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Abstract. Peer-to-peer (P2P) systems are becoming increasingly popular and
complex, serving millions of users today. However, the design of current un-
structured P2P systems does not take full advantage of rich locality properties
present in P2P system workloads, thus possibly resulting in inefficient searches
or poor system scalability. In this paper, we propose a novel locality-aware P2P
system architecture called Foreseer, which explicitly exploits geographical local-
ity and temporal locality by constructing a neighbor overlay and a friend overlay
respectively. Each peer in Foreseer maintains a small number of neighbors and
friends along with their content filters used as distributed indices. By combining
the advantages of distributed indices and utilization of two-dimensional localities,
the Foreseer search scheme satisfies more than 99% of keyword search queries
and realizes very high search performance, with a low maintenance cost. In addi-
tion, query messages rarely touch free-riders, and therefore avoid most meaning-
less messages inherent in unstructured P2P systems. Our simulation results show
that, compared with current unstructured P2P systems, Foreseer boosts search
efficiency while adding only modest maintenance costs.
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1 Introduction
Unstructured peer-to-peer (P2P) system becomes one of the most popular Internet ap-
plications at present, mainly resulting from its good support for file lookup and sharing.
Its system architecture is categorized as either centralized or distributed. Centralized
system architectures like Napster [1] require a central index server, which limits the
system scalability and incurs a single point of failure [2]. Without centralized admin-
istration, recent systems like Gnutella [3] construct a totally decentralized overlay (at
the application level) on top of the Internet infrastructure. Search schemes in these sys-
tems can be blind or informed. Blind search schemes are based on message flooding
and thus suffer poor system scalability. To address this problem, some researchers have
proposed random walks [4, 5] as well as several improved versions of this scheme, such
as Directed BFS [6], GIA [7] and Interest-based shortcuts (IBS) [8]. However, these
schemes are still blind to some extent because they lack any indexing information. As
a result, they cannot prevent a peer from repeatedly trying multiple walks due to pre-
vious walk failures or meaningless walks toward free-riding peers. This is because the
sender does not know what contents, if at all (a free-rider shares nothing), are shared
on the receiver before the query is actually transmitted. A straightforward solution to
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resolve the blindness without using a centralized index server is to maintain distributed
indices among peers, which are used in the informed search technique that trades off
distributed indices storage management for search performance. Intelligent BFS [9],
APS [10], Local Indices (LI) [6] and Routing Indices [11] are examples of this class.
In order to intelligently direct searches and obtain an acceptable hit rate, however, the
indices to be maintained would be extraordinarily large, and hence the overhead in-
volved in indices’ update may become prohibitively expensive, thus partially offsetting
the benefits of the indices themselves.

Previous studies [12, 13] have shown that current P2P systems have both geographi-
cal locality and temporal locality. For node A, its geographically nearby node B exhibits
geographical locality if it is likely to offer service to node A in the near future. This is
because the objects on node A’s neighbors are more likely to be reached by queries from
A than those objects located on distant nodes from A. Similarly, node C, which has suc-
cessfully served requests from node A in the past, exhibits temporal locality if it is likely
to be able to offer further service to node A in the near future. The main reason why
current search schemes cannot simultaneously realize high search efficiency and good
scalability is that they do not or not fully exploit such an inherent two-dimensional lo-
cality in P2P systems. For example, an interest-based shortcut approach [8] attempts to
exploit the temporal locality, but only to improve the blind flooding. LI [6] introduces a
simple way to implement indices in unstructured P2P systems but does not consider any
kind of localities. These search schemes introduce inefficient blind traffic in P2P net-
work or require very expensive maintenance to manage distributed indices, especially
in support of keyword searches, and therefore seriously compromise the search per-
formance and system scalability. A good design of a P2P system that supports keyword
searches must organize distributed indices more efficiently and exploit two-dimensional
locality awareness intentionally.

In this paper, we attempt to design a novel unstructured P2P system architecture
for keyword searches called Foreseer. Our design fully exploits two-dimensional local-
ities. First, unlike Gnutella-like systems that simply organize live peers into an over-
lay with small-world property 1, Foreseer constructs two orthogonal overlays on top
of the Internet infrastructure: a neighbor overlay based on geographical locality, and a
friend overlay based on temporal locality which also has small-world properties. The
neighbor overlay is built with network proximity while the friend overlay is maintained
according to the online query activities. Each peer maintains a small number of links
to its neighbors and friends that serve its future queries more efficiently. Second, we
use Bloom filters [15] to compactly represent the contents shared on each peer and
distribute the content filters, so that each peer saves copies of the content filters of its
neighbors and friends as well as their IP addresses. Third, due to the native locality
properties, one peer’s neighbors and friends provide a much better chance of serving its
query requests than other “strange” peers do. Therefore, Foreseer employs a locality-
aware search scheme to answer queries more efficiently. The search is performed in two
phases on each involved node on the route path: 1) local matching to resolve the query
(i.e., find the node that seems to have the requested objects) on behalf of its neighbors

1 A network exhibiting the small-world property is one with high level of clustering and a small
characteristic path length. For more details, please refer to [14].



and friends using their content filters, and 2) selective dispatching to forward the query
to the destination peer if it has been resolved, or otherwise to the node’s friends or
neighbors. Foreseer is not only able to answer queries within few hops, but also reduces
a lot of redundant flooding messages and skips most free-riders. In addition, using a
Bloom filter index minimizes the maintenance overhead, making it even more suitable
for a highly dynamic environment. Trace-driven simulation results show that Foreseer
can boost the search performance by up to 70% and significantly reduce the search cost
by up to 90%, compared with state-of-the-art P2P systems.

2 Related Work
We review several representative search schemes in Gnutella-like decentralized P2P
system architectures in this section.

2.1 Blind searches

Gnutella does not scale well because of its message flooding scheme. One way to
improve its scalability is to reduce the number of redundant messages by forwarding
queries only to a subset of neighbors. The neighbors are either randomly picked or se-
lectively chosen based on their capability of answering a query. Lv et al. [5] suggest
a random walk scheme, in which a query is forwarded to a randomly chosen neighbor
at each step until there are sufficient responses. Adamic et al. [4] recommend that the
search algorithm bias its walks toward high-degree nodes. GIA, designed by Chawathe
et al. [7], exploits the heterogeneity of the network and employs a search protocol that
biases walks toward high-capacity nodes. Although these approaches are effective in re-
ducing the number of flooding messages, the system performance is compromised. The
search may require multiple walks due to previous walk failures or meaningless walks
toward free-riders. By estimating neighbors’ potential capabilities according to their
past performance, a Directed BFS approach [6] selects neighbors that have either pro-
duced or forwarded many quality results in the past. This approach intuitively reuses the
paths that were effective in previous searches. However, if any peer on a path departs,
the path is lost. Sripanidkulchai et al. [8] exploit temporal locality to employ interest-
based shortcuts. These shortcuts are generated and updated after each successful query,
and are used to serve future requests. The authors claim that the destination peer who
hosts requested objects can be found in just one hop for many queries. Unfortunately,
this approach may delay other queries that cannot be satisfied by the shortcuts. This is
due to the fact that the peer has to contact all the peers marked as shortcuts before it
sends the query to its neighbors.

2.2 Informed searches

Considering the benefits of indices for object location, another way to improve
Gnutella-like systems’ performance is to build distributed indices. Intelligent BFS [9]
maintains query-neighbor tuples on each peer. These tuples map classes of queries to
neighbors who have answered most of the queries that are related. This technique tries
to reuse paths that were used for previous queries of the same class. Unfortunately, this
technique cannot be easily adapted to object deletion and node departures. In addition,
its search accuracy highly depends on the assumption that nodes specialize in certain



documents. In APS [10], each node keeps a local index of the relative probability for
each object it requests per neighbor. This approach saves bandwidth but may suffer long
delays if the walks fail. Local Indices, proposed by Yang et al. [6], suggests each node’s
index files are stored at all nodes within a certain radius �, and queries are answered on
behalf of all of them. If � is small, however, the indices cannot satisfy many queries;
whereas if � is big, the indices’ update will be very expensive. In Routing Indices [11],
each node stores an approximate number of documents from every category that can be
retrieved through each outgoing link. This technique can be efficient for searches, but
requires too much flooding effort for the indices to be created and updated. Therefore it
may not work well in a highly dynamic environment.

3 Foreseer Design and Implementation

Foreseer comprises three components at different layers, as shown in Figure 1. The
neighbor and friend overlays are built on top of the Internet infrastructure by exploiting
geographical and temporal localities, respectively. The indices implemented by Bloom
filters are distributed according to the relationships between peers within the two over-
lays. By directing searches along the overlay links and resolving queries by the dis-
tributed indices, the searching module provides high performance for keyword searches
with a low maintenance cost.

The rationale behind Foreseer comes from our daily life. Everyone has neighbors
who live nearby and friends who live further away. Neighbors and friends constitute
one’s social relationships. One gets to know his neighbors upon settlement, and makes
new friends when interacting or doing business with someone else. Suppose each per-
son has a business card and knows about others only through their business cards. When
someone has a new business request, he looks at his the business cards of his friends
and neighbors first. If these cards imply that a friend and/or neighbor can help, he im-
mediately contacts that person. If none of them can help, he passes the request to his
friends and/or neighbors who, in turn, seek help from their friends and neighbors.

We present the detailed design of Foreseer in this section. First, we explain the
creation of peers’ content filters represented by Bloom filters. Then we show how to
explicitly exploit both geographical and temporal locality and construct the neighbor
and friend overlays. In Section 3.3, we present the Foreseer search algorithms. The
system maintenance cost is detailed in Section 3.4.

3.1 Bloom filters as content filter

In Foreseer, the business card refers to a peer’s content filter derived by computing
the Bloom filter [15] on all its shared contents. A Bloom filter is a hash-based data
structure for representing a set to support membership queries. The membership test
returns false positives with a predictable probability, but it never returns false negatives.
With an optimal choice of hash functions, we can obtain the minimum probability of
false positive as � �

�
��, or ��������

�

� , where � is the number of hash functions used, �
is the number of bits in the filter and � is the number of elements in the set.

In this paper, we use Counting Bloom filters proposed by Fan at al. [16] to sum-
marize the contents shared with each peer. Assume �� is the set of documents shared
on node �, and �� � ���� � 	� �	� � ��� is the set of keywords that appear in any
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Fig. 1. System architecture of Fore-
seer built on top of the Internet in-
frastructure.
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Fig. 2. Illustration of the neighbor overlay and friend
overlay. For clarity, this figure only shows the friend
links from node a and i.

documents in��. The ��� is a keyword that appears in document 	� . The content filter
of node �, denoted by �������� �, is initialized by hashing all the keywords in �� and
setting the corresponding bits to 1. Free-riders have a null content filter, which can be
easily recognized by other peers. If the number of hash functions in use is fixed, the
cardinality of the maximum keywords set �	
� determines the space requirement for
the filter with the least false positive rate as�� ��

�� �
� �������

�� �
. We believe that the size

of the maximum keyword set will not be arbitrarily large for several reasons. First, the
number of shared files on most peers is limited. Saroiu et al. [17]’s measurement studies
on Gnutella indicate that about 75% of the clients share no more than 100 files, and only
7% of the peers share more than 1000 files. The results in [12] show that 68% of 37,000
peers share no files at all (free-riders), and most of the remaining clients share relatively
few (between 10 and 100) files. Second, the documents on the same peer tend to share
common topics. The overlap of semantics among documents on one peer reduces the
number of unique keywords to be mapped to the content filter. Third, according to [12,
13], most files shared in current P2P systems are multimedia streams, where only a few
unique keywords can be derived from one document. Even with ��	
�����
 ��� and
� ��, the length of the filter with least false positive rate is �� ��
�����

�� �
����
 ���

bits�������. When transmitted over the network, this filter can be packed into sev-
eral IP packets. However, as the network size increases, some peers may share so many
files that the cardinality of their keyword sets become greater than current �	
�. This
problem can be solved in two ways. If only a few peers begin to share a large number
of files, a workload migration mechanism can be used to move some of these shared
files to their neighbors and/or friends. If a lot of peers want to share a large number of
files, we can deliberately increase the length of the Bloom filters according to the size
of the maximum keyword set�	
�. For those peers who share few files and keywords,
we use a compressed representation of the filter as a collection of 2-tuples ��
 
�, which
means that the ��� bit is set for 
 times. Only the first number in each tuple (location of
a 1 in the filter) is transmitted over the network.

To facilitate keyword queries, each peer keeps an inverted file created from its key-
word set by information retrieval techniques. In addition, a counter is locally maintained
for each bit in its content filter to record the current number of objects mapped to this bit
by any of the � hash functions. Notice that this counter does not need to be transmitted
over the network since it is only used in local file insertion and deletion.



3.2 Two-dimensional, locality-aware overlay construction

Two orthogonal overlays are constructed in this system: 1) the neighbor overlay, which
captures geographical locality, and 2) the friend overlay, which captures temporal lo-
cality. In addition to maintaining its own local content filter, each node � saves copies
of the content filters of the peers in both its neighbors list ���� and friends list � ���. If
a peer becomes a neighbor and a friend at the same time, it is allowed to act as both a
neighbor and a friend. To limit the number of filters one peer maintains, we restrict the
size of � and � as follows: for node �, �	�����������	
�, �	����� ������	
�,
where�	��, �	�� and �	
�, �	
� are the lower bound and upper bound for the number
of neighbors and friends respectively. Figure 2 illustrates the two overlays in a simple
network where ����� ��
 �
 	
 �� and � ���� ��
 �
 �
 �
 ��. Node � maintains a copy
of the content filter for each node among ���� � � ���. Together with its own local
filter, node � maintains nine content filters in total, which greatly strengthens its ability
to serve future queries.

Finding and maintaining neighbors. The bidirectional neighbor overlay is con-
structed with network proximity, so that only peers that are physically proximate can
become each other’s neighbors. Network latency is used as a simple metric to mea-
sure the physical distance between peers because it reflects the performance directly
seen by end hosts and can be easily measured in an end-to-end, non-intrusive man-
ner. As in Gnutella, a new node joins the system by contacting well-known bootstrap-
ping nodes, and builds up its neighbors according to the replies. To ensure network
proximity, a new peer, upon receiving replies from peers who can accept more neigh-
bors, will always choose peers with lower latencies as neighbors. The content filters
are transmitted along with the replies so that the new peer can initialize its neighbors
list quickly. If the number of its neighbors is smaller than the lower bound, the node
issues a PING NEIGHBORS message to its current neighbors. The current neighbors,
in turn, propagate this message to their neighbors. Upon receiving this message, peers
with less than the maximum number of neighbors reply positively along with their con-
tent filters. This process repeats until the new arrival peer has a minimum number of
neighbors. When a peer makes a planned departure, it notifies its neighbors so that they
can remove it from their neighbors list and discard its content filter. In case of a node
failure, the node does not have a chance to notify other peers. However, its neighbors
will realize this when trying to contact it later, and make updates accordingly.

Geographical locality implies that an object near the querying peer is more likely
to be reached than distant objects, thus minimizing network latency and bandwidth
consumption. The construction of the neighbor overlay ensures that each peer keeps a
list of its nearby peers, and resolves the query locally if the requested object can be
found on any of its nearby peers.

Making and refreshing friends. The friend overlay is constructed as a directed graph
independent of the physical network topology. Unlike bidirectional friendships in real
life, the friend relationship in this paper is designed to be unidirectional. The unidirec-
tion of the friend relationship does not affect the small-world property of the subgraph
induced by the friend links, as we will prove in our experiments. Each peer knows a
number of friends. Each peer may also be a friend of other peers, who are called back



friends. In addition to the neighbors and friends lists, each peer also maintains a list
(including IP address) of its back friends denoted as � ��, but without any content in-
formation. Tracking a reverse direction of the friends relationship, the list is used to
notify those back friends peers of its content filter update when necessary. In Figure 2,
��
 �� � ������, and any filter update on node � would cause node � and � to take
corresponding action: updating filter copies of node � accordingly.

It is obvious that a peer who has ever answered a request from node � should be
a candidate of �’s friends, according to temporal locality principles. However, when
a brand new peer issues its first query, it has no friends to consult. To mitigate this
problem, we recommend an active “friends making” stage for the new node as soon
as it builds up its neighbors list. To find potential friends, new node � sends out
a PING FRIENDS message to its neighbors, who in turn forward this message to
their friends. Upon receiving this request, peer � checks to see if it can be accepted
(�������� � ���	
�, where ���	
� is the maximum number of a peer’s back friends) or
not. Those peers who can accept this “friends making” request will reply to � along
with their content filters. Based on these replies, � can fill out its initial friends list by
selecting those peers who have more 1’s in their content filters, because the documents
shared on these peers contain more keywords. Since free-riders have nothing to share,
no friend link will point to them (i.e., they have an empty � �� list). Therefore, they
will never see PING FRIENDS messages except as a neighbor at the first step. Updat-
ing the friend overlay due to node departure/failure can be done in a similar manner as
the neighbor overlay.

Node �’s friends are ordered and replaced in an LRU manner as new information is
learned. After each download, � has a chance to refine its friends list. If the serving peer
is already one of �’s friends, this peer comes to the top of the list because it is the most
recently used. If the serving peer is not on �’s friends list, and �� ������	
�, this peer
becomes a new friend of � with the highest priority. However, if �� ������	
�, � has to
remove a least recently used friend and insert the new friend as the most recently used.
When an old friend is replaced, � sends a message to that node so that it is removed
from that node’s back friends list. For partial searches that result in multiple responses,
we can use a counter to record the number of results each friend returns for previous
� queries, and find a victim that returns the fewest number of results when a newly
recognized friend asks for a replacement. Accordingly, the counters are updated when
a query is answered.

To attain a better performance, we can speed up the node join procedure by employ-
ing a caching scheme. Before a node departs the system, the addresses of its neighbors
and friends are saved on its local disk. When the node rejoins the system, it tries to
contact its old neighbors and friends directly and asks for their current content filters.
Recent research results [13, 18] show that the node departure-and-rejoin pattern is a
common feature of current P2P systems. Not only is the join process simplified in this
way, but the workload of bootstrapping nodes is also reduced.

3.3 Two-dimensional, locality-aware search algorithm in Foreseer
Algorithm design. The keywords extracted from documents work as metadata to be
mapped to the content filters in our design, although the extraction method is beyond the
scope of this paper. Existing systems use either local or global [19] indexing to retrieve



or place a document’s metadata. As described above, Foreseer uses local indexing so
that multi-term queries are as easy to be processed as single-term queries. Foreseer
avoids the inefficiency of local indexing by orienting the queries intelligently instead of
flooding every node in the system.

The main process of object location is simple. When initiating a new query re-
quest or receiving an unresolved query message that contains one or more terms
���
 ���
 ������, node � runs a search algorithm that consists of two phases: local
matching and selective dispatching. In the local matching phase, node � computes the
query filter ������ by mapping all the query terms, and compares it with the content
filter �������� � for each node � � ������ ��� by the logical “AND” operation. If
������ � �������� � �������, then there is a match, indicating that node � seems to
have the document containing all the keywords with a high probability. Otherwise, none
of �’s neighbors or friends has the requested document. This matching is conducted on
node � locally and requires no network bandwidth. The query message is then selec-
tively forwarded based on the results of the first phase. If there is a match, i.e., the query
has been resolved and is likely to be answered by one of �’s neighbors or friends �, the
message is flagged as resolved and forwarded to �, which looks up its local inverted
file for the document that matches the query. If a false positive occurs, however, the
query is flagged as unresolved and returned to node �. In either situation, whether the
local matching fails or a match turns out to be a false positive, the query message is for-
warded according to the system searching policy �����

������. Let � be the current
hop count of the query message. In �� policy, given ����, the query is forwarded to
its friends. If ������� 	 ��, the query will be forwarded to its neighbors. The query
stops traveling when � � �� 	 ��. Because of the locality properties in P2P system
workloads, a large number of queries are resolved locally (when � � �) at the nodes
who issue the requests. For other queries that need to travel more hops, Foreseer runs
an intelligent, light flooding procedure: the query messages are forwarded along the
friend links for up to �� hops and then along the neighbor links for up to � � hops until
they are successfully resolved and answered by some nodes in the system, or otherwise
fail with an exception.

We search along the friend links before the neighbor links based on several intuitive
reasons. First, suppose � � � ��� and � � � ���, files shared on node �, which tend to
interest node �, may also interest node � because � is likely to download more files from
� in the near future according to temporal locality principles. On the other hand, geo-
graphical locality only ensures that objects near node � are more likely to be reached
than distant objects, but does not mean that node �’s neighbors have a better chance of
answering the query. This implies that peers reached through friend links have a bet-
ter chance of answering the query than peers reached through neighbor links. Second,
the construction of the friend overlay implies that the friend links point to peers who
share many objects and never refer to free-riders. These peers have a better chance of
answering the query than other peers sharing few or no files. Third, the small-world
property of the friend overlay ensures that by following friend links, the query quickly
scatters over a large network diameter and reaches distant peers in few hops. Because
of its construction, however, the friend overlay may consist of disconnected subgraphs.
To ensure a high success rate for searches, Foreseer propagates the query along neigh-



bor links after �� hops in the friend overlay. At this stage, free-riders may serve as an
intermediate router for the query messages.

We also develop and examine other possible search policies that can be employed
in our two-dimensional overlays. By directing the query along neighbor links first
and then friend links, we have a policy �� � ����� ���. However, this policy suf-
fers a low success rate since the neighbor overlay is built with network proximity.
Therefore, going through neighbor links first cannot reach distant peers who may have
the requested document. We could also forward the query messages to neighbors and
friends simultaneously, as denoted by policy �� � �� ��������. However, propagat-
ing through neighbor links at the beginning does not incur much benefit since only
peers within a local area will be touched. For the same reason, a more complicated
policy like �� � ����� ������ does not attain a better result. Other policies like
����� ������ ��� do not work better than �� since propagating the query along the
friend links again after it has traveled along the neighbor links does not capture the
temporal locality. Our experiments also prove that �� attains the best outcome among
all the policies mentioned above. Therefore, we adopt � � as our default search policy
in all experiments without explicit specification.

In short, the key ideas (major procedures) in our search scheme are three-fold: 1)
The peer who issues the query tries to resolve the query instantly by local matching.
If successful, only one more message will be involved in this search. 2) If 1) fails, the
query will be selectively forwarded along the friend links and then the neighbor links,
and will never touch free-riders until traveling along the neighbor links. 3) As soon as
the local matching is successful at some nodes, the query is resolved and only one more
message is needed for success confirmation in case of no occurrence of false positives.

Algorithm efficiency. For any peer � issuing a query, if the requested object can be
found on any peer �� ����� � � ���, this query can be resolved locally and reach the
destination peer within only a single hop with a high probability. Such kind of queries
are resolved with ���� complexity. In other cases, the query needs to be spread out as
is examined here. We use � ���� to denote the set of peers with � hops distance along
friend links from node �, and let � ��������. Formally,

� ���� � ����� � �
 �� � �
 ��	� � � ����
 � � � � �	 ��

If the requested object resides on any peer

������ ������� �� �����

� ������ ����
 �� ����

it can be resolved in � hops and reach the destination peer in �	� hops with a high
probability. At each hop, the query touches some new nodes along the friend overlay,
and checks the content filters of their neighbors and friends. Table 1 shows the number
of peers touched, the number of peers foreseen, and the number of messages produced
at each hop, in which � and � denote the average number of one peer’s friends and
neighbors respectively. We do not consider revisited peers for simplicity.

If the query fails in the friend overlay, it spreads by following the neighbor links.
Similarly, we use � ��������� to denote the set of peers with � hops distance along the
neighbor links from node � �����, where �������� �����. Formally,

� ��������� � ����� � ������ � � �����
 �� � �
 ��	� � �����
 � � � � � 	 ��



Table 1. The search efficiency in the
friend overlay.

Hop Nodes Nodes Messages
touched foreseen produced

0 1 � � � 0
1 � �� � ��� �

... ... ... ...
� � � �� � ��� � � �

... ... ... ...
�� ��� �� � ����� ���

Table 2. The search efficiency in the
neighbor overlay.

Hop Nodes Nodes Messages
touched foreseen produced

0 1 �� � ����� 0
1 � �� � ������ �

... ... ... ...
� �� �� � ������� ��

... ... ... ...
�� ��� �� � �������� ���

If the requested object resides on any peer

��� ���������������� ������������

������������ � ��������
 ������

it can be resolved in ��	� hops and reach the destination peer in ��	�	� hops with
a high probability. Table 2 shows the the number of peers touched, the number of peers
foreseen, and the number of messages produced at each hop along the neighbor links.

As long as the shortest distance between the query source peer and the pre-
destination peer that has a successful local matching is not longer than � � hops in
the friend overlay plus �� hops in the neighbor overlay, this query is satisfied by
our algorithm. Similar to other flooding approaches, a randomly generated identifier
is assigned to each query message and saved on passing peers for a short while so
that the same message is not handled by the same peer again. Our experiments sug-
gest that 5 hops in the friend overlay (�� � �) and 1 hop (�� � �) in the neigh-
bor overlay suffice for more than 99.9% of queries. As shown in Figure 2, where
���� � ��
 �
 	
 �� and � ��� � ��
 �
 �
 �
 ��, a query from node � for objects shared
on these nodes can be resolved locally and reach the destination peer in one hop. Since
� �����
 ������
������
 ������
 ������, and ��� ���
 ��� ���, a query for
objects shared on any of these peers can be resolved in one hop by one of �’s friends,
and reach the destination in two hops. Compared to other blind search algorithms, Fore-
seer conducts searches more aggressively with the help of distributed content filters by
checking �� 	 �� times more nodes at each hop. Compared to current distributed in-
dexed approaches, Foreseer directs searches more intelligently by well exploiting tem-
poral and geographical locality properties, namely following the friend links and then
neighbor links accordingly.

Skipping free-riders. Previous studies have shown that a large portion of participating
nodes are free-riders. Although any node can issue queries to the system, only non-free-
riders can contribute objects and are helpful in answering queries. The friend overlay
ensures that free-riders cannot be friends of any peer, and thus a query will never touch
them when traveling along the friend links for �� hops. If the query is not yet resolved,
Foreseer continues the search in the neighbor overlay and may touch some free-riders.
By giving search priority to the friend overlay, Foreseer reduces a lot of meaningless
messages that are unavoidable in many blind search schemes.



Effects of false positives. When a false positive occurs, the peer that resolves the query
receives a negative reply from the “matching but false” peer, and the query is further
forwarded. However, this only incurs some extra workload with a very low probability,
and does not affect the correctness of the search algorithm. To reduce the side effects
of false positives, when a peer finds that more than one neighbor or friend may have
the requested document, it forwards the query to two or more of them. The probability
of obtaining multiple false positives at the same time is very slim. For partial keyword
searches that require multiple responses, the query can be forwarded to all of its neigh-
bors and friends that seem to have the requested documents.

3.4 System maintenance

Object publishing and removal. When a peer is going to share new files, this infor-
mation should be quickly made visible to its neighbors and back friends peers. To do
this, the peer extracts keywords from new documents, and selects new keywords from
all extracted keywords, if any, to map to its content filter. Any change in the filter is
recorded and sent in an update message to all peers in its lists � and � ��. Only a
small amount of location information (less than � bits per new keyword contained in
the file) that reflects the changed bits is transmitted over the network, and thus the in-
volved network traffic is minimized. At the same time, the inverted file and counters
associated with corresponding bits are also updated locally on the peer. Upon receiving
an update message, peers make necessary changes on their filter copies of the sender
node. The process of removing a document is similar to this object publishing pro-
cedure. Compared to current indexed search schemes or DHTs, only a small amount
of location information specifying the changed bits in the content filter is transmitted
when publishing or removing a document, thus making Foreseer perform an efficient
maintenance job in a highly dynamic environment.

An additional benefit from this instant publishing is that popularly requested files
are advertised widely and quickly. As a result, they will have more and more copies
available in the network as more peers conduct such downloading and publishing pro-
cesses. Therefore, queries for this kind of files can be served more efficiently and the
query hot spot may not occur at all.

Node join and departure. When a new node joins the system, it needs to set up its
neighbor and friend relations as described in Section 3.2. When a node departs, it no-
tifies all its neighbors and back friends. A total of (�� � 	 �� ���) small messages are
involved per update if necessary. The nodes that receive this notification message sim-
ply remove this node from their neighbors or friends lists, along with the correspond-
ing content filter copies. In the meantime, the departing node caches its neighbors and
friends on its local disk. When it rejoins the system, it first tries to contact its old neigh-
bors and friends to build up its initial relations quickly. When a node fails unexpectedly,
it has no chance to notify other nodes of its absence. But when live nodes try to contact
it, they would find this node has already departed. Since each node maintains multiple
neighbors and friends, random node failures do not affect the overall system perfor-
mance. A more aggressive approach would be adoption of PING-PONG messages to
proactively check the live status of each peer’s neighbors and friends.



4 Experimental Methodology

We develop a trace-driven simulator to evaluate the performance of Foreseer compared
with other baseline P2P systems. We describe the experimental methodology in this
section and present the simulation results and our analysis in the next section.

4.1 Set up experiments

To evaluate Foreseer’s performance compared with other popular search schemes, we
carefully choose several representative systems, such as Gnutella, Interest-based Short-
cuts (IBS) [8], and Local Indices (LI) [6] as baselines. For the LI scheme, where each
node maintains an index over the data of neighbors within � hops, we choose two practi-
cal configurations, LI-1 with � � � and LI-2 with � � 
 without loss of generality. LI-1
maintains fewer indices than LI-2, but its indices are not able to satisfy enough queries.
LI-2 maintains more indices but has a high maintenance cost. We configure each base-
line system according to its default configuration to guarantee a fair comparison. For
systems without indices such as Gnutella and IBS, we set �� � �. For LI-1, LI-2
and Foreseer, which maintain indices on each node, we set �� � �. As suggested
by Yang et al. [6], a policy � ���
 �
 �� is adopted in both LI-1 and LI-2 to gain good
performance. This policy suggests that the query is processed by nodes at depth 0, 3 and
6, while nodes at other depths simply forward the query to the next depth. In IBS, each
node maintains at most 10 shortcuts as specified by the authors [8]. In Foreseer, unless
explicitly specified, we have 
 � ������ � ��, �� �� ���� � �, and �� ������ � 
� for
any node �. The default search policy in Foreseer is �����

����.
In order to best simulate the system performance, we choose the Transit-Stub

model [20] to emulate a physical network topology for all testing systems. This model
constructs a hierarchical Internet network with 51,984 physical nodes randomly dis-
tributed in an Euclidean coordinate space. We set up 9 transit domains, with each con-
taining, on the average, 16 transit nodes. Each transit node has 9 stub domains attached.
Each stub domain has an average of 40 stub nodes. Nine transit domains at the top level
are fully connected, forming a complete graph. Every two transit or stub nodes in a
single transit or stub domain are connected with a probability of 0.6 or 0.4 respectively.
There is no connection between stub nodes in different stub domains. The network la-
tency is set according to the following rules: 100 ms for inter transit domain links; 20
ms for links between two transit nodes in a transit domain; 5 ms for links from a tran-
sit node to a stub node; 2 ms for links between two stub nodes in a stub domain. We
randomly choose peers from these 51,984 nodes to construct the testing P2P systems
in our experiments. Notice that only some of the physical nodes participate in the P2P
system while all nodes contribute to the network latency for messages passing by.

For baseline systems that require a Gnutella-like network overlay, we apply the
crawled Gnutella network topology data downloaded from the Limewire website [21],
and then set up the logical network connections. Foreseer needs to build its own neigh-
bor and friend overlays that are different from the baseline systems. To construct the
neighbor overlays with network proximity in Foreseer, we find nearby nodes and create
neighbor links for a new peer according to the network latency between this peer and
other present peers that may accept more neighbors. This process repeats until each
peer has a sufficient number of neighbors. The initialization and online evolution of the



friend overlay are described in Section 3.2. In each run of the trace replaying, we ran-
domly select 5% node departures and 5% node failures on the fly to emulate dynamic
activities in P2P systems.

Trace preparation. Because there is no real-world publicly accessible trace that con-
tains the keyword query and download history information required in our experiments,
we carefully rebuild a trace that contains original query terms associated with each event
by preprocessing a content distribution information trace of an eDonkey [22] system ob-
tained from [12]. The eDonkey trace contains the names of 923,000 files shared among
37,000 peers, and was probed during the first week of November 2003. To restore the
keyword query trace, we do two preliminary jobs (calculating keyword weights and
restoring a download trace) and then transform the download trace into the keyword
query trace with keyword weight information. To do the first job, we conduct a simple
lexical analysis and extract keywords from each document by converting its file name
into a stream of words. We then calculate the total number of occurrence per keyword,
which indicates the weight of the keyword among the entire document set. For the sec-
ond job, we process the same eDonkey trace to restore a download trace, where each
event consists of a peer that issues a query, a peer that answers the query, and the doc-
ument that is transferred. During the restore process of the download trace, we assume
that only one copy of each document is shared in the system before any query and down-
load, and the content distribution of the eDonkey trace reflects the system status after
the completion of all queries and downloads. This assumption is only used to derive a
reasonable downloading trace, and does not disallow a file to have multiple copies in
the system during the trace replay. When the two jobs are finally completed, we trans-
form the download trace into a keyword query trace used in our experiments. During
the transform process, we add query terms that have relatively high weights out of the
requested file in each event, since these terms are more effective to improve search pre-
cision than those with light weights. The number of query terms is controlled within
a limit so that most of the queries involve 1 to 4 keywords. The maximum number of
terms for each query is limited by 10, as suggested by Reynolds et al. [23]. When the
keyword query trace is restored, we feed it into each testing system, replay the queries,
and collect the results.

Metrics in use. We measure the search efficiency using the following metrics:

– Success rate: the percentage of successfully resolved (i.e., can be satisfied) queries
among all submitted queries.

– Response time: the average response time to find the first matching document. Since
the processing time at a node is negligible compared to the network delay, we ignore
the queuing latency and Bloom filter computation times.

– Relative distance: the distance actually traveled by consecutive nodes encountered
along the route normalized to the shortest distance between the source and the
destination node, as defined in [24]. This metric tells the search cost, in terms of
distance traveled in the proximity space, and indicates how well the system exploits
the geographical locality, while the average hops only count the number of P2P
nodes along the route.

– Messages produced: the average number of messages produced while searching for
an object that matches a query.



Table 3. Performance of different search policies of Foreseer.

Policy Success Average Average Relative # of query # of node # of free-
rate hops response time distance messages touched riders touched

�� � �� ���� 93.64% 3.01 426 3.91 194 164 56
�� � �� ���� 99.7% 2.95 453 4.22 234 175 18
�� � �� ���� 99.9% 2.97 459 4.29 262 177 2
�� � �� ���� 99.34% 2.95 457 4.24 250 169 0

�� � ���� �� 28.3% 5.64 482 4.36 181 163 5

�� � �� ������ 94.87% 2.77 402 3.70 191 150 7
�� � �� ������ 98.25% 2.75 382 3.42 210 170 28
�� � �� ������ 99.29% 2.74 374 3.36 228 187 42

�� � ���� ���� 96.46% 4.14 442 4.01 228 181 18

�� � �� ���� �� 98.1 % 3.35 403 3.65 208 174 47

– Nodes touched: the average number of nodes touched by the query messages during
the search.

– Free-riders touched: the average number of free-riders touched by the query mes-
sages during the search.

The first three metrics demonstrate how well a system conducts searches for a given
query (search performance), while the last three metrics indicate the bandwidth con-
sumption involved in a query (search cost) that can be used to indirectly justify the
system scalability. The success rate is the most important factor in choosing searching
policies. Besides these metrics, we also compare the indices’ maintenance overhead
involved in both LI schemes and Foreseer because their work in updating indices for
object addition and deletion impacts the entire system performance and its scalability.

5 Experimental Results

5.1 Search policy

We conduct experiments to find an optimal search policy of Foreseer by running 20,000
queries on a 10,000-peer network and comparing the performance of each policy as
shown in Table 3. On the average, most policies in class �� and �� show better per-
formance than other policies, because temporal locality is fully exploited by traveling
along the friend links in the early stages. The table also indicates that ��:�� ����,
��:�� ����, ��:�� 
��� and ��:�� ������ achieve a success rate higher than 99%.
Among these policies, ��:�� ������ achieves the best search performance in terms
of average hops per query, average response time per query and relative distance per
query, but still touches a lot of free-riders in a search. Due to its high success rate and
good performance (although not best), we use � �:�� ���� as our default policy when
running our experiments.

In order to demonstrate the different functions of neighbor and friend links at each
hop, we collected the number of queries resolved by friend links and by neighbor links
respectively at hop ���
 �
 ���
 �. Notice that ��� indicates a successful local matching
at the peer who issues the query. If the query is resolved at node �, and the destination
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Fig. 3. Distribution of queries served by friend links and neighbor links at each hop, with policy
�� � �� ����.

peer is both a neighbor and a friend of �, this is considered as a contribution of both
links. The results are shown in Figure 3, which illustrates that more than 34% queries
are resolved locally (h=0) due to temporal locality in the workloads. When �! �, the
number of nodes touched at each hop dominates in answering the queries. As the hop
number increases and the search touches more peers in the friend overlay, both the
friend and neighbor links serve an increasing number of queries until the hop number
reaches 3. When the hop number exceeds 3, however, the number of served queries by
either type of links decreases since most of the queries are already satisfied. This figure
also shows that for each hop number, the friend links serve many more queries than
the neighbor links. One reason for this is that the friend links established by temporal
locality are more likely to serve future requests, while the neighbor links constructed
with geographical locality only help reduce the search cost. Another reason is that each
peer maintains up to 8 friends while the average number of neighbors is only around
2.43, which implies that there are many more friend links existing in the system than
neighbor links. Although it seems that the neighbor links do not contribute much to the
search performance, they play a critical role in Foreseer. They increase the success rate
by connecting isolated nodes without many friend relationships, and reduce the search
cost in relative distance by network proximity, as shown in Table 3.

5.2 Search efficiency

In this section, we compare the search efficiency of Foreseer against the baseline sys-
tems in terms of search performance and search cost. By running the query traces, we
found that, with the configurations mentioned above, all the baseline systems have an
average success rate around 98%, while our Foreseer achieves an even higher success
rate of 99.9%. Because of the uncontrolled data placement and finite TTL for query
messages, no current search algorithms in unstructured P2P systems can guarantee a
100% success rate. However, only a small percentage (less than 0.06%) queries may
fail in Foreseer, which is quite satisfactory for most users.

Search performance. The average response time and relative distance of each algo-
rithm to find the first matching document are shown in Figure 4 and Figure 5, respec-
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Fig. 7. Comparison of search cost in the per-
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tively. By exploiting temporal locality, both IBS and Foreseer can answer a lot of queries
(around 34% in our experiments) within just one hop. Compared to IBS, however, Fore-
seer reduces the average response time and relative distance by up to 70%. It is clear
that IBS obtains such one-hop successes with the cost of a longer response time and a
farther relative distance. In IBS, a peer first contacts all of its shortcuts to see if they
can answer the query. If no shortcut peer has the requested object, the search is already
delayed before the peer floods the query to its neighbors. In contrast, Foreseer does
not need the flooding algorithm as a backup. Compared to other baseline systems like
Gnutella and Local Indices, Foreseer reduces the average response time by up to 40%
and the average relative distance by up to 45%. The benefit stems from Foreseer’s abil-
ity to exploit both temporal and geographical locality at the same time to propagate
queries. Following the friend links enables Foreseer to reach the destination peer within
few hops. Furthermore, if the local matching indicates a neighbor seems to have the ob-
ject, the peer forwards the query to that neighbor, which is physically nearby according
to network proximity. However, the neighbor in other systems only indicates a logical
connection and may point to a distant node.

Search cost. Gnutella has poor system scalability because its blind flooding results in
a large number of redundant messages and touches too many unrelated peers during the
object searches. Other baseline systems also require a lot of messages if the query is
not satisfied by the shortcuts (in IBS) or the local indices (in LI schemes). We collected
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the total number of query messages and touched nodes in all the queries, and com-
puted the average number of messages produced and the average percentage of touched
nodes in a search, as shown in Figure 6 and Figure 7 respectively. Compared with IBS,
which shows the best results among the baseline systems, Foreseer can reduce both the
number of messages and the percentage of touched nodes by more than 90%. In our
experiments, Foreseer only touches less than 2% live nodes for each query on average.
From the two figures, we can see that both IBS and LI-2 show capabilities of reducing
the number of redundant messages and touched nodes. IBS achieves this improvement
by exploiting temporal locality, while LI-2 by maintaining abundant index information.
By combining their advantages, Foreseer improves the search performance and simul-
taneously slashes the search cost.

One of the valuable features of our friend overlay is that no free-riders are pointed
by any friend links since they share nothing and cannot serve any query. Therefore, the
search will never touch free-riders while propagating along friend links. If the query
is not satisfied in the friend overlay, then it will touch free-riders along the neighbor
links. In other systems, however, even a peer knows that some of its neighbors are free-
riders (by looking at the indices as in LI schemes), it still sends the query to them when
fanning out the query. We conducted experiments and calculated the percentage of free-
riders among nodes touched in a search. Figure 8 depicts the results we obtained when
running queries on the baseline systems. The result of Foreseer, not shown in the figure,
is less than 1% in the experiments.

5.3 Maintenance costs

When a query is answered, the peer who issued that query has a new document to be
published to other peers (we assume this is a requirement). We compared the number of
messages used to update indices in LI schemes and Foreseer, as shown in Figure 9. It is
clear that LI-1 only needs to send several update messages after a query on the average,
because only a small number of peers need to be reached for indices update. But for LI-
2, since each peer stores the indices of files shared on all the nodes within radius ��
,
an index update will result in a large number of update messages. With an average of
13 update messages after each query, Foreseer pays a modest cost for its good search
performance as seen in the previous sections. Furthermore, by using Bloom filters, the
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update messages are quite small and do not consume much network bandwidth. For an
object addition, a peer only needs to transmit the locations of changed bits in its content
filter. Suppose� ���� unique keywords can be extracted from this document and ���,
�� ��� for the Bloom filter. Each changed bit requires � � 
�"#�$ to specify its
location in the filter. The information to be sent is limited by  ������������
��#$, which can be easily packed in few IP packets.

5.4 Scheme optimization
We studied Foreseer’s sensitivity to the number of neighbors and friends by running
20,000 queries on a 10,000-peer network with various configuration parameters. Since
peers keep making new friends after their queries until they have the maximum number
of friends, the upper bound of friends (Max �� �) indicates the number of friends each
node maintains in the system. On the other hand, a peer may have a lower bound number
of neighbors and will not look for new neighbors until some of its current neighbors
depart. We collected the number of neighbors for each node and computed the average
value as �� ������ for�	���� and �	
���, �� ��
��� for �	���
 and �	
����,
�� � � ���� for �	�� � � and �	
� � 
�, �� � � 
��� for �	�� � � and �	
� �
��. Due to space limitation, we only present the results in terms of response time for
these configurations as the evaluation of search performance, as shown in Figure 10.
The results for other metrics follow the same trend. Similarly, the number of query
messages produced in a search is plotted in Figure 11 to show the search cost with
various configurations. We noticed that when %�
�� �� �, a large portion of queries
failed because the query could only reach a small number of nodes due to the upper
bound for the number of friends. When %�
�� � ! �, as shown in the two figures,
the search performance keeps increasing, and the number of query messages produced
keeps decreasing as more neighbors and more friends are allowed on each peer. This
is straightforward since a peer can have the content filters of more peers and outgoing
links if allowed to maintain more neighbors and friends. However, a larger number of
neighbors and friends results in more indices update workloads, as shown in Figure 12.

Figure 13 shows the number of free-riders touched in each query when varying the
number of neighbors and friends in our experiments. It is notable that when%�
�� ��
�, a query, on the average, touches less than 23 free-riders, indicating that some of
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the queries are not resolved until they propagate along the neighbor links. However,
when %�
�� � 
 �
, the query will never touch the free-riding peers, which implies
that all the queries have been resolved within the friend overlay. This also indicates that
the number of friends is not necessarily too large, considering the maintenance cost of
updating a peer’s content filters.

6 Conclusions and Future Work

In this paper, we propose a new P2P system architecture called Foreseer, which con-
structs two orthogonal overlays based on geographical and temporal localities and main-
tains distributed indices for objects shared on peers’ neighbors and friends. By selec-
tively directing searches along the friend links and neighbor links, Foreseer achieves a
high search efficiency with a modest maintenance overhead. We conduct a comprehen-
sive set of trace-driven simulations and perform an in-depth analysis of the results. Our
experiments show that Foreseer can boost the search performance by up to 70%, with
regard to response time and relative distance, and slash the search cost by up to 90%
in terms of the number of query messages produced and nodes touched, compared with
state-of-the-art P2P systems. In future work, we will study the system performance of
Foreseer when different searching policies are employed and/or standard information
retrieval traces are fed. In addition, we would like to measure its benefits for partial
keyword search applications with multiple responses required.
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