
Distributed Online LSP Merging Algorithms for
MPLS-TE

Li Lei and Srinivas Sampalli

Faculty of Computer Science, Dalhousie University
Halifax, NS B3H 1W5, Canada
{llei, srini}@cs.dal.ca

Abstract. Merging of Label Switched Paths (LSPs) saves label space
and reduces processing time in routers. We introduce two distributed
merging algorithms for online LSP merging.

1

3

4

5

6

2

Fig. 1. LSPs merging example

12

3

4

5

6

7
()

() (m, 6, 1) (m, 3, 1) (m, 3, 2)

()

m-t-p LSP m
new LSP l

() Refer_list

Fig. 2. Example of on the fly
merging

merge

A B

(b) after merging at link A-B

A B

(a) node B detects merging at link A-B

A B

(c) after final merging beyond A

Fig. 3. Example of upstream wave merging

1 Introduction

As the size of the MPLS network [1] increases, the large label space becomes
a big performance concern [2]. Labels can be saved by merging conventional
point-to-point (p-t-p) LSPs to form Multipoint-to-Point (m-t-p) LSP trees [1],
as shown in Figure 1.

The optimization of LSP merging problem is NP-hard [5]. Previous proposed
merging schemes [4] [5] require a central control and global route information
and suffer from performance degradation in online use [5]. In this paper, we
describe two fully distributed online LSP merging algorithms.

2 Distributed LSP Merging Algorithms

We abstract the LSP control and management as general message passing pro-
cesses. We also assume only local information is available at each route.

The on the fly merging algorithm requires two messages, request and resv. The
procedure REQUEST collects merging information along the route, as shown in
Figure 2. The procedure RESV assigns to the new LSP l the same label as that
of selected LSP m rather than a new one. The normal label distribution process
resumes after the refnode specified in the reference entry. This algorithm rapidly
merges a new LSP into an existing LSP but unable to merge all possible LSPs.

1: procedure request(reflist)
2: for all entry i ∈ reflist do
3: if portout(i) = portout(l) then
4: hop(i) + +
5: else
6: remove entry i
7: end if
8: end for
9: N ← {LSP m|portout(m) = portout(l) ∧ portin(m) 6= portin(l)}

10: for allLSP j ∈ N do
11: if qos(j) = qos(l) then
12: reflist ← reflist ∪ {j}, hop(j) ← 1, refnode(j) ← itself
13: end if
14: end for
15: end procedure
16: procedure resv(reflist)
17: if reflist 6= φ then
18: m ← reference LSP in reflist
19: if refnode = itself then
20: clear reflist
21: assign l a new label
22: else
23: assign l the same lables as m
24: modify the bandwidth reservation of m
25: end if
26: end if
27: end procedure

Algorithm 1: On the fly merging algorithm

The upstream wave merging algorithm detects and merges all possible LSPs
starting from the egress nodes. It requires two messages merge and release. The
procedure DETECT finds merging opportunities starting from the egress nodes.
The procedures REMAP and RELEASE illustrate the merging operation, as
shown in Figure 3.

1: procedure DETECT
2: for every output port r do
3: OUT ← {all outgoing labels to r}
4: for every input port s do
5: for every label i ∈ OUT do
6: INi ← {all LSPs from s to outgoing label i}
7: end for
8: if(|INi| > 1) send message merge(INi) to node s
9: end for

10: end for
11: end procedure
12: procedure REMAP(LSP set M, message source node s)
13: l ← LSP which has the minimal label in M
14: for all LSP j ∈ M − {l} do
15: labelout(j) ← labelout(l)
16: bandwidth(l) ← bandwidth(l) + bandwidth(j)
17: end for
18: send message release(M) to s
19: end procedure
20: procedure RELEASE(LSP set M)
21: remove NHLFEs for all LSP l ∈ M
22: end procedure

Algorithm 2: Upstream wave merging algorithm

3 Conclusion and Future Work

In this paper, we propose two distributed LSP merging algorithms for MPLS-
TE. Currently, we are in the progress of simulating our algorithms. LSP merging
may affect other fields of traffic engineering, such as preemption. Integration of
tess algorithms with ours previously proposed preemption scheme [3] is a work
for further study. Extending MPLS signaling protocols for LSPs merging also
requires more attention.

References

1. E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switching Architec-
ture, IETF, RFC-3031, January 2001.

2. H. Hummel and J. Grimminger, Hierarchical LSP, IETF Internet Draft, draft-
hummel-mpls-hierarchical-lsp-00.txt, March 2002, work in progress

3. L. Lei and S. Sampalli, Backward connection preemption in multiclass QoS-aware
networks, Proceeding of 12th IEEE IWQOS, page(s):153-160, June 2004

4. H. Saito, Y. Miyao, and M. Yoshida, Traffic Engineering using Multiple Multipoint-
to-Point LSPs, Proceeding of IEEE INFOCOM 2000, Page(s): 894-901 vol.2, March
2000.

5. S. Bhatnagar, S. Ganguly and B. Nath, Creating Multipoint-to-point LSPs for Traffic
Engineering, Proceeding of IEEE HPSR Workshop 2003, page(s): 201-207, June
2003

