]:

Definition 4. A server S is said to provide a weak stochastic service curve
β ∈ F with bounding function g ∈ �F , denoted by S ∼ws 〈g, β〉, iff for all t ≥ 0
and all x ≥ 0, there holds

P {A⊗ β(t) − A∗(t) > x} ≤ g(x). (6)

Comparing Definition 4 with Definition 2, it is clear that weak stochastic
service curve is an intuitively simple generalization of (deterministic) service
curve. One can easily verify that if a server has a deterministic service curve β,
it has a weak stochastic service curve S ∼ws 〈0, β〉. In addition, the Exponen-
tially Bounded Fluctuation (EBF) model proposed in [15] is a special case of
weak stochastic service curve with an exponential form bounding function. The
stochastic server model effective service curve used in [16] can also be verified
to be a special case of weak stochastic service curve.

In [9], [18] and [16], some results have been derived based on weak stochastic
service curve. The difference between them is that while [16] uses t.a.c stochastic
arrive curve as the traffic model, [18] and [9] use v.b.c stochastic arrive curve.
In addition to backlog and delay at a single node, [18] has considered the net-
work case. Nevertheless, weak stochastic service curve generally does not have
properties (P.1), (P.2) and (P.4) as to be explained in the remarks in the next
section.

3 Stochastic Service Curve

In this section, we first investigate the duality principle of service curve, which
is the idea behind the generalization of service curve to its probabilistic ver-
sions. We then introduce a new stochastic server model, called stochastic service
curve. Stochastic service guarantee analysis is further conducted based on the
new server model. Particularly, properties (P.1) - (P.4) are proved for stochastic
service curve.



3.1 Definition of Stochastic Service Curve

The following result presents the duality principle of service curve. Its proof is
trivial and can be found from [11].

Lemma 3. For any constant σ ≥ 0, A ⊗ β(t) − A∗(t) ≤ σ for all t ≥ 0, if and
only if max0≤s≤t{A ⊗ β(s) − A∗(s)} ≤ σ for all t ≥ 0, where β ∈ F .

By letting σ = 0, the first part of Lemma 3 defines a service curve β. In this
case, Lemma 3 implies that if a server has service curve β or A∗ ≥ A ⊗ β(t),
then there holds max0≤s≤t[A ⊗ β(s) − A∗(s)] ≤ 0 and vice versa. It is in this
sense we call Lemma 3 the duality principle of service curve.

Comparing the first part of Lemma 3 with Definition 4, one can find that the
former is the basis for generalizing service curve to weak stochastic service curve.
Based on the second part of the duality principle of service curve, we define the
following stochastic server model, called stochastic service curve 1:

Definition 5. A server S is said to provide a stochastic service curve β ∈ F
with bounding function g ∈ �F, denoted by S ∼sc 〈g, β〉, iff for all t ≥ 0 and all
x ≥ 0, there holds

P {max
0≤s≤t

[A ⊗ β(s) − A∗(s)] > x} ≤ g(x). (7)

Stochastic service curve implies weak stochastic service curve, since we always
have A ⊗ β(t) − A∗(t) ≤ max0≤s≤t[A⊗ β(s) − A∗(s)] for all t ≥ 0. Formally,

Lemma 4. If a server provides stochastic service curve S ∼sc 〈g, β〉, then it
also provides weak stochastic service curve S ∼ws 〈g, β〉.

3.2 Properties of Stochastic Service Curve

We now study Properties (P.1) - (P.4) for stochastic service curve. For proving
these properties, we need the following result. For random variables X and Y ,
there holds

P {X + Y > x} ≤ fX ⊗ fY (x) (8)

where fX(x) = P {X > x} and fY (x) = P {Y > x}. The proof of (8) can be
found from the literature (e.g. [9][19][2]). With the monotonicity property of ⊗,
if P {X > x} ≤ f(x) and P {Y > x} ≤ g(x), we get from (8) that

P {X + Y > x} ≤ f ⊗ g(x). (9)
1 In [1], service curve with loss is defined. It should be noticed that this definition is

different from Definitions 4, 5 and 6 here. In a service curve with loss network ele-
ment, packets are dropped if their deadlines assigned via the (deterministic) service
curve are not met. However, in a network element with weak stochastic service curve
or stochastic service curve or strict stochastic service curve, packets are allowed to
violate their deadlines if they would be given such deadlines via the corresponding
(deterministic) service curve.



Theorem 1. (Output) Consider a server fed with a flow. If the server provides
stochastic service curve S ∼sc 〈g, β〉 to the flow and the flow has v.b.c stochastic
arrival curve A ∼vb 〈f, α〉, then the output of the flow from the server has a v.b.c
stochastic arrival curve A∗ ∼vb 〈f∗, α∗〉 with α∗(t) = maxs≥0[α(t + s) − β(s)]
and f∗(x) = f ⊗ g(x).

Proof. Note that the output up to time t cannot exceed the input in [0, t], or A∗(t) ≤
A(t). We now have,

max
0≤s≤t

[A∗(s, t) − α∗(t − s)]

= max
0≤s≤t

[A∗(t) − A∗(s) − α∗(t − s)] ≤ max
0≤s≤t

[A(t)− A∗(s) − α∗(t − s)]

= max
0≤s≤t

[A(t)− A ⊗ β(s) − α∗(t − s) + A ⊗ β(s) − A∗(s)]

≤ max
0≤s≤t

[A(t)− A ⊗ β(s) − α∗(t − s)] + max
0≤s≤t

[A ⊗ β(s) − A∗(s)] (10)

in which,

max
0≤s≤t

[A(t) − A ⊗ β(s) − α∗(t − s)]

= max
0≤s≤t

[A(t) − min
0≤u≤s

[A(u) + β(s − u)] − α∗(t − s)]

= max
0≤s≤t

max
0≤u≤s

[A(t) − A(u) − β(s − u) − α∗(t − s)] ≤ max
0≤s≤t

max
0≤u≤s

[A(u, t) − α(t − u)]

(11)

= max
0≤u≤t

max
u≤s≤t

[A(u, t) − α(t − u)] = max
0≤u≤t

[A(u, t) − α(t− u)] (12)

where the step (11) follows because α∗(t − s) = maxτ≥0[α(t − s + τ) − β(τ)] ≥ α(t −
u) − β(s − u).

Applying (12) to (10), since S ∼sc 〈g, β〉 and A ∼vb 〈f,α〉, or P{max0≤s≤t[A ⊗
β(s) − A∗(s)] > x} ≤ g(x) and P{max0≤u≤t[A(u, t) − α(t − u)] > x} ≤ f(x), we then

get from (9), P{max0≤s≤t[A
∗(s, t) − α(t − s)] + mins≥0[β(s) − α(s)] > x} ≤ f ⊗ g(x),

from which the theorem follows.

Remarks: (i) Note that in (10), its right hand side has a term max0≤s≤t[A⊗
β(s)−A∗(s)]. If the server only has weak stochastic service curve, what is known
is P {A⊗β(s)−A∗(s) > x} ≤ g(x) and it is hard to find P {max0≤s≤t[A⊗β(s)−
A∗(s)] > x} that is critical for proving (P.1). This explains why weak stochastic
service curve does not have property (P.1), if the input is modeled with v.b.c
stochastic arrival curve.

(ii) If α is subadditive, following similar steps as in the above proof, we can
prove that the output also has v.b.c stochastic arrival curve A∗ ∼vb 〈f ⊗ g(x +
mint≥0[β(t) − α(t)], α〉.
Theorem 2. (Concatenation) Consider a flow passing through a network of
N nodes in tandem. If each node n(= 1, 2, . . . , N) provides stochastic service
curve Sn ∼sc 〈gn, βn〉 to its input, then the network guarantees to the flow a
stochastic service curve S∗ ∼sc 〈g∗, β∗〉 with β∗(t) = β1 ⊗ β2 ⊗ · · · ⊗ βN (t) and
g∗(x) = g1 ⊗ g2 ⊗ · · · ⊗ gN(x).



Proof. We shall only prove the two-node case, from which the proof can be easily
extended to the N -node case. For the two-node case, the output of the first node is the
input of the second node, so, A1∗(t) = A2(t). In addition, the input of the network is
the input to the first node, or A(t) = A1(t), and the output of the network is the same
as the output of the second node, or A∗ = A2∗, where A(t) and A∗ denotes the input
to and output from the network respectively. We then have,

max
0≤s≤t

[A ⊗ β1 ⊗ β2(s) − A∗(s)] = max
0≤s≤t

[(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)]. (13)

Now let us consider any s, (0 ≤ s ≤ t), for which we get,

[(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] − X1(t) − X2(t)

≤ (A1 ⊗ β1) ⊗ β2(s) − A2∗(s) − X1(s) − X2(s)

≤ min
0≤u≤s

[A1 ⊗ β1(u) + β2(s − u)] − max
0≤u≤s

[A1 ⊗ β1(u) − A2(u)] − max
0≤u≤s

[A2 ⊗ β2(u)]

≤ min
0≤u≤s

[(A1 ⊗ β1(u) + β2(s − u)) − (A1 ⊗ β1(u) − A2(u))] − max
0≤u≤s

[A2 ⊗ β2(u)]

= min
0≤u≤s

[A2(u) + β2(s − u)] − max
0≤u≤s

[A2 ⊗ β2(u)]

= A2 ⊗ β2(s) − max
0≤u≤s

[A2 ⊗ β2(u)] ≤ 0. (14)

where Xi(t) ≡ max0≤u≤t[A
i ⊗ βi(u) − Ai∗(u)], i = 1, 2.

Applying (14) to (13), we obtain

max
0≤s≤t

[A⊗β1⊗β2(s)−A∗(s)] ≤ max
0≤u≤t

[A1⊗β1(u)−A1∗(u)]+ max
0≤u≤t

[A2⊗β2(u)−A2∗(u)],

(15)

with which, since both nodes provide stochastic service curve to their input, the theo-

rem follows from (9) and the definition of stochastic service curve.

Remark: In deriving (14), we have proved [(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] ≤
max0≤u≤s[A1 ⊗ β1(u)−A1∗(u)] + max0≤u≤s[A2 ⊗ β2(u)− A2∗(u)] for all s ≥ 0.
However, if we want to prove concatenation property for weak stochastic service
curve, we need to prove [(A1 ⊗ β1) ⊗ β2(s) − A2∗(s)] ≤ [A1 ⊗ β1(s) − A1∗(s)] +
[A2 ⊗ β2(s) − A2∗(s)] for all s ≥ 0, which is difficult to obtain and does not
hold in general. This explains why weak stochastic service curve does not have
property (P.2).

The following lemma presents stochastic backlog and stochastic delay guarantees,
or property (P.3), provided by a server with weak stochastic service curve. Its
proof can be found from [11] and similar results can be found from the literature
(e.g. see [9] [18]). Since stochastic service curve implies weak stochastic service
curve as stated by Lemma 4, Theorem 3 follows from Lemma 5.

Lemma 5. Consider a server fed with a flow. If the server provides weak stochas-
tic service curve S ∼ws 〈g, β〉 to the flow and the flow has v.b.c stochastic arrival
curve A ∼vb 〈f, α〉, then, for all t ≥ 0 and all x ≥ 0, (1) P {B(t) > x} ≤ f⊗g(x+
mint≥0[β(t) − α(t)]), and (2) P {D(t) > x} ≤ f ⊗ g(mins≥−x[β(s + x) − α(s)]).



Theorem 3. (Service Guarantees) Consider a server fed with a flow. If the
server provides stochastic service curve S ∼sc 〈g, β〉 to the flow and the flow has
v.b.c stochastic arrival curve A ∼vb 〈f, α〉, then

– The backlog B(t) of the flow in the server at time t satisfies: for all t ≥ 0
and all x ≥ 0, P {B(t) > x} ≤ f ⊗ g(x + mins≥0[β(s) − α(s)]);

– The delay D(t) of the flow in the server at time t satisfies: for all t ≥ 0 and
all x ≥ 0, P {D(t) > x} ≤ f ⊗ g(mins≥−x[β(s + x) − α(s)]).

Finally, the following theorem presents per-flow service under aggregation or
property (P.4) for stochastic service curve.

Theorem 4. (Per-Flow Service) Consider a server fed with a flow A that is
the aggregation of two constituent flows A1 and A2. Suppose the server provides
stochastic service curve S ∼sc 〈g, β〉 to the aggregate flow A.

– If flow A2 has (deterministic) arrival curve α2, then the server guaran-
tees stochastic service curve S1 ∼sc 〈g1, β1〉 to flow A1, where, g1(x) =
g(x); β1(t) = β(t) − α2(t).

– If flow A2 has v.b.c stochastic arrival curve A2 ∼vb 〈f2, α2〉, then the server
guarantees to flow A1 weak stochastic service curve S1 ∼ws 〈g′1, β′

1〉, where,
g′1(x) = g ⊗ f2(x); β′

1(t) = β(t) − α2(t).

Proof. For the output, there holds A∗(t) = A∗
1(t)+A∗

2(t). In addition, we have A∗(t) ≤
A(t), A∗

1(t) ≤ A1(t), and A∗
2(t) ≤ A2(t). We now have for any s ≥ 0,

A1 ⊗ (β − α2)(s) − A∗
1(s) = min

0≤u≤s
[A(u) + (β − α2)(s − u) − A2(u)] − A∗(s) + A∗

2(s)

≤ [A ⊗ β(s) − A∗(s)] + A2(s) − min
0≤u≤s

[A2(u) + α2(s − u)]

= [A ⊗ β(s) − A∗(s)] + max
0≤u≤s

[A2(u, s) − α2(s − u)]. (16)

For the first part, with (16), we have

max
0≤s≤t

[A1⊗(β−α2)(s)−A∗
1(s)] ≤ max

0≤s≤t
[A⊗β(s)−A∗(s)]+ max

0≤s≤t
max

0≤u≤s
[A2(u, s)−α2(s−u)].

(17)
Since A2 has deterministic arrival curve α2 and A2(u, s) ≤ α2(s − u) for all 0 ≤
u ≤ s, we hence have max0≤s≤t max0≤u≤s[A2(u, s) − α2(s − u)] ≤ 0, with which,
max0≤s≤t[A1⊗ (β−α2)(s)−A∗

1(s)] ≤ max0≤s≤t[A⊗β(s)−A∗(s)]. Then, the first part
follows from the definition of stochastic service curve.

For the second part, we further get from (16) that

A1⊗ (β−α2)(s)−A∗
1(s) ≤ max

0≤u≤s
[A⊗β(s)−A∗(s)]+ max

0≤u≤s
[A2(u, s)−α2(s−u)] (18)

with which, S ∼sc 〈g, β〉 and A2 ∼vb 〈f2, α2〉, the second part follows from (9).

Remark: Theorem 4 proves that a flow in an aggregate receives a stochastic
service curve from a stochastic server when other flows in the aggregate have de-
terministic arrival curve. If other flows in the aggregate only have v.b.c stochastic
arrival curve, what has been proved is that the flow only receives weak stochastic



service curve. The difficulty in proving stochastic service curve for the flow can
be found from (17), where P {max0≤s≤t max0≤u≤s[A2(u, s) − α2(s − u)] > x} is
difficult to obtain from the given assumptions for the second part of Theorem
4. Nevertheless, we believe Theorem 4 can be readily used for stochastic ser-
vice guarantee analysis in many network scenarios. One is the single node case.
With Theorem 4 and Lemma 5, per-flow stochastic backlog and delay guaran-
tees can be derived for the single node case. Another scenario is the analysis
of Differentiated Services (DiffServ) in wireless networks. Under DiffServ, the
Expedited Forwarding (EF) class is deterministically regulated and usually put
at the highest priority level. In this scenario, Theorem 4 sheds some light on
deriving stochastic service curve and stochastic service guarantees for DiffServ
Assured Forwarding (AF) that is given lower priority than EF.

4 Strict Stochastic Server

In this section, we introduce strict stochastic server to help find the stochastic
service curve of a stochastic server, which is inspired by an intuition.

In wireless networks, the behavior of a wireless channel is most simply re-
vealed by the following intuition. The channel operates in two states: “good”
and “bad”. If the channel condition is good, data can be sent from the sender
to the receiver at the full rate of the channel; if the condition is bad, no data
can be sent. The bad channel condition has various causes such as noise, fading,
contention, etc, which in all we shall call impairment.

Inspired by the above intuition, we use two stochastic processes to character-
ize the behavior of a stochastic server. These two processes are (1) an ideal service
process Ŝ and (2) an impairment process I. Here, Ŝ(s, t) denotes the amount of
service that the server would have delivered in interval (s, t] if there had been
no service impairment, and I(s, t) denotes the amount of service, called impaired
service, that cannot be delivered in the interval to the input due to some im-
pairment to the server. Particularly, we have that the actually delivered service
to the input satisfies, for all t ≥ 0,

S(t) = Ŝ(t) − I(t), (19)

where Ŝ(t) ≡ Ŝ(0, t) and I(t) ≡ I(0, t) with Ŝ(0) = 0 and I(0) = 0 by convention.
It is clear that Ŝ, I are in F and additive.

We now define strict stochastic server as follows:

Definition 6. A server S is said to be a strict stochastic server providing strict
stochastic service curve β̂(·) ∈ F with impairment process I to a flow iff during
any backlogged period (s, t], the output A∗(s, t) of the flow from the server satisfies

A∗(s, t) ≥ β̂(t − s) − I(s, t).

In the rest, we assume β̂ is additive and has the form of β̂(t) = r̂t. In addition,
we assume the impairment process I(t) is (σ(θ), ρ(θ))-upper constrained, a model
that was initially used in [4] to characterize stochastic behavior of traffic, whose
definition is as follows:



Definition 7. A stochastic sequence I, I ≡ {I(t), t = 0, 1, 2, . . .} with I(0) = 0,
is said to be (σ(θ), ρ(θ))-upper constrained (for some θ > 0), iff for all 0 ≤ s ≤ t

1
θ
logEeθ(I(t)−I(s)) ≤ ρ(θ)(t − s) + σ(θ). (20)

The following result shows that if the impairment process I(t) is (σ(θ), ρ(θ))-
upper constrained, a strict stochastic server has a stochastic service curve. Due
to space limitation, the proof is omitted and can be found from [11].

Theorem 5. Consider a strict stochastic server providing strict stochastic ser-
vice curve β̂(t) = r̂·t with impairment process I to a flow. Suppose I is (σ(θ), ρ(θ))-
upper constrained. Then, the server provides to the flow a stochastic service curve
S ∼sc 〈β, g〉, where β(t) = pr̂ · t and g(x) = eθσ(θ)

(1−eθ(ρ(θ)−(1−p)r̂))2
e−θx with any p,

(0 ≤ p < 1), satisfying (1 − p)r̂ > ρ(θ).

Remark: The definition of strict stochastic server is based on the intuition
on the behavior of a wireless channel, which provides a simple approach to char-
acterize this behavior. Theorem 5 proves the stochastic service curve of a strict
stochastic server, with which and the analysis in the previous section, stochastic
service guarantees can be derived for networks of strict stochastic servers. In
addition, in [4] [5], many well known processes such as Markov Modulated Pro-
cesses have been proved to be (σ(θ), ρ(θ))-upper constrained. Note that these
processes have also been used in the literature for characterizing a wireless chan-
nel (e.g. [9] [10]). We hence believe our results are useful for stochastic service
guarantee analysis in such networks.

5 Conclusion

In this paper, we introduced a new server model, called stochastic service curve,
for stochastic service guarantee analysis. We have proved that stochastic service
curve has properties (P.1)-(P.4), which are crucial for stochastic service guaran-
tee analysis and the development of stochastic network calculus. In addition, we
have proposed the concept of strict stochastic server to help find the stochastic
service curve of a stochastic server. In a strict stochastic server, the service is
characterized by two stochastic processes: an ideal service process and an im-
pairment process. The impairment process provides a simple approach to model
the impairment experienced by a server, which is typical in wireless networks.

While property (P.4), i.e. per-flow service under aggregation, has been proved
for stochastic service curve, it is based on the assumption that other flows in the
aggregate are deterministically upper-bounded. It would be interesting to prove
stochastic service curve for property (P.4), when the other flows in the aggregate
are only stochastically upper-bounded. Future work could hence be conducted to
design traffic and server models to have properties (P.1)-(P.4) without additional
assumptions on traffic or server.
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