
Survey and Comparison of SDN Controllers for
Teleprotection and Control Power Systems

Silvio E. Quincozes, Arthur A. Zopellaro Soares, Wilker Oliveira, Eduardo B. Cordeiro,
Robson A. Lima, Débora Muchaluat-Saade, Vinicius C. Ferreira, Yona Lopes,
Juan Lucas Vieira, Luana M. Uchôa, Helio N. C. Neto, Leonardo F. Soares,

Natalia C. Fernandes, Diego Passos, and Célio Albuquerque
Laboratório Mı́diaCom

Universidade Federal Fluminense
Niterói/RJ, Brazil

sequincozes@gmail.com, {arthurazs,wilkerrj,bastos,robsonal,debora}@midiacom.uff.br,
{viniciusferreira,yonalopes,juanlucasvieira,luchoa,heliocunha,leonardofiorio,nataliacf}@id.uff.br,

{dpassos,celio}@ic.uff.br

Abstract—The advent of smart grid promotes the upgrade
of substation automation technology, adding processing and
communication capabilities to control and protection devices.
Thereby, research on substation data communication networks is
pressured to find new, efficient, and reliable ways to support such
scenario. In particular, the IEC 61850 standard defines stringent
temporal requirements for the power systems communication
comprising teleprotection schemes. Given that the power grid is
a critical infrastructure, availability is also a strong requirement.
In that context, Software-Defined Network (SDN) may provide
powerful tools to fulfill those requirements at acceptable costs.
In this paper, we survey and compare several available SDN
controllers and their applicability to the teleprotection scenario.

Index Terms—Software-Defined Networks, Controllers,
Teleprotection, IEC 61850, Reliability

I. INTRODUCTION

Power transmission lines extend through large geographical
areas, thus being vulnerable to a number of events that are
potentially harmful to the electrical power grid. The duration
of a fault is a crucial performance aspect for the electrical
grid [1]. Hence, since 2000, working group 34/35.11 of the
Brazilian National Committee for Production and Transmis-
sion of Electrical Energy (CIGRÉ) [2] considers the usage
of communication in line protection schemes as an efficient
option. The rationale is that communication may decrease the
time to perform a trigger command, which must occur from
2 to 3 cycles after the fault at any point of the line [3].
Using communication to enhance protection is known as
teleprotection and its general structure is defined by the
IEC 60834 standard [4]. Teleprotection schemes can improve
selectivity and response time by allowing protection Intelligent
Electronic Devices (IEDs) to exchange logical information
between terminals of a transmission line. Hence, the decision
time for an IED to block both external and internal faults is
reduced.

This work is supported by CAPES, CNPq, FAPESP, FAPERJ, INERGE,
and TAESA.

While IEC 61850 [5] seeks to improve the performance
of protection schemes, it imposes stringent communication
requirements to ensure the correct behavior of teleprotection
functions. Not only communication delay must be minimized,
but also any down time in the communication network. Oth-
erwise, we risk jeopardizing teleprotection, which may result
in financial — and even human — losses.

Therefore, a fast and reliable communication network that
can quickly recover from failures is essential. Methods such
as Rapid Spanning Tree Protocol (RSTP) [6], Parallel Re-
dundancy Protocol (PRP) [7], and High-availability Seamless
Redundancy (HSR) [7] are commonly employed to provide
fault recovery in those networks, but they are either expensive
to deploy (PRP and HSR require special topologies) or not fast
enough for teleprotection (RSTP can result in long recovery
times).

Software-Defined Network (SDN) [8] appears as a promis-
ing solution to fulfill the performance and resilience require-
ments of such networks. A centralized controller would be able
to establish efficient paths for the communication of IEDs —
possibly with traffic differentiation mechanisms to ensure pri-
ority for critical messages —, while minimizing flooding and,
therefore, optimizing network resource usage. The controller
might also proactively setup fallback paths for critical traffic,
reducing recovery time when network components fail. By the
same token, such a solution would allow data replication by
multiple paths as a zero-recovery-time solution for failures,
similarly to how HSR and PRP work, but with less specific
topological requirements.

Despite the potential benefits, it is fair to wonder whether
the centralized controller would not represent a bottleneck
that hampers performance or robustness in such a demanding
scenario. Currently, there are many SDN controllers available
with varying levels of functionality, performance, reliability,
and fault-tolerance. Plenty of literature compares several pop-
ular controllers [9]–[14], but research has mostly focused on
performance aspects — specifically, the capacity to handle
large volumes of packet-in messages and the associated re-

978-3-903176-23-2 © 2019 IFIP



sponse time. Teleprotection, however, poses very particular
requirements and use cases for the controller, presenting a
unique set of aspects of interest. To the best of our knowledge,
such a targeted evaluation of controllers has not yet been
presented.

In that spirit, this paper evaluates popular SDN controllers
under the light of the specific requirements of teleprotection
applications. We start with an overview of teleprotection, as
defined by IEC 61850, in order to properly establish the most
pressing requirements. We then provide a review of several
SDN controllers, ranging from popular, general purpose ones
— such as Opendaylight and ONOS — to domain-specific
controllers — such as SEL-5056. Finally, we use that review
to study the applicability of each controller to teleprotection.

This text is organized as follows. Section II provides a
primer on the IEC 61850 standard and discusses benefits and
requirements of an SDN solution. Section III surveys SDN
controllers, highlighting their main characteristics. Section IV
evaluates those controllers, matching their characteristics to the
requirements discussed in Section II. Section V, then, presents
our conclusions and ideas for future work.

II. TELEPROTECTION WITH IEC 61850 AND SDN

IEC 61850 [5] is a set of manufacturer-agnostic specifi-
cations developed by the International Electrotechnical Com-
mission (IEC) to standardize communication among devices in
control, protection, and automation for electric power systems.
Modern relays, known as IEDs, have become micro-processed,
being able to record, process, and transmit information about
events, measurements, and other kinds of values. The collab-
oration among IEDs achieved through communication allows
more efficient control and protection of the power system.

IEC 61850 is based on four pillars: information modeling;
service modeling; communication protocols; and configuration
languages. Information modeling defines classes and naming
conventions for relevant data exchange (e.g., measurements,
such as voltage and current, commands, events). Service mod-
eling defines actions to be performed on that data. Communi-
cation protocols define how data is exchanged among elements
of the system. Configuration languages define a standard way
to express those elements’ configurations. For the remainder
of this section, we will focus on communication protocols.

The standard defines two basic communication models. Two
Party Application Association (TPAA) is used for service
request and reply, using a reliable connection-oriented bidi-
rectional information flow. Multicast Application Association
(MCAA), on the other hand, uses a publisher-subscriber archi-
tecture for disseminating information from a source to a set of
interested parties. The standard further defines three protocols
that operate under those models. The Manufacturing Message
Specification (MMS) implements TPAA, while Generic Ob-
ject Oriented Substation Event (GOOSE) implements MCAA.
Sampled Values (SV), in turn, may operate under either model.

MMS was originally standardized in ISO 9506 [15] for
communication between programmable devices in Computer
Integrated Manufacturing environments [16]. It was later

incorporated by IEC 61850 for control and supervision of
automation devices in the power system. In a nutshell, MMS
allows a Supervisory Control and Data Acquisition (SCADA)
system to send commands and receive replies from those
devices. It can work over both TCP/IP and ISO/OSI stacks
— it runs on top of TCP, in the former case —, and uses
Abstract Syntax Notation One (ASN.1) to encode information
in a platform-independent manner.

GOOSE is used to send event information. It groups and
transmits the values of certain internal variables of the IED,
which allows the receiving device to be warned — and
possibly react — to events detected by others. GOOSE is,
therefore, intimately related to protection schemes. Messages
are asynchronous, triggered by specific events and transmitted
using MAC multicast addresses, as GOOSE runs directly on
top of Ethernet.

SV is used periodically sampling current and voltage data.
Samples are digitized by transformers and transmitted to one
or more IEDs, which, in turn, process them to check for
abnormal behavior of the system.

Due to the critical nature of teleprotection, all three pro-
tocols have real-time requirements associated with their mes-
sages. MMS messages have the least stringent requirements,
varying from 100 ms to over a second, depending on the
application. Because SV and GOOSE are directly involved in
fault detection and reaction, their time requirements are much
stronger: for certain messages, no more than 3 ms is tolerated.
Additionally, SV may generate large volumes of data because
of the sampling frequency.

Those characteristics put severe stress on the communi-
cation network. Moreover, as the power system must have
very high reliability and availability, so does the underlying
communication network. Under those circumstances, SDN
can bring a number of advantages. For example, GOOSE’s
multicast traffic can be forwarded much more efficiently, given
a centralized controller with a complete view of the network
topology and a previous knowledge of interested receivers.
Other broadcast traffic, such as ARP, can also be handled
much more efficiently, avoiding flooding. As such, resource
waste is minimized, saving network capacity to fulfill the
temporal requirements of critical messages and the throughput
requirements of SV traffic.

SDN can also improve network reliability and reduce failure
recovery time. There are two additional protocols for that
purpose: HSR and PRP. Both use specially-crafted topologies
to define independent alternative paths between devices that
exchange critical messages — HSR uses a ring topology, while
PRP uses separate Local Area Networks (LANs). The idea of
both is to proactively replicate each packet in each path so
that, in case of a failure in one of the paths, a copy may
still reach the destination through the other. That results in
zero-time recovery. Those topological requirements, however,
make HSR and PRP much harder and expensive to deploy.
An SDN-based solution could establish alternative flows in a
more generic topology to achieve a similar effect.



III. A REVIEW OF SDN CONTROLLERS

SDN’s control plane is responsible for the management
of flows that traverse switching devices [8]. At the heart of
the control plane lies the network controller, which usually
runs on a server connected to the network. Choosing an
SDN controller that properly matches the network needs is
an important deployment task. Here, we survey a number of
SDN controllers, highlighting their main characteristics.

A. NOX

NOX [17] provides a programming platform to control one
or more OpenFlow switches. It gained popularity as one of the
first able to control OpenFlow networks. Moreover, NOX is an
open platform, which allows the development of management
functions for both enterprise and domestic networks. NOX
aims to provide the capacity of managing large networks at
rates of gigabits per second without requiring special hardware
to run the controller [17].

Its Northbound Interface is accessible through both C++ and
Python and offers a centralized programming model in which
an application may take forwarding decisions with a complete
view of the topology. That seeks to simplify application
development. In addition to the Application Programming
Interface (API), NOX provides a Graphical User Interface
(GUI) with three basic elements: a log viewer, a topology
viewer and a console widget.

NOX supports Python 2.7 and C++ for application develop-
ment. Several Linux distributions are officially supported. The
GUI is implemented in Python using the Qt library and com-
municates with the controller’s core through JSON messages,
allowing both components to be executed in different hosts if
needed.

NOX is published under the Apache 2.0 license, which
allows its code to be freely modified and redistributed. While
that could foster interest in the continuation of the project,
NOX has witnessed a decrease in popularity, perhaps due to
its performance not matching that of more recent controllers.
The lack of support for multi-threading helps explain that, as
NOX is unable to efficiently explore the currently common
multicore processors. Moreover, it is not possible to use
multiple distributed controllers. Because of all those factors,
the development of NOX seems to have stalled.

B. POX

POX is an open source controller written in python and
distributed under the Apache 2.0 license. It started as an
OpenFlow-specific controller, but today it provides a general
framework for management of switches using both OpenFlow
and Open vSwitch Database Management Protocol (OVSDB).
POX is particularly popular as a teaching and researching
tool [10], and it also facilitates fast prototyping of new
management applications, due to its simplicity. It is an in-
teresting alternative to NOX, if performance is not a critical
requirement.

POX is developed for Python 2.7 and officially supports
Windows, MacOS, and Linux. It is distributed with a few

standard applications, such as simple layer-2 and layer-3
forwarding. There is no official GUI for POX, although
third-party projects, such as POXDesk1, exist. POXDesk,
in particular, offers basic functionality, such as visualizing
flow tables, logged events and the network topology. The
communication between POXDesk and the POX’s core uses
a REpresentational State Transfer (REST) API available with
the controller.

Like NOX, POX lacks support for distributed controllers
and multi-threading. Moreover, it does not support Transport
Layer Security (TLS) for secure OpenFlow communication
with switches. The development of POX also seems stalled.
Furthermore, literature has repeatedly shown that POX is
outperformed by other more robust controllers [10], [12], [13].

C. Beacon

Beacon is a modular, open source OpenFlow controller
that supports both event-oriented execution and multi-threaded
execution. Created in 2010 at Stanford University, it was
widely used in academia, both for research and education. It
served as the basis for the Floodlight controller.

One of the goals of Beacon was to improve productivity by
allowing an administrator to start, alter, and interrupt applica-
tions in execution time [18]. It also provides a set of standard
applications that implement several common functionalities of
the control plane. High performance was also a goal [18].

Beacon is written in Java, using several frameworks such
as Open Services Gateway Initiative (OSGi) and Spring. As
such, Beacon can run in several platforms ranging from robust
Linux-based servers to Android-powered smartphones. The
controller is distributed under GNU General Public License
(GPL) v2 and Free Open Source Software (FOSS) License
Exception v1.0.

Like several other controllers, Beacon has a basic GUI that
lists network nodes and shows the topology. It is also possible
to inspect the flow table of each switch. Also similarly to the
other controllers discussed so far, the code base of Beacon
has not been updated for several years. One of the strong
suits of Beacon, however, is the good quality of its code
documentation.

To provide support for OpenFlow, Beacon uses the Open-
FlowJ Java library, which is an object-oriented implementation
of OpenFlow 1.0. Because of that, Beacon lacks support for
newer versions of the OpenFlow specification. That is perhaps
the main limitation of this controller.

D. Ryu

Ryu was created by Nippon Telegraph and Telephone Cor-
poration (NTT) and follows a component-oriented design to
facilitate modification and extension of modules in response
to new demands from applications. In turn, applications use
components supplied by the controller in order to interface
with switches and install flow-handling rules.

Some basic applications are distributed with Ryu, including
an SDN-based implementation of a self-learning switch on

1https://noxrepo.github.io/pox-doc/html/#poxdesk-a-pox-web-gui



top of OpenFlow. A simple monitoring application, which
allows an administrator to follow the current state of ports
and flows, is also available. Ryu is quite flexible in terms of
the southbound API. It supports several protocols, including
OpenFlow versions 1.0 and 1.2 – 1.5, OFConfig, Network
Configuration (NETCONF), and Nicira extensions2.

Ryu provides a very basic web-based GUI. It exhibits
topology and flow information, but it does not allow any mod-
ification of the switches’ flow tables. However, to facilitate the
debugging of new applications, Ryu includes a REST API that
supports collecting flow statistics and topology information, as
well as manipulating flow tables dynamically.

Source code is written in Python and is freely available
through a GitHub repository3 under the Apache 2.0 license.
Like Beacon, Ryu excels in terms of documentation, in-
cluding several application development tutorials. Unlike the
previously discussed controllers, Ryu remains under active
development, as evidenced by its support to recent versions
of OpenFlow.

Another positive aspect of Ryu is the native support to
multi-threading, although it does not support any kind dis-
tributed controller setup. While multi-threading allows Ryu
to perform better under heavy loads, its performance is still
considered poor in comparison to more recent controllers
according to several benchmarks [19].

E. Floodlight

While many SDN controllers have academic roots, Flood-
light4 is maintained by Big Switch Networks5 and is consid-
ered a professional controller. Created in 2011, Floodlight is
written in Java and supports versions 1.0 to 1.4 of OpenFlow,
as well as other southbound APIs. It is distributed under the
Apache 2.0 license.

Floodlight is compatible with Linux and currently requires
JDK 8 for the development of applications in Java. Applica-
tions can also be written in Python using an specific library.
Floodlight uses a highly modular architecture that facilitates
application development.

Like Ryu, Floodlight supports multi-threading to improve
performance under heavy loads. Indeed, several authors have
found good results with Floodlight in terms of capacity of han-
dling large volumes of requests [13], [20], although it is still
outperformed by other controllers. Like all other controllers
described thus far, however, Floodlight has no support for
distributed controllers.

Basic pre-installed applications of Floodlight include an
SDN-based self-learning level-2 switch and a proactive routing
application that learns the network topology and installs flows
for the shortest paths between network elements. A third appli-
cation, called Static Flow Entry Pusher allows an administrator
to statically install flows in each network switch. A variation

2See documentation: https://osrg.github.io/ryu/
3https://github.com/osrg/ryu
4http://www.projectfloodlight.org/
5https://www.bigswitch.com/

of the application, called Circuit Pusher, allows the manual
definition of complete virtual circuits.

Floodlight provides a web-based GUI that allows visualizing
network topology, including hosts connected to each switch.
This interface also shows detailed information about each
network component, such as the configuration of Network
Interface Cards (NICs) and flow tables of switches.

F. OpenDayLight

OpenDayLight (ODL) was created in 2013 and is main-
tained by The Linux Foundation. Several companies contribute
with the project, including Cisco, HP, IBM and NEC. ODL is
distributed under the Eclipse Public License (EPL) v1.0, which
is a more restrictive license6 compared to the ones used by the
previously discussed controllers.

This controller is written in Java and is compatible with sev-
eral southbound protocols, such as OpenFlow, Simple Network
Management Protocol (SNMP), NETCONF, OVSDB, Border
Gateway Protocol (BGP), and Path Computation Element
Communication Protocol (PCEP). It uses an architecture called
Model-Driven Service Abstraction Layer (MD-SAL), and it
defines a layer with common application patterns, a model for
messages exchanged between applications, as well as the Yet
Another Next Generation (YANG) language, which is used for
data modelling. This highly modular architecture is built on
top of Karaf and a configuration layer. Together, they work as
the base for the applications. Among other advantages, they
allow applications to be loaded and interrupted dynamically.

ODL comes with three standard applications. The first,
called Simple Forwarding, implements a very basic forwarding
mechanism based on OpenFlow. This application uses ARP
traffic to identify hosts connected to the network. The second
application provides a load-balancing scheme between back-
end servers. Balancing is achieved by means of the reactive
installation of flow rules mapping the source address of packets
to paths to one of the available servers. Both round robin
and random policies can be used. Finally, the third application
allows an administrator to monitor network statistics using a
web interface.

ODL has a rich documentation, including source code
documentation, installation tutorials, and general usage. While
comprehensive, documentation is somewhat outdated in some
aspects. For instance, as of this writing, documentation still
refers to the DLUX GUI and the L2switch module, both of
which were discontinued.

One major advantage of ODL with respect to the other
controllers described so far is the support for distributed
controllers. ODL can be configured to perform load-balancing
among multiple controllers or to use a secondary controller as
a backup to the primary one. It also supports multi-threading.

G. ONOS

Open Network Operating System (ONOS) is an open source
controller developed by Open Networking Foundation (ONF),

6Available in: https://www.eclipse.org/legal/epl-v10.html



a non-profit organization that promotes the usage of SDN and
OpenFlow. ONOS is highly extensible and modular, and na-
tively supports both distributed and multi-threaded execution.
The controller core and applications are developed in Java. The
main design goal of ONOS was to support the management
of large-scale and fast networks, targeting mainly the ISP
market segment [12]. According to Berde et al. [21], ONOS
was created with the following requirements in mind: high
throughput (up to 1 million requests per second); low latency
(event processing should take between 10 and 100 ms); support
to a global view of large networks (up to 1 TB of data); and
high availability (up to 99,99%).

The core of the controller and the basic services are
executed on the Java Virtual Machine (JVM) through the
OSGi component system. That allows new modules to be
installed and started dynamically in a single JVM. Moreover,
the portability of Java allows ONOS to be executed in several
different platforms.

The open source nature of ONOS — it is distributed
under the Apache 2.0 license — has attracted a fairly large
development community. As a consequence, a large number
of applications are available — 187 at release of version 2.1.0.
Features provided by those applications range from simple
topology discovery tools and basic forwarding schemes to
complex traffic handling. ONOS also supports several south-
bound protocols, including OpenFlow, OpenConfig, NET-
CONF, and P4. Additionally, driver components can be loaded
to provide support to more specific devices.

ONOS has a very resourceful web-based GUI. It supports
the visualization of the network topology, including discovered
hosts, and exhibits details of the managed devices, links’
states, flow statistics, among other information. In particular,
for OpenFlow switches, the GUI allows monitoring installed
flows, connected devices, and usage of each port.

This controller also provides a REST API that allows the
integration of ONOS with other systems. That is useful, for
example, for third-party systems that require certain network
information, such as a list of connected devices or usage
statistics. The REST API also allows the manipulation —
installation and deletion — of switches’ flow tables.

H. SEL-5056

Different from the other solutions discussed in this paper,
SEL-5056 SDN Flow Controller is a domain-specific con-
troller. It is a commercial solution developed by Schweitzer
Engineering Laboratories (SEL), which targets the manage-
ment of SDN networks for critical infrastructure. In fact, this
controller was specifically designed to work with the SEL-
2740S switch manufactured by the same company.

SEL-5056 is distributed either as a Microsoft Windows ap-
plication or pre-installed in a specially crafted SEL computer
— SEL-3355 — that runs Windows Server 2012 R2. The
software is available to download from the company’s website
and can be used with no cost for up to four switches. Above
that limit, the software requires a one-time license fee.

Regardless of whether SEL-5056 is executed as a Windows
application or on the SEL-3355 hardware, the user interfaces
with the controller through a web-based GUI. This GUI al-
lows configuring SEL-2740S switches, visualizing the network
topology, as well as installing and deleting flow rules in each
device. One important aspect of this controller is the fact that
in earlier versions all flows had to be manually configured by
an administrator. However, in the newer version of SEL-5056
a set of substation flow rules can be created and reused.

I. Cisco Open SDN Controller

Cisco Open SDN Controller7 is a commercial distribution of
ODL. This version, however, is tested, validated, and officially
supported by Cisco. Still, this controller obviously shares
several characteristics with ODL.

Besides the official support and validation, Cisco also
provides certain applications that facilitate — or complement
— the usage of this controller with devices and platforms
commercialized by the company. That creates an specialized
SDN environment for the manufacturer. As of the writing
of this paper, the following lines of products are supported:
Cisco ASR 9000, Cisco Nexus 3000, and Cisco Catalyst
4500X. Nevertheless, other devices, regardless of manufacturer
— including those compatible with OpenFlow — can be
controlled as well.

The Cisco Open SDN Controller can be executed as a
Virtual Machine, by means of an Open Virtual Appliance
(OVA) that can run on both VMWare’s ESXi and Oracle’s
VirtualBox. However, Cisco recommends users to observe
a number of suggested hardware requirements for the host
system.

Similarly to ODL, Cisco Open SDN Controller is compat-
ible with a number of northbound and southbound protocols.
In particular, a REST API can be used to interface with
applications. For southbound communication, the controller
supports OpenFlow — versions 1.0 and 1.3 —, Cisco MPSL,
OVSDB, NETCONF, BGP-LS, and PCEP. The controller
requires a license to be used.

Cisco Open SDN Controller is managed through a web-
based GUI. The interface allows remote configuration of
network elements, visualizing the network topology, accessing
network statistics, and manipulating switches’ flow tables,
among other features.

The current version is based on ODL “Helium” (v.2), which
is more than five years old. By the end of 2016, Cisco an-
nounced the discontinuation of the controller, which explains
this lag. Instead, Cisco is currently investing in complete
solutions — comprising hardware and software — for specific
scenarios, such as cloud management (Cisco DNA center / SD-
Branch) and access networks (SD-Access). Therefore, Cisco
has halted the development of more general purpose adaptable
SDN controllers.

7For more details, please refer to the datasheet available in: https:
//www.cisco.com/c/en/us/products/collateral/cloud-systems-management/
open-sdn-controller/datasheet-c78-733458.html



J. Performance Comparison

Many authors have conducted and reported on performance
comparisons between controllers [9]–[14]. NOX, POX, Ryu,
ONOS, ODL, and Floodlight are the most often evaluated.
Perhaps due to its domain-specific nature, to the best of our
knowledge, SEL-5056 has not been included in any perfor-
mance comparison with other controllers in the literature.

While details vary, most comparisons resort to the Cbench
tool to simulate the generation of large volumes of packet-in
messages, opting to measure controllers’ performance under
saturated conditions. Usual interest metrics are throughput
and response-time (in terms of number of packet-in messages
replied and the time to generate those responses). Among the
controllers surveyed in this section, most comparisons agree
that ONOS, ODL, Floodlight, and Beacon outperform NOX,
POX, and Ryu. Within those first four controllers, however,
conclusions vary depending on the evaluated metric and on
the particular methodology.

One should observe, however, that not many comparisons
are performed on real hardware, or even in a full network
simulation environment. While Cbench is a valuable tool
to stress controllers, network interactions (such as packet
losses and excessive delays due to congestion) might influence
results. Moreover, important aspects for the teleprotection
scenario, such as long term availability and reliability, are not
often evaluated. Finally, comparisons tend to focus on open
source controllers, while commercial ones are generally not
considered.

IV. QUALITATIVE ANALYSIS

We now present a qualitative analysis of SDN controllers
considering the specific requirements of teleprotection — in
particular, of IEC 61850. We analyze all controllers discussed
in Section III in terms of the following 13 characteristics:
(i) availability and quality of documentation; (ii) availability,
friendliness and completeness of a GUI; (iii) programming
language in which the controller is developed; (iv) existence
of standard applications with basic functionalities; (v) support
to distributed controllers (load-balancing); (vi) support to
backup controllers (failover); (vii) supported platforms; (viii)
northbound APIs; (ix) southbound APIs and other protocols;
(x) license; (xi) multi-threading support; (xii) frequency of
updates; (xiii) TLS support. Table I summarizes these charac-
teristics for each evaluated controller.

Documentation is an important characteristic of any soft-
ware, but it becomes even more relevant for an SDN controller
used in a teleprotection scenario, because professionals of
the energy sector might have to interact with the controller.
For this evaluation, we considered both official and unofficial
(e.g., community generated) documentation. In Table I, this
characteristic is evaluated in a numerical scale from 1 to 5,
which represents the sum of 5 binary properties: (i) existence
of official documentation; (ii) documentation is consistent with
the newest version of the controller; (iii) documentation has
a beginners’ guide; (iv) documentation is easy to follow; and
(v) controller has an active user community (e.g., discussion

forums). According to our survey, only the documentations
for ONOS and Ryu perfectly fit all five criteria. Beacon is
particularly poor in that regard, which is perhaps explained
by its overall lack of development for several years now.

While a GUI is not essential for an SDN controller,
it certainly facilitates the learning and deployment of the
technology, especially as controllers become more and more
complete and complex. Similarly to a good documentation, a
good GUI is particularly relevant in the teleprotection scenario,
as it facilitates the interaction of non-specialized people. We
evaluate this aspect using a numerical scale very similar to the
one used for documentation. Here, the following five binary
properties were considered: (i) controller has an official GUI;
(ii) the GUI supports manipulating flow tables; (iii) the GUI
exhibits the network topology; (iv) the GUI shows a log of
events; and (v) the GUI allows modifying the behavior of
the controller (e.g., starting a new application). While most
evaluated controllers have some kind of useful GUI, ONOS,
Beacon, SEL5056, and Cisco are the only ones that perfectly
fit all five criteria.

The programming language in which the controller is writ-
ten can be an important factor as well. Languages such as
Python and Java tend to guarantee better levels of portability.
Moreover, Python is widely regarded as an easy language
to learn, which might bode well if one plans to develop
applications. On the other hand, because they are interpreted
or based on a virtual machine, one might speculate on
whether controllers written in Python or Java perform poorly
in comparison to one written in C++, for instance. Java is the
language used for most of the evaluated controllers, especially
the more recent ones.

In terms of standard applications, most controllers include
them. Usually, at least a basic level-2 forwarding application
is distributed with each controller. The only exception in this
evaluation was SEL-5056, which comes with no automatic
flow configuration applications and requires flows to be man-
ually configured by an administrator.

Support to distributed controllers is especially important
for very large networks, as a tool to improve scalability.
Among the evaluated controllers, only ODL, ONOS, and
Cisco support this functionality. In a teleprotection scenario,
however, the usefulness of this property is tightly coupled
with fault tolerance: in a system in which faults can be
catastrophic, an SDN controller should not be a single point of
failure. Therefore, the usage of distributed controllers provides
an automatic fault response mechanism. Nevertheless, load-
balancing among controllers is not strictly necessary for fault
recovery. Instead, the possibility of having a backup controller
that can seamlessly take over when the primary fails is enough.
In any case, support for backup controllers is only present in
ODL, ONOS, and Cisco, the same controllers that support a
distributed architecture.

The platforms supported by the controller are another im-
portant aspect. Controllers that are able to run on an open
source Operating System (OS), such as Linux, may be desir-
able because they potentially decrease deployment costs. How-



TABLE I
LIST OF FEATURES USED FOR THE QUALITATIVE COMPARISON OF THE EVALUATED CONTROLLERS.

Controller NOX POX Beacon Ryu FloodLight ODL ONOS SEL-5056 Cisco
Version Classic v0.5.0 v1.0.4 v4.30 v1.2 v0.9.2 v2.1 v2.0.0.0 v1.2
Docs 2/5 3/5 1/5 5/5 4/5 3/5 5/5 2/5 2/5
GUI 3/5 3/5 5/5 3/5 3/5 4/5 5/5 5/5 5/5
Language C++/Python Python Java Python Java Java Java C++ Java
Standard
Applications

Yes Yes Yes Yes Yes Yes Yes No Yes

Distributed
Controllers

No No No No No Yes Yes No Yes

Backup
Controllers

No No No No No Yes Yes No Yes

Platforms Linux Linux,
MacOS,
Windows

Linux,
MacOS,
Windows

Linux Linux Linux,
MacOS

Linux,
MacOS

Windows ESXi,
VirtualBox

Northbound
APIs

REST REST - REST REST REST REST,
gRPC

REST REST

Southbound
APIs

OpenFlow
(1.0)

OpenFlow
(1.0)

OpenFlow
(1.0)

OpenFlow
(1.0, 1.2-1.5),
NETCONF

OpenFlow
(1.0-1.4)

OpenFlow
(1.0, 1.3),
NETCONF

OpenFlow
(1.0-1.5),
NETCONF

OpenFlow
(1.3)

OpenFlow
(1.0, 1.3),
NETCONF

Other
Protocols

- Nicira
Extensions

- Nicira
Extensions

- SNBI,
LACP,
OVSDB

TL1, SNMP,
CLI, BGP,
RESTCONF

- BGP-LS,
Cisco MPLS,
OVSDB

License Apache 2.0 Apache 2.0 BSD v1.0 Apache 2.0 Apache 2.0 EPL v1.0 Apache 2.0 Proprietary Proprietary
Multi-
threading

No No Yes Yes Yes Yes Yes Yes Yes

Updates None Occasional None Frequent Occasional Frequent Frequent Frequent None
TLS No No No Yes Yes Yes Yes Yes Yes

ever, devices placed inside a power plant or substation often
need to fulfill a number of special requirements, such as having
no moving parts [22]. Thus, specially crafted hardware, such
as SEL-3355, is often employed in lieu of general purpose
computers. Manufacturers of such specialized hardware often
ship those devices with a pre-configured software platform.
Thus, perhaps more important than support for Linux — or
other open source/free OS — is the ability to run in several
different platforms. In that sense, Beacon and POX are the
two best options among the surveyed controllers.

In terms of northbound APIs, the majority of controllers
support some kind of native internal API in one or more pro-
gramming languages — usually, including the same language
in which the controller is written. Nevertheless, controllers
also often support other “external” APIs, which allow the
execution of completely separate applications — perhaps, even
in separate hardware — that simply send requests to the
controller. As shown in Table I, that is the case for all surveyed
controllers with the REST API, except for Beacon. ONOS, on
the other hand, also supports gRPC.

Since OpenFlow is such a widely accepted industry stan-
dard, it is no surprise that all surveyed Controllers support it.
However, there is clearly difference in terms of the supported
versions of the specification. As expected, controllers that have
had their development interrupted tend to support only earlier
versions, but even some of the most modern options, such as
ODL and SEL-5056 have limitations in that regard. An older
version may limit functionality somehow. For example, only

OpenFlow 1.3 and above allow installation of flows with QoS
properties. Under this aspect, ONOS and Ryu are clearly the
best options.

Besides OpenFlow, it is common for controllers to support
other Southbound APIs or even interfacing with classical
protocols, such as BGP and SNMP. ODL, ONOS, and Cisco
are particularly comprehensive in this regard.

Licensing might also play a role when choosing a controller,
particularly because of deployment costs. As such, open
source controllers are clearly desirable, especially because
the number of controlled devices might be substantial in a
teleprotection environment. Indeed, most surveyed controllers
fit that description, except Cisco and SEL-5056. Aside from
the financial motivation, an open source controller also allows
the inspection of the source code, which might be important
for security reasons, especially in such a critical infrastructure.
Furthermore, licenses that permit code modification may be
of interest because they allow the controller to be modified to
better fit a particular scenario, if needed.

While we do not anticipate a very heavy load on a controller
used in a teleprotection scenario, multi-threading support is
certainly beneficial and can perhaps have an impact — even
if small — on response time in certain cases. Most modern
controllers present such support.

The frequency of updates is of paramount importance in
the teleprotection scenario. While an older controller might
perhaps adequately fulfill functional requirements of a certain
deployment, regular updates are important to ensure protection



against zero-day attacks, as well as possible bugs that may
cause network instability. Given the critical nature of telepro-
tection, those two aspects cannot be overlooked. Among the
controllers still under development, Ryu, ODL, SEL 5056, and
ONOS seem to be the most active projects.

By the same token, ensuring secure communication between
controller and switches is fundamental. Despite the numer-
ous potential benefits of the SDN paradigm, it does open
potential attack vectors to the network, as devices become
more remotely configurable. OpenFlow, in particular, provides
a native security solution that is based on the usage of TLS for
the secure communication of devices and controller. However,
even some popular controllers fail to provide support for TLS.
That is the case, for example, of NOX, POX, and Beacon. In
general, however, our survey shows that modern controllers
tend to support it.

V. CONCLUSIONS

For the past several years, the energy sector has been grad-
ually shifting towards introducing processing and communi-
cation capabilities to protection and control devices that com-
prise the power grid. That paradigm shift, popularly known as
Smart Grid, has the potential to increase the grid’s efficiency
in several aspects. In particular, the concept of teleprotection,
standardized in IEC 60834 (and then in IEC 61850), allows
a more effective power systems protection, which ultimately
results in better robustness, availability, and an overall lower
probability of damages to such a critical infrastructure.

In this paper we provided a short introduction to the com-
munication aspects of IEC 61850, including an overview of the
involved protocols, traffic patterns, and temporal requirements
for the most important messages exchanged in a teleprotection
scenario. Based on that, we conducted a brief survey of
popular SDN controllers that may be used in an SDN-based
solution for the communication network to support telepro-
tection. Furthermore, we performed a qualitative comparison
of those controllers, with particular focus on aspects that are
relevant for that application. That comparison suggests that
ONOS may be the best choice for such a scenario, due to
its good balance between supported features, documentation,
and development pace. Given those criteria, ONOS seems
to overcome even commercial controllers targeted at that
particular domain, such as SEL-5056. Overall, it fits most
requirements for teleprotection, being robust, open source, and
reasonably friendly for non-specialized personnel.

Because of the well-defined strong temporal requirements
of IEC 61850 traffic, however, we believe this work should be
complemented with a quantitative comparison. Nevertheless,
different from what other generic comparisons have done,
this analysis should focus on a more realistic testbed and
on metrics that are of particular interest to the teleprotection
scenario.

REFERENCES

[1] International Electrotechnical Commission, “IEC 61850-90-1: Use of
IEC 61850 for the communication between substations,” IEC, Tech.
Rep., 2010.

[2] A. Adamson, “Protection Using Telecommunications,” CIGRÉ Joint
Working Group 34/35.11, Tech. Rep., 2000.

[3] International Electrotechnical Commission, “IEC 61850-5: Communi-
cation requirements for functions and device models,” IEC, Tech. Rep.,
2003.

[4] ——, “IEC 60834: Teleprotection Equipment of Power Systems -
Performance and Testing,” IEC, Tech. Rep., 1999.

[5] ——, “IEC 61850: communication networks and systems in substa-
tions,” IEC, Tech. Rep., 2013.

[6] ——, “IEC 62439-1: General Concepts and Calculation Methods (In-
cluding RSTP),” in Industrial Communication Networks - High Avail-
ability Automation Networks. IEC, 2010.

[7] ——, “IEC 62439-3: Parallel Redundancy Protocol (PRP) and High-
availability Seamless Redundancy (HSR),” in Industrial Communication
Networks - High Availability Automation Networks. IEC, 2010, pp. 1–
62.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[9] S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, “An
architectural evaluation of SDN controllers,” in 2013 IEEE International
Conference on Communications (ICC). IEEE, Jun. 2013, pp. 3504–
3508.

[10] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O. Fratu, and E. C.
Popovici, “A comparison between several Software Defined Networking
controllers,” in 2015 12th International Conference on Telecommunica-
tion in Modern Satellite, Cable and Broadcasting Services (TELSIKS),
Oct 2015, pp. 223–226.

[11] Y. Zhao, L. Iannone, and M. Riguidel, “On the performance of SDN
controllers: A reality check,” in 2015 IEEE Conference on Network
Function Virtualization and Software Defined Network (NFV-SDN), nov
2015, pp. 79–85.

[12] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN controllers:
A comparative study,” in 2016 18th Mediterranean Electrotechnical
Conference (MELECON), Apr. 2016, pp. 1–6.

[13] S. Rowshanrad, V. Abdi, and M. Keshtgari, “Performance evaluation
of SDN controllers: Floodlight and OpenDaylight,” IIUM Engineering
Journal, vol. 17, no. 2, pp. 47–57, 2016.

[14] R. Jawaharan, P. M. Mohan, T. Das, and M. Gurusamy, “Empirical
evaluation of sdn controllers using mininet/wireshark and comparison
with cbench,” in 2018 27th International Conference on Computer
Communication and Networks (ICCCN), July 2018, pp. 1–2.

[15] “ISO 9506-1:2003:Industrial Automation Systems – Manufacturing
Message Specification (MMS) – Part 1: Service Definition,” Interna-
tional Organization for Standardization, Standard 2, 2003.

[16] “ISO 9506-2:2003:Industrial Automation Systems – Manufacturing
Message Specification (MMS) – Part 2: Protocol Specification,” Inter-
national Organization for Standardization, Standard 2, 2003.

[17] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: Towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, Jul.
2008.

[18] D. Erickson, “The Beacon Openflow Controller,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13, 2013, pp. 13–18.

[19] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” in Proceedings of the
9th Central & Eastern European Software Engineering Conference in
Russia on - CEE-SECR ’13, 2013, pp. 1–6.

[20] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” in Parallel and Distributed Systems
(ICPADS), 2014 20th IEEE International Conference on. IEEE, 2014,
pp. 671–676.

[21] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[22] “IEEE 1613: Environmental and Testing Requirements for Communi-
cations Networking Devices in Electric Power Substations,” Institute of
Electrical and Electronics Engineers, Standard, 2003.


