
Security for Context-Aware ad-hoc Networking
Applications

Yeda Venturini, Vlad Coroama, Tereza C.M.B. Carvalho, Mats Naslund, and
Makan Pourzandi

Abstract With the rapid spreading of ubiquitous computing applications, the im-
portance of security concepts coping with their needs is also growing. While the
possible application areas are so vast that one all-purpose security middleware fit-
ting all the different needs seems impossible to realize, it is undoubtedly meaningful
to have security frameworks covering the needs of as many applications as possible.
In this paper, we thus discuss a security middleware for context-aware ad-hoc net-
working applications in home and work environments. The article focuses on two
novel issues: it shows that the solution is particularly well-suited for context-aware
applications, an often-encountered type of applications within home and work en-
vironments; and it discusses the encountered, non-trivial trade-offs between ad-hoc
networking, context-awareness, and strong security.

1 Introduction

More than 15 years ago, in his seminal article “The Computer for the 21st Century”
[13], Mark Weiser has been the first to foresee the spreading of sensing, comput-
ing, and communication technologies into everyday things, an evolution which he
called “ubiquitous computing.” The numerous technological progresses and societal
changes that happened ever since, make his vision nowadays seem more realistic
then ever before. On technological front, as Mattern [8] argues, we have witnessed
the ongoing miniaturization of electronics; rapid progresses in wireless communi-
cation technologies such as WiFi, Bluetooth, or Near Field Communication (NFC);

Yeda Venturini · Vlad Coroama · Tereza C.M.B. Carvalho
USP – University of São Paulo, Brazil, e-mail: {yeda,vcoroama,carvalho}@larc.usp.br

Mats Naslund ·Makan Pourzandi
Ericsson Research, e-mail: {mats.naslund,makan.pourzandi}@ericsson.com

1



2 Venturini, Coroama, Carvalho, Naslund, Pourzandi

the diversification and miniaturization of sensors; the emergence of identification
technologies such as RFID tags and of indoor and outdoor positioning technologies.

Together with these technological advances, a large amount of applications for
ubiquitous computing technologies has emerged inside academia and industry. Al-
beit not all, many of the envisioned mobile and ubiquitous computing applications
involve the ad-hoc networking of devices that have been enhanced with comput-
ing and communication technologies in a similar manner to Weiser’s vision. They
encompass many fields, such as healthcare, commercial, military, home and work
environments, and – for now – usually only exist as prototypes or as scenarios for
the near future. Nevertheless, by looking at the existing scenarios and prototypes,
it quickly becomes clear that virtually all of them will need to provide security
and privacy mechanisms. However, the existing prototypes typically either do not
provide any security mechanisms at all, or they do so as a proprietary, one-time so-
lution. We have thus proposed such a generic and flexible security middleware. In
the beginning, our project has been limited to the networking of devices belonging
to one owner only [12]. Recognizing the added value obtained by networking de-
vices of different owners, we have more recently extended the project to allow for
the networking of such devices as well [9].

After presenting our middleware as a solution for ad-hoc networking applica-
tions in home and work environments, the present article addresses two novel issues:
Firstly, it shows that our solution is particularly well-suited for context-aware appli-
cations. Secondly, since not all ad-hoc networking applications are context-aware
(and, in fact, most are not), it discusses the trade-offs that exist for a security solu-
tion aiming at both ad-hoc networking and context-awareness. The remainder of the
paper is thus organized as follows: Section 2 presents the application scenarios tar-
geted by our work. Out of the various security requirements in ad-hoc networking,
section 3 shows which security services are relevant for these applications. Section 4
introduces the concept of context-awareness, and shows how it has to be supported
by the proposed solution. Finally, section 5 summarizes the architecture of our so-
lution, highlighting the trade-offs between ad-hoc networking, context-awareness,
and strong security.

2 Sharing of Services inside Familiar and Work Environments

If Weiser’s vision is to become true – and, as argued, many technological trends
point into this direction – more and more “smart” personal devices will belong to
one person, silently bringing services to their owner. Since tiny, wirelessly inter-
connected computers can be embedded into and enhance almost any everyday ob-
ject [8], the range of possible applications and services brought by such devices is
virtually endless. The possible scenarios reach from the military warfare – where
myriads of tiny, dust-sized particles that can sense movements would be spread in-



Security for Context-Aware ad-hoc Networking Applications 3

side the enemy territory1 – to such mundane everyday household devices like coffee
cups [4] or toothbrushes [6]. It is clear then that it would be a futile undertaking
to try designing a security middleware that would be ideally suited for all possible
kinds of applications. As Hubaux et. al put it, “clearly, security requirements depend
very much on the kind of mission for which the mobile ad-hoc network has been
conceived, and the environment in which it has to operate” [5]. We thus present in
this section the application scenarios that our middleware has been built for.

Within the ubiquitous computing research community, there has been a long tra-
dition of scenarios and prototypes involving several devices belonging to the same
person, which cooperate to bring services to their owner. Such services can reach
from the simple synchronization of documents between the several information ap-
pliances of the user, to more ambitious visions and prototypes, closer to the vision
of ubiquitous computing technology embedded into all sorts of everyday objects.
In a project from the Japanese Waseda university [6], for example, the smart user’s
toothbrush (equipped with accelerometers and an RFID tag for identification) com-
municates with the likewise smart bathroom mirror, which then displays information
such as weather forecast for the adults brushing teeth in the morning, or plays in-
teractive games with the children. Going further, several projects have argued for
the augmentation of entire houses with sensing, computing, and wireless commu-
nication facilities, thus realizing so-called “smart homes.” Some of the best-known
examples are the Philips HomeLab2 and GeorgiaTech’s “Aware Home” [7]. The
prototypically realized services of smart homes include: a service for finding “Fre-
quently Lost Objects” (FLOs), such as keys, wallets, or remote controls through the
use of an indoor positioning system and the tagging of FLOs; or a service that au-
tomatically starts the air conditioned or the house heating when one of the residents
approaches home (by using the vehicle’s positioning system which communicates
with the house via the driver’s mobile phone).

Most of the above-mentioned applications need an underlying security concept,
providing various security services, such as authentication and confidentiality. The
wireless synchronization of documents between several devices of one person, for
example, needs both. Likewise, it would be a bad idea for a thief outside the home
to be able to use the service for finding lost objects to locate all the wallets inside
the house, or to open the garage’s door upon approaching the home. Nevertheless,
most of the projects presented are prototypes, and typically either don’t deploy any
security at all, or use an ad-hoc proprietary security solution, which can have no
impact on further research. Recognizing the need for a general-purpose, flexible
security layer for such applications, we have proposed and implemented the concept
of “Personal Security Domains” (PSDs) [12]. PSDs are a security middleware that
can be used by such applications of cooperating smart home artefacts. Given their
high abundance, we have focused the security middleware for ubiquitous computing
applications inside the home environment and have from the beginning excluded
military (and, to some extent, commercial) as target applications of the PSDs.

1 See robotics.eecs.berkeley.edu/∼pister/SmartDust/.
2 See www.research.philips.com/technologies/misc/homelab/



4 Venturini, Coroama, Carvalho, Naslund, Pourzandi

Nonetheless, devices belonging to one person and bringing services only to their
owner, do not exploit the full potential that ubiquitous computing has to offer in
home and familiar environments. As a recent study [2] shows, several of the tech-
nological devices existing nowadays in homes are shared among family members
rather than being exclusively used – the authors talk about “shared ownership”
versus “individual ownership.” The survey refers to the usage patterns of different
technologies inside households. While some of the technologies were individually
owned (i.e., mobile phones and music players), others were shared among the res-
idents. Computers and TV sets, for example, were usually used by more persons,
although often their number exceeded the number of home residents. Furthermore,
computers were not only shared as physical devices. The profiling allowed by the
operating system to logically separate the different users was usually not used in
this home setting. This leads to the question whether the sharing of future ubiqui-
tous computing devices would not also induce a new quality to the services brought
to a group of people – in family or friends settings, but also in work environments.
And indeed – numerous ubiquitous computing projects emphasize such sharing and
common use of devices and services provided by these. A smart room, for example,
could autonomously derive a meeting going on (by noticing a gathering of smart
coffee cups [4]). It could then modify its own behavior, or that of other entities (for
example, turning the mobile phones of participants to silent mode [4]). A business
traveler entering the office building of the company she is visiting, can be provided
temporary access rights to parts of its computing infrastructure, such as the right
to use projectors for slides, or printers for handouts. The sharing of documents or
contacts among the devices of work colleagues can be as meaningful as sharing
them with friends. However, a fine-granular content management system is obvi-
ously needed for such an application – the owner must be able to decide which data
to share with any of these groups. Being able to grant access to a smart home for
friends also seems a meaningful feature; as well as letting them operate the aircon.
Similarly, one could grant temporary access to cleaning stuff or repairmen, without
the need of meeting them or handing them an (easy to duplicate) physical key.

Obviously, all of these scenarios also need security concepts in order to control
the access to data and services, and/or to ensure the privacy of communications.
We have thus broaden our concept of PSDs to MPSDs (“Multiple Personal Security
Domains”), as presented in [9] and summarized in section 5. An MPSD is realized
by the (temporary) joining together of two or more PSDs (belonging to as many
owners) with the aim of sharing some of the services offered by these.

3 Security for Shared Family and Work ad-hoc Networks

From the early stages of the project, the question of which security services are
relevant inside shared family and work ad-hoc networks of personal devices – and
should thus be offered by our middleware to its client applications – has thus been
raised. In their seminal paper “Securing Ad Hoc Networks” [14], Zhou at al. define



Security for Context-Aware ad-hoc Networking Applications 5

following security requirements for ad-hoc networks: availability, confidentiality,
integrity, authentication, non-repudiation, and authorization. While these require-
ments are general to any type of network, the authors identify three challenges that
make them harder to achieve in an ad-hoc wireless network: the use of wireless
links, the non-negligible probability that nodes will be compromised due their typi-
cally poor physical protection, and the high network dynamics with nodes frequently
leaving and joining the network [14]. This facilitates, among others, following types
of attacks: jamming attacks on the physical layer, disrupting the network protocol
on network layer, and eavesdropping. Hubaux at al. [5], taking a slightly different
approach, first differentiate between vulnerabilities of the basic and of the secu-
rity mechanisms. Vulnerabilities of the basic mechanisms are similar to Zhou’s ap-
proach, including eavesdropping, active interference and routing protocol attacks.
As for the security mechanism, Hubaux considers the establishment of keys as the
most critical and complex issue. The initialization phase, and the level of trust be-
tween the entities involved in it, are examples of issues that need to be answered for
a good solution. Since Zhou at al. [14] also focus their proposed solution on how to
secure routing and how to establish a secure key management service in an ad-hoc
networking environment, both articles are concerned with key management as the
main challenge in an ad-hoc network. Authentication, confidentiality, and integrity
can all be achieved through a secure and robust key management.

As argued above, the security requirements depend on the network purpose and
the environment in which it has to operate. Looking at the security requirements de-
fined by Zhou [14] and Hubaux [5], it is easily noted that not all have the same im-
portance within our target home and work environment scenarios. Denial-of-service
attacks, for example, are more or less likely, depending on the layer the attack would
occur on. Due to the typical small spread of the network, as well as the heteroge-
nous physical transport protocols that will be used by most applications (e.g., WiFi,
Bluetooth, GSM, etc.), we believe an attack on the physical layer to be unlikely,
and will not pursue it further. A denial-of-service attack on the network layer would
consist of the disruption of the routing protocol. This is a more likely attack in the
target scenarios, and – as section 5 will show – one that is being considered by our
solution which eliminates routing through the use of service discovery and then di-
rect peer-to-peer communication. Finally, as Zhou et. al put it: “the adversary could
bring down higher-level services like the key management layer” [14]. This is a
more likely threat, that our solution has to account for.

Confidentiality and authentication are two security requirements at the very core
of the target scenarios. In virtually all scenarios, the user’s device needs to be sure of
the authenticity of the other devices it is exchanging information with. While con-
fidentiality is not as general a requirement as authentication, it is highly relevant to
some of the scenarios, such as the document synchronization of possibly sensitive
information. These two security requirements can be accomplished – as the coun-
tering of denial-of-service attacks on high layers – with a strong key management
mechanism. Non-repudiation, on the other hand, is not of importance to our sce-
narios. Since they do not involve commercial applications (in which the sending or
receiving of messages possibly needs to be proven in court), our middleware can



6 Venturini, Coroama, Carvalho, Naslund, Pourzandi

ignore non-repudiation mechanisms. Likewise, a lack of message integrity due to
benign failures like bad connectivity, does not constitute a large problem in any of
the scenarios. Even more, it is a problem that usually gets taken care of (if possible)
on the lower layers.

Summarizing, due to the nature of the scenarios and from the considerations
above, our middleware has to focus on providing the client applications with strong
authentication and confidentiality mechanisms. It also needs to counter denial-of-
service attacks on the routing mechanisms and on the services on higher layers.

4 Context-Aware ad-hoc Networking Applications

More often than not, ad-hoc networking applications are one-purpose only, and con-
sist of a large amount of small nodes working together towards that task. Especially
sensor networks applications fall under this category, such as the already mentioned
military battlefield monitoring through “smart dust” particles, or the detection of oil
spills or forest fires through a network of wireless sensors [1]. Such applications
are characterized by a large amount of relatively small nodes, each with a limited
amount of computing power, usually a limited amount of energy (since they are
typically battery-operated), that are distributed into an often hostile environment
(e.g., the enemy territory, or a forest with all the problems caused to the nodes by
weather and wildlife). Three more factors make the algorithms for this kind of ad-
hoc networks additionally challenging: the wireless communication ranges of the
nodes are typically quite short, the network topology is a-priori unknown (since the
nodes get typically distributed into the environment with a random pattern, e.g., by
being thrown from an airplane), and the probability of any individual node to fail is
relatively high due to the rough environment they operate in. For all these reasons,
in such applications there’s a large emphasis on the routing protocols, and on the
security mechanisms, which have to function despite the failure of single nodes.

By contrast, the applications our security middleware is being built for, operate
under much friendlier constraints. The nodes envisioned are either electronic de-
vices (e.g., PDAs, smart phones), or large and typically immobile devices, such as
garage doors, air conditioned devices, or vehicles. They thus either inherently pos-
sess strong computing capabilities, or plenty of space for these to be built in. Energy
supply is not an issue either – such devices are either already connected to the power
grid (aircon, garage door), or can generate a virtually unlimited amount of energy by
burning fuel (vehicles), or have strong rechargeable batteries, that users are already
used to charge on a regular basis (PDAs, phones). The supplemental power needed
for their “smartness” and for the wireless communication thus represents no obsta-
cle. Furthermore, the devices in our target scenarios are collocated in close physical
proximity. The information does not have to be routed over large distances.

Obviously, these constraints don’t pose for a security middleware the kind of
challenges that arise from application domains such as those described above. How-
ever, there is an entirely different range of characteristics that makes other aspects of



Security for Context-Aware ad-hoc Networking Applications 7

the design rather challenging. Firstly, as argued in the last section, the applications
often need stronger authentication and confidentiality services as compared to such
ad-hoc networking applications as presented above. Secondly, not only must the
middleware allow for all sorts of different applications to be built on top of it; most
envisioned devices will typically run an entire collection of heterogenous services
in parallel, which all have to be supported by the framework. Thirdly, these services
must be able to exhibit a refined and fine-granular model of rights and authoriza-
tions, as the examples of the repairman being granted temporary access to a house,
or of the businesswoman being granted the rights to use part of the computing infras-
tructure of a different company show. This sort of granularity is never encountered
in the typical sensor networks applications. Fourthly, and arguably most challeng-
ing, many of the applications using our middleware will be context-aware, a central
concept to our solution, and thus presented in the current section.

Being able to sense their surroundings and often being mobile, an outstanding
attribute of ubiquitous computing applications is their capability to adapt to changes
in the environment. This feature is called context-awareness. The term has first been
defined by Shilit as “software that adapts itself to the location of use, the collection
of nearby people, hosts, and accessible devices, as well as to changes to such things
over time” [11]. The definition has later shifted towards a more user-centric view,
and has also become more general. The definition widely accepted nowadays has
been provided by Dey and Abowd: “Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and the application themselves” [3]. Several other contributions, such as
Schilit’s [11], have listed the most important aspects of context: user environment
(location, collection of people nearby, social situation), physical environment (light-
ning conditions or acceleration of a vehicle), computing environment (available pro-
cessing power, communication protocols). Such definitions, although not as general
and thus sometimes too constraining, help to identify the most common types of
context. Dey and Abowd further differentiate between primary and secondary types
of context: “Location, identity, time, and activity are the primary context types for
characterizing the situation of a particular entity” [3]. All secondary types of context
can be derived from these fundamental ones: the email address, for example, from
the identity of an entity, or the people nearby from its location.

For the scenarios presented in section 2, following primary types of context are
relevant: identity, location, time, and computing resources. The user’s identity is
relevant to virtually all envisioned applications. From it, the key security issue of
access rights (both physical and logical access) is derived. From the user’s location,
several types of secondary context can be derived. Access rights can depend on the
user’s location as well, not only on her identity. In our example of the business-
woman visiting for a few days a foreign company, she is granted access to parts of
the building’s computing infrastructure. However, these rights could be restricted
to only the times she resides inside the building (and some social control over the
way she uses the infrastructure exists), and not when she is in the hotel, for exam-
ple. Furthermore, location also implies proximity: which other personal devices are



8 Venturini, Coroama, Carvalho, Naslund, Pourzandi

in the vicinity, and which devices belonging to others. Likewise, the time also de-
termines access rights. A repairman could be granted a two-hour timeslot to enter
the home without the residents being present, for example, or a cleaning aid could
be granted access every Tuesday. The available computing and communication re-
sources can be highly relevant for security-sensitive applications (and the middle-
ware supporting them), especially for remotely-executed services. Depending on the
kind of communication protocols available, such services could be executed or not.

5 Multiple Personal Security Domains and Context-Awareness

According to ISO/IEC 10181-1, a security domain is “a set of elements, a security
policy, a security authority and a set of security relevant activities in which the set
of elements are subject to the security policy, administered by the security authority,
for the specified activities.” This concept is applied in some commercial products
like the Java Micro Edition architecture (J2ME), where the elements subject to the
security policy are Java applications running on the device’s Java Virtual Machine
(JVM). Our implementation of the security domain concept is different from J2ME.
The elements can be applications hosted or distributed in different mobile devices.
The granularity of the security policies is much higher: It is possible to define rules
for devices, applications, applications hosted on a specific device, or even for a
particular operation of an application. We summarize here concepts and architecture
of our middleware, more details can be find in [9] and [12].

In our terminology, a Personal Security Domain (PSD) is a group of fixed and/or
mobile components, where each component can be authenticated, trusted and se-
curely communicated with through a common security association, subject to a se-
curity policy. The PSD must have an owner, called controller, who creates the PSD
with the components that he owns or is responsible for. PSD components can be
geographically distributed. A PSD partition is a subdivision of a PSD formed by all
PSD components that are at the same location and can thus communicate directly
(layer 2 of the OSI model). PSDs can be joined together, forming a Multiple PSD
(MPSD). The controller role for an MPSD can be either shared among the PSD con-
trollers or one PSD controller alone takes this role. The MPSD controller creates the
MPSD with the desired PSDs, while the security policy for PSD components is still
defined by the respective PSD controller. While PSDs typically have long lifetimes,
MPSDs are temporary security associations with a shorter lifespan.

Figure 1 shows the layer structure of the PSD system, consisting of the Secu-
rity Enforcement Layer (SEL) and the Security Domain Layer (SDL). While the
SDL implements the PSD control and management APIs, the SEL provides secure
communication between entities of the (M)PSDs, ensures entities authentication,
communication security (confidentiality and integrity), and the applications access
control (authorization). It enforces dynamically the security policy for the (M)PSD.
It is also responsible for the management of the entities’ trust values, which are used
in a trust based authorization model.



Security for Context-Aware ad-hoc Networking Applications 9

Network
SEL – Security Enforcement Layer

SSE Authentication Crypto

Socket

SelSocket
Authorization SDDM

SDL
Application

Network
SEL

SDL – Security Domain Layer

Application

API

Controller RAS LS

Fig. 1 Layers of the Security Domain Architecture.

The SEL has two basic components: the SelSocket Encapsulation (SSE) and the
Security Domain Data Manager (SDDM). The SSE enforces the security based
on the security data provided by the SDDM. The SDDM manages security data,
provided by the Security Domain Layer (SDL), which will be presented shortly.
To make its usage easier and more transparent for application developers, the Sel-
Socket works similar to a standard socket. However, before releasing the connection
for an application, the SelSocket authenticates the entities and verifies the autho-
rization for communication. After authorization, the application can send messages
that get encrypted by the SelSocket with the session key, which has been previ-
ously exchanged during authentication. The SelSocket enforces authentication and
authorization based on the security data provided by the SDDM for the request-
ing application. The SEL has two special features that contribute for security in
ad-hoc networks: domain authentication and trust-based authorization. The domain
authentication is based on a (renewable) key shared among the entities of a PSD.
This authentication is enforced before the mutual entity authentication. It aims at an
early identification of the PSD entities in a densely populated medium, as in wire-
less communication. Additionally, the domain authentication provides the privacy
needed by the entity authentication. Besides the fine-granularity for rules, the autho-
rization service relies on a trust concept to face the possibility that some PSD entity
has been compromised. Suspicious behavior of entities generates security events,
which dynamically reduce the trust of that PSD entity. Authorization rules for ap-
plications, services, or devices with critical security requirements can be based on
minimal trust, so that any misbehavior of some PSD entity causes its disallowance.
These features contribute towards overall availability, through the early disconnec-
tion of non-PSD entities or of compromised ones, avoiding hence denial-of-service
attacks, as well as eavesdropping attacks during entity authentication.

The Security Domains Layer (SDL), on the other hand, provides an API for PSD
management and for the development of applications on top of the MPSD, as well as
three basic services: controller, lookup and remote access. The PSD creation, entity
joining or leaving, as well as security policy definition, are operations performed by
the controller service. A PSD possesses a symmetric key and an auto-signed cer-
tificate (root certificate), which are known by any PSD entity. The PSD controller
is thus the personal Certificate Authority (CA) for the respective PSD, issuing cer-
tificates for PSD entities during the joining process and revoking certificates for the



10 Venturini, Coroama, Carvalho, Naslund, Pourzandi

leaving process. The symmetric key is shared among all PSD entities and used for
domain authentication. This key is also used to generate a pseudo-random num-
ber [12] for multicast messages, so that only entities sharing the same key answer
to the originator. For example, home devices will not answer to a location message
if the requestor is not a home device. The remote access service (RAS) enables ac-
cess to resources across partitions, which can be independent networks, thus dealing
with conflicting addresses in different partitions and enforcing the security between
them. The device that hosts the RAS and receives the remote connection requests
needs to have a valid IP address. The lookup service (LS) allows devices to discover
other devices and services available. The LS allows a service-based network for-
mation, in which the user does not need to know in advance the available services.
When a service starts, it searches for the LSs in its reach area and announces itself to
all of them. For service use, the user searches for available LSs, requests a service,
receives the available service list, and selects a service to use. The list of available
services has all information required for service connection. We developed a novel
service location protocol, with additional functionalities (as compared to SLP or
JINI, for example), which are related to the available remote connections and se-
curity. Firstly, the LS answers only to entities from the PSDs it trusts. Secondly, it
supports customized attributes for entities’ registration, which can be primary con-
text information with different interpretation depending of the device or the service
type. Finally, it is possible to discover services in a remote partition through the
RAS service.

Taken together, all these concepts offer the strong security needed by appli-
cations, while allowing at the same time the flexibility needed for their context-
awareness. The authorization-based service discovery offered by the LSs (differen-
tiating between services offered within the own PSD and services from affiliated
MPSDs), for example, provides fine-granular contextual information about the lo-
cal computing environment: the locally available own and foreign devices, their ser-
vices, as well as the communication protocols available for accessing them. Through
the transparent communication between RAS and LS, the application can also gain
detailed information about physically remote environments and decide upon access-
ing services there. To test context-awareness inside MPSD, we have implemented a
prototypical file and address book sharing application and tested it in a setting with
seven MPSDs. The promising results, however, lie outside the scope of this paper.

Some ad-hoc networking projects go even further and allow for very subtle ways
of taking into account the physical context surrounding the application. Robinson
and Beigl [10], for example, in a solution similar to ours (but for a different class of
applications, as will be shown shortly), let devices that are in close physical proxim-
ity form a so-called “Trust Context Space.” They assume that, as in real-life people
sharing the same physical boundaries have a certain level of trust, devices sharing
the same sort of common space should also automatically share trust. They imple-
mented a prototypical application where all devices within the same walls, indepen-
dently, derive a common key from the sounds within the physical space they share.

While the beauty of this solution lies in its absolute lack of any explicit user in-
tervention (such as pairing of devices), for our class of applications such a solution



Security for Context-Aware ad-hoc Networking Applications 11

would not work for two reasons – one of fundamental, the other of pragmatic na-
ture. The fundamental problem is the fine-granularity needed by our applications.
Not all people in the same office should share the same secrets (e.g., the visiting
businesswoman will only have restricted access), and not all of a device’s secrets
should be shared with everyone (e.g., the private contacts or calendar items should
not be shared with work colleagues). This sort of semantic knowledge cannot be au-
tomatically derived by the middleware, but has to be explicitly defined by the owner
of the device. The pragmatic problem lies in the imprecision of the sensors detecting
environmental attributes such as sound. This limits the length of the key that can be
derived, while keeping the error rate low enough for the solution to still be practical.

Due to both reasons, a solution such as Robinson’s and Beigl’s, while allow-
ing for a very spontaneous ad-hoc networking, with no previous knowledge about
other devices or any human intervention, can only be used by applications needing
no more than a basic level of security. It actually seems that there is an inherent
trade-off between ad-hoc networking and context-awareness, when looking at the
security features. If a context-aware application should allow a very spontaneous
ad-hoc networking, with no previous device pairing or knowledge about other de-
vice’s existence, nor any human intervention, the security level that can be guaran-
teed is relatively low. If, as in our case, the security level must be relatively high,
some compromises have to be done in terms of the spontaneity of the networking
allowed. This trade-off has governed the design of our middleware.

6 Conclusions

In the present article, we have summed up the experiences from the project “Multi-
ple Personal Security Domains,” a security middleware focused on a specific class
of ubiquitous and mobile computing applications. After having first argued why we
have limited the class of targeted applications to ad-hoc networks of smart devices
in home and work environments, we have shown how these applications differ from
most other applications within the ad-hoc networks and especially the sensor net-
works research. We have then presented the specific needs of such applications:
a strong security model for authentication and confidentiality, but also the means
to fine-granularly distribute access rights (both physical and logical), which raises
from the context-awareness of many of the target applications. We have shown how
our middleware copes with both these major needs, and how it is thus well-suited
for ad-hoc networking, context-aware applications in home and work scenarios.

We have further presented, from our experience in developing the middleware’s
architecture, the trade-off existing between ad-hoc networking, context-awareness,
and fine-granularity of strong access rights. Numerous applications, such as several
sensor networks applications, rely on a very pure form of ad-hoc networking, which
comes along with various specific challenges for the networking and authentication
algorithms. However, such applications do not require any form of context aware-
ness, nor do they typically have to ensure the confidentiality of communication.



12 Venturini, Coroama, Carvalho, Naslund, Pourzandi

If, as in the case of our target applications, a high degree of fine-granularity is
required, some compromises have to be made in terms of the spontaneity of the ad-
hoc networking. We have solved this dilemma by allowing for a first step in which
some of the devices define trust relationships among them, relationships that get then
spread throughout the network and also autonomously influence the levels of trust
when combining more such personal domain networks into a “multiple personal
security domain.” When, on the other hand, a high degree of security is needed, a
compromise has to be made in terms of the context-awareness of the middleware
itself. In our case, the middleware does not automatically generate keys from the
environment, but relies on the strong keys provided by a certification authority. To
put it bluntly, we have thereby sacrificed some of the possible context-awareness
of the middleware itself, in order to provide the applications with a strong security,
while at the same time allowing them to keep a high degree of context-awareness.
We believe these insights to have an impact beyond our middleware solution, for
further ad-hoc networking and context-awareness research in general.

References

1. Bohn, J., Coroama, V., Langheinrich, M., Mattern, F., Rohs, M.: Living in a world of smart
everyday objects – social, economic, and ethical implications. HERA 10(5), 763–786 (2004)

2. Brush, A.J.B., Inkpe, K.M.: Yours, mine and ours? Sharing and use of technology in domestic
environments. In: J. Krumm, G.D. Abowd, A. Seneviratne, T. Strang (eds.) Proc. of UbiComp
2007, LNCS, vol. 4717, pp. 109–126. Springer, Innsbruck, Austria (2007)

3. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness.
In: Proc. of the CHI 2000 Workshop on Context-Awareness (2000)

4. Gellersen, H.W., Schmidt, A., Beigl, M.: Adding some smartness to devices and everyday
things. In: Proc. of WMCSA, pp. 3–10. Los Alamitos, CA, USA (2000)

5. Hubaux, J.P., Buttyan, L., Capkun, S.: The quest for security in mobile ad hoc networks. In:
N.H. Vaidya, M.S. Corson, S.R. Das (eds.) Proc. of MobiHOC’01, pp. 146–155 (2001)

6. Kawsar, F., Fujinami, K., Nakajima, T.: Augmenting everyday life with sentient artefacts. In:
G. Bailly, J.L. Crowley (eds.) Proceedings of the 2005 joint Conference on Smart objects and
Ambient Intelligence (sOc-EUSAI), pp. 141–146. ACM, Grenoble, France (2005)

7. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E.,
Starner, T.E., Newstetter, W.: The aware home. In: N. Streitz, J. Siegel, V. Hartkopf, S. Konomi
(eds.) CoBuild’99, LNCS, vol. 1670, pp. 191–198. Springer, Pittsburgh, PA, USA (1999)

8. Mattern, F.: The vision and technical foundations of ubiquitous computing. Upgrade 2(5), 2–6
(2001)

9. Matushima, R., Venturini, Y.R., Sakuragui, R.R.M., Carvalho, T.C.M.B., Ruggiero, W.V.,
Naslund, M., Pourzandi, M.: Multiple personal security domains. In: S. Onoe, M. Guizani,
H.H. Chen, M. Sawahashi (eds.) Proc. of IWCMC, pp. 361–366. Vancouver, Canada (2006)

10. Robinson, P., Beigl, M.: Trust context spaces. In: D. Hutter, G. Mller, W. Stephan, M. Ullmann
(eds.) Proc. of Sec. in Pervasive Computing, LNCS, vol. 2802, pp. 157–172. Springer (2003)

11. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proc. of WM-
CSA, pp. 85–90. Santa Cruz, CA, US (1994)

12. Venturini, Y.R., Sakuragui, R.M., Matushima, R., Carvalho, T.C.M.B., Ruggiero, W.V.,
Naslund, M., Pourzandi, M.: Security enforcement layer for security domain. In: Proc. of
I2TS’2005, pp. 19–26. Florianopolis, SC, Brazil (2005)

13. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75 (1991)
14. Zhou, L., Haas, Z.J.: Securing ad hoc networks. IEEE Network 13(6), 24–30 (1999)


