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Abstract. The directed flood-routing framework (DFRF) for wireless sensor 
networks is introduced in this paper that allows the modeling and rapid devel-
opment of application specific routing protocols based on directed flooding. 
Flood-routing protocols are probabilistic methods that make only the best effort 
to route data packets. The presented family of protocols can route regular sized 
data packets via broadcast messages according to customizable, state machine 
based routing policies that govern the way intermediate nodes rebroadcast mes-
sages. The framework supports automatic data packet aggregation, and allows 
in-network data packet filtering and alteration. 

1 Introduction 

Routing protocols for wireless sensor networks are proliferating. Unlike wired net-
works, where the TCP/IP is dominant, wireless sensor networks have no prevailing 
routing protocol. Even well designed and tested routing protocols can exhibit subpar 
performance under a different application load, in a certain deployment scenario, or 
on a new hardware platform. We argue that this is unlikely to change in the near fu-
ture, and current research shall focus on developing and classifying broad families of 
routing protocols that are easily adaptable to a wide variety of real word applications.  

The connectivity and topology of the wireless network, as well as the characteris-
tics of the medium access control (MAC) of the operating system, fundamentally in-
fluence the design of any routing protocol. Separating the essential part, called the 
policy, of a routing protocol from the implementation techniques common to a family 
of protocols, and expressing it in a compact representation  reap substantial benefits. 
First, protocols become easier to understand. Second, automatic optimization tech-
niques can be utilized to find the best policy that adapts the protocol to the target net-
work topology and to the particular implementation of the MAC. Third, the engine 
that coordinates and executes these routing policies becomes a general middleware 
service that bridges the gap between the application requirements and the characteris-
tics of the underlying networking services. 

We have identified a rich family of routing protocols based on directed flooding 
that can be parameterized by policies, as described above. Flood-routing protocols are 
probabilistic methods that make only the best effort to route data packets. On the 



other hand, they are particularly resistant to node and link failures because data pack-
ets can reach their destination through different routes. 

In an acoustic shooter localization application [5] we have successfully used sev-
eral flood-routing protocols to reconfigure the nodes of the network and to gather sen-
sor readings, the time of muzzle blast and shock wave events. Designing a routing 
protocol that can handle this load is especially challenging, since a large subset of 
nodes detects these acoustic events approximately at the same time and has to report 
back to the base station under real time constraints. The routing protocols that 
achieved the requirements of the acoustic shooter localization application were devel-
oped using the proposed directed flood-routing framework (DFRF).  

The framework consists of an engine and several flooding policies. The engine 
stores and manages data packets enroute to their destination, while routing policies 
define state machines that describe which packets need to be rebroadcasted by inter-
mediate nodes and when. The framework supports automatic data packet aggregation, 
and allows in-network data packet filtering and alteration.  

In the next section we introduce the targeted hardware platform, and then survey 
the available routing protocols on this hardware. Next, we formally define the di-
rected flood-routing framework. Finally, we present a set of selected flooding policies 
that can be used to build robust wireless sensor network applications. Among these a 
novel spanning tree based convergecast routing policy is introduced that routes mes-
sages in a “lane” consisting of the nodes at most one hop away from the shortest path 
from the sender to the root. The resulting routing policy is (1) robust to node and link 
failures, (2) energy efficient as the maximum number of routing messages increases 
only linearly with the distance of the sender, and (3) has no data or message overhead 
compared to simple spanning tree based routing. 

2 The target platform 

The directed flood-routing framework was evaluated on the Berkeley Mica motes [1], 
the most widely used platform for researching ad-hoc wireless sensor networks with 
limited resources. This platform exemplifies the class of resource constrained plat-
forms having a broadcast medium which the proposed framework was designed for. 
We highlight the main characteristics of this platform now. The second generation 
Mica2 version features a 7.3 MHz microcontroller, 4 KB of RAM, 128 KB of flash 
memory, and a 433 MHz wireless radio transceiver. The motes are powered by two 
AA batteries, which last for a few days under continuous operation. A wide variety of 
pluggable sensor boards containing light, temperature, magnetic and other sensors are 
available. The Mica motes run a small, embedded, open source operating system, 
called TinyOS, specifically designed for resource limited sensor networks [2]. 
TinyOS applications are statically linked graphs of event-driven operating system and 
application components written in the nesC language, a variant of C [4]. 

The characteristics of the radio transceiver and the radio stack of the target plat-
form are of special importance to the performance of any multi-hop communication 
protocol. The radio chip (CC1000) of the Mica2 mote utilizes a single radio channel, 
has 38.4 Kbps transfer rate and maximum 500-foot communication range in open 



space. Close to or on the ground the range drops dramatically to tens of feet. TinyOS 
employs up to 36-byte long radio messages. Seven bytes are reserved by the OS to 
store the length, the cyclic redundancy check (CRC) and other parameters of the mes-
sage, leaving only 29 bytes for application data at most. The MAC is based on the 
carrier sense multiple access (CSMA) technique with random backoff [3]. The Mica2 
mote can transmit or receive up to 30 messages per second provided no radio colli-
sions occur. Due to manufacturing differences and fading effects, there are more “po-
lite” motes that will not transmit at all if nearby motes are constantly occupying the 
radio channel. Others are more prone to start transmitting messages in the middle of 
other transmissions causing radio collisions. 

3 Existing approaches 

Conventional routing protocols are insufficient for ad-hoc wireless sensor networks 
because of their routing related communication overhead. Examples of a few pro-
posed protocols are: dynamic source routing (DSR) [6], ad-hoc on demand distance 
vector routing (AODV) [7], temporally ordered routing algorithm (TORA) [8], and 
the zone routing protocol (ZRP) [9]. On the other hand, routing protocols for sensor 
networks can exploit the physical properties of the environment where the network is 
deployed. For example, the location of nodes and their sensor readings in these net-
works are typically more important than their node IDs. 

Existing research mostly focused on location-aware routing protocols allowing 
routers to be nearly stateless: each node needs to know only the position of its 
neighbors to make the right forwarding decisions. The greedy perimeter stateless rout-
ing protocol (GPSR) use perimeter forwarding to get around voids [10]. Location-
aided routing (LAR) improves the efficiency of on-demand route-discovery algo-
rithms by restricting routing-packet flooding to “request zones” [11]. This particular 
protocol could be developed in the proposed DFRF. The Stateless protocol for real-
time communication (SPEED) [12] provides soft real-time communication based on 
feed-back control. 

There are several other routing protocols in the literature relevant to the DFRF. The 
gradient broadcast (GRAB) protocol builds and maintains a gradient field on a par-
ticular subgraph of the network describing the direction sensory data is forwarded to a 
sink [13]. The gossip routing protocol performs a reliable network broadcasts, 
probabilistically [14]. These two protocols fit precisely the proposed DFRF. Flooding 
policies achieving similar functionalities will be presented in Sections 5.1 and 5.2. 
The rumor routing protocol is a combination of two flooding algorithms: query and 
event flooding. This protocol utilizes available power resources well [15]. A similar 
algorithm can possibly developed in DFRF. Constraint based routing (CBR) is an-
other directed flood-routing protocol [16]. TinyDiffusion [17] is another flooding 
based routing protocol with a publish-subscribe interface that utilizes route rein-
forcement. Broadcasting protocols are compared in [18] and [19]. The AODV, GPSR, 
SPEED, CBR and TinyDiffusion protocols are already implemented in TinyOS, and 
many others are in development [20].  



A wide range of other middleware services related to routing were proposed for 
wireless sensor networks. A new group management middleware and distributed pro-
gramming paradigm was introduced EnviroTrack [21]. Database management mid-
dleware services for wireless sensor networks, such as TinyDB [22] and COUGAR 
[23], are also actively researched and can offer greater abstraction than traditional 
routing middleware services. Most existing services for sensor networks however are 
not readily reconfigurable to meet application requirements and to fully exploit the 
capabilities of the underlying hardware and networking services, which distinguishes 
the proposed directed flood-routing framework from other middleware services.  

4 The DFRF algorithm 

The directed flood-routing framework is built around a flood-routing engine middle-
ware service that manages the routing messages on all nodes in the network. Applica-
tion components using the flood-routing engine can send and receive regular sized 
data packets according to a flooding policy. Flooding policies specify the “direction” 
of flooding and how intermediate nodes rebroadcast messages. The DFRF engine 
keeps the recently received data packets in a table together with their priority (which 
is managed by the policy), periodically selects the packets with the highest priority, 
packs them into a single radio message and broadcasts it to the neighboring nodes. In 
the rest of this section we will describe this algorithm. 

4.1 System architecture 
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Fig. 1. The architecture of the directed flood-routing framework 

The modules that implement the DFRF algorithm on each node and their interac-
tions are depicted in Fig. 1. Each node has a single routing engine module that can 
serve several application modules. Application modules register data packet types and 
corresponding flooding policies with the engine. The same policy can be registered 



for several data packet types. The modules interact with each other through method 
invocations, which are depicted as arrows originating from the caller. These methods 
will be covered in detail in the following sections. 

4.2 The data packet 

Most applications of wireless sensor networks must send and receive different types 
of data packets, but each of these data types has a well defined internal structure. 
Typically, data packets of the same type have the same size, as well. For the ease of 
implementation, and to maximize the available radio message space, we made this a 
requirement. The lack of variable length data packets allows the DFRF algorithm to 
aggregate many very small (e.g. 2-byte) data packets into a single radio message. The 
DFRF engine does not need to know the internal structure of each data packet, only 
its length.  

In directed flooding the same data packet originating from a single node can reach 
its destination through different routes. This necessitates that the final node, as well as 
intermediate nodes, be able to uniquely identify the same data packet in order to dis-
card multiple messages. Most routing protocols append a globally unique identifier to 
each data packet for this purpose, which adds extra data overhead, typically 2-3 bytes. 
However, this is not necessary for some applications where the data packet is either 
already globally unique, or the source of the data packet is unimportant. For example, 
if nodes send time-stamped sensor readings to a base station, then the node ID (or the 
3D coordinates of the sensor) together with the time stamp can serve as a unique 
identifier of the data packet. Or in a multi-hop network reprogramming application, 
which uploads a new executable image to each node in the network, the missing 
capsule ID can be used as the unique identifier of the missing capsule message sent to 
the base station, since it is unimportant which node did not receive a particular 
capsule of the image.  

Because of these considerations, the DFRF engine does not generate globally 
unique identifiers but requires the user of the algorithm to employ data packets that 
can be uniquely identified by their first few bytes. This requirement does not put a lot 
of burden on the user, as generating unique IDs where necessary is trivial. The num-
ber of bytes used to uniquely identify data packets is called the unique length of the 
data packet. We say that two data packets are analogous if their unique parts (the first 
unique length of bytes) are identical. Note that analogous data packets are not neces-
sarily identical, as for example, intermediate nodes can modify data packets enroute 
to the destination. 

Each node in the network must know about all packet types used in a particular 
wireless sensor application. The packet types are identified by a type ID, and they de-
fine the length and the unique length of the packet. The type ID is transmitted with 
each radio message (which can contain several data packets of the same type), and 
used by the engine to slice the radio message to the appropriate type of data packets, 
identify the data packets by their unique part, and notify the corresponding application 
component. 



4.3 The node rank 

When the DFRF engine (re)broadcasts a radio message, it does not include the node 
ID of the sender in the message, instead a policy dependent value, called the rank of 
the node, is inserted. The rank describes the progress of a data packet in a policy de-
pendent way, and is used to determine what to do with incoming data packets. For the 
DFRF engine, the rank is simply a (possibly empty) array of bytes, which is passed to 
the flooding policy when a data packet arrived. The broad possibilities of what the 
rank can describe are best illustrated through examples. 

For the converge-cast policy that routes along a gradient vector to a base station, 
the node rank is the hop-count distance from the root. In this policy, when the rank of 
the sender is smaller than that of the receiver, the receiver simply drops the data 
packet because it comes from a node closer to the root than itself. For the network- 
wide broadcast policy, the rank is an empty array. It does not matter where the data 
packet was received from, it will be rebroadcasted if this is the first time this node has 
received it. For the spanning tree policy that routes message along a spanning tree to a 
base station, the node rank can be the node ID of the parent node. Here the parent 
does not care which of its children sent the data packet. There is a robust variation of 
this policy where the rank is the node ID of the grandparent, which will be covered 
later. For a geographic routing protocol the rank of the node can be the coordinates of 
the node. A data packet is sent further if the receiving node is closer to the final desti-
nation (which is contained in the data packet) than the sender. 

It is important to note that the rank does not depend on the data packet, thus the 
single rank value is used for multiple aggregated data packets of the same type. On 
the other hand, it is allowed for the rank of a node to change over time. For example, 
the gradient vector can change if the root of the converge-cast is mobile. It is even 
possible to provide flow control through ingenious use of ranks. For example, the 
rank of a node can include a flag indicating that temporally the node cannot store fur-
ther data packets for retransmission. Neighboring nodes can detect this and delay 
transmitting new data packets. 

The flooding policy has to implement two methods (or commands in the nesC lan-
guage) that are used by the DFRF engine. First, the getRank method has to return the 
current rank of the node in this flooding policy. This method is invoked for each 
transmitted radio message. Second, for each received radio message the policy is con-
sulted via the accept method whether the message should be processed at all based on 
the rank of the sender. 

4.4 The priority 

Apart from defining the rank of nodes, the flooding policy has the primary role to 
govern the life-cycle of data packets at each node. Typically, analogous data packets 
are received multiple times at each node because radio messages are always broad-
casted. An intermediate node first receives the data packet from a node further from 
the destination, next it rebroadcasts it, and then it will normally hear the packet from a 
node closer to the destination. This shows that each data packet (or more precisely, 



the family of analogous data packets) has a life cycle at each node. This life-cycle is 
governed by the flooding policy. 

The life-cycle of a particular data packet is described by a finite state machine. 
There are states in which the data packet is eligible for retransmission, and there are 
states in which the data packet must be remembered but should not be retransmitted. 
For example, if an intermediate node A retransmits a data packet D and then hears the 
same packet from a node closer to the target than A, then it should remember D for 
some time, but not retransmit it again to prevent receiving and consequently retrans-
mitting an analogous data packet from some node further from the target than A. 

The DFRF engine periodically selects, packs and sends data packets from its inter-
nal table to the neighbors. Since nodes have very limited memory, an existing data 
packet from the table might have to be evicted when a new data packet arrives. The 
flooding policy directs these two selection processes in the following way. The life-
cycle states are numbered, typically from 0 to 255, and these numbers are regarded as 
the priority of data packets. The DFRF engine selects data packets for sending or 
evicting based on their priority. 

We have said that in a subset of states data packets are not retransmitted. It can be 
very important to keep and remember a data packet on a node even if we do not want 
to retransmit it immediately. The priorities of these data packets must be high, to 
avoid eviction, and marked as non-transmittable. To have a dense set of non-
transmittable states, we selected the odd number priorities for this purpose.  

The DFRF engine holds a table of data packets together with their priority or state 
in which they are currently in. It selects the data packet with the highest even priority 
(the smallest number) for sending, and with the lowest priority (the largest number) 
for evicting. There are two special priorities, the smallest and largest values. The 
value 0 is the initial state of the state machine, while the value 255 is considered the 
terminal state. If the DFRF engine has a data packet in the terminal state then the 
packet is considered invalid and the corresponding slot empty. 

4.5 The policy actions 

The flooding policy defines the transitions of the finite state machine that describes 
the life-cycle of data packets. There are three events: sent, received and aged. The 
first is fired when a data packet has been (successfully) broadcasted, the second when 
a new or an analogous data packet has been received, and the third is fired at regular 
time intervals. The flooding policy implements three corresponding methods: sent, 
received and aged that compute the new state of a data packet based on the old state 
(and on the rank of the sender for the received event). 

When the method sent is invoked, the corresponding data packet has been already 
successfully broadcasted. Note that the data packet had to pass the selection criteria 
for it to be sent, that is, it had to have one of the highest even priorities. However, by 
the time this method is called, it might not have the same (or even an even numbered) 
priority since other actions could have modified it between the two events. As radio 
links are naturally unreliable due to collisions and fading, flooding policies typically 
retransmit the same data packet a few times by stepping through even numbered pri-
orities in increasing order, e.g. from 0 to 2, then to 4, etc. This way, the same data 



packet gets gradually lower priorities and could become evicted if the engine is short 
on memory. 

The received method is called for each incoming data packet. If this is the first time 
this data packet is received at this node, then priority 0, otherwise the priority of the 
existing analogous data packet is passed as an argument to this method. The rank of 
the sender is also available on which the flooding policy can base its action. Nor-
mally, the rank of the sender and that of the current node is compared, and if the 
flooding policy determines that the packet was heard from a node “closer” to the tar-
get than the current node, then it either drops or remembers the packet, but it will 
never become eligible for retransmission. The packet can be dropped by entering state 
255 that makes the corresponding slot free. It can be remembered by walking through 
a high valued chain of odd priorities, e.g. 201, 203, etc., incremented in the aged 
method. 

The aged method is invoked periodically for all valid (with priority other than 255) 
data packets. Typically, policy implementations should decrease the priority of the 
packet by increasing this number and eventually drop the packet by entering priority 
255. 

4.6 Message layout 

Each radio message contains one or more data packets of the same type. The layout of 
the message is as follows. The first field is the type ID (1 byte) followed by the rank 
of the sender node. The rank is stored in zero or more bytes depending on the flooding 
policy that corresponds to the type ID. After these two fields come the data packets. 
On the selected platform the number of data packets is not included in the message, 
because it can be calculated from the length of the radio message and the type ID. The 
priority of the data packet is not transmitted, as it is maintained locally and separately 
by each of the nodes that participate in the routing. This compact representation keeps 
the number of extra bytes at the absolute minimum, which allows several data packets 
to be aggregated into a single radio message. The message layout on the TinyOS plat-
form is depicted in Fig. 2. 

type ID rank packet 1 packet N…length…

message header (5 bytes) user data (up to 29 bytes)

overhead (typically 1-3 bytes)

 
Fig. 2. The message layout on TinyOS. The overhead imposed by the DFRF is typi-
cally 1-3 bytes depending on the choice of flooding policy 



4.7 The data packet table 

The DFRF engine maintains a table for each type of data packets. This table includes 
the data packets and their priorities. This table holds at most one data packet from any 
family of analogous packets at any given time. Currently, this table is held in a fixed 
size array, but a hash table based implementation (based on the unique first bytes of 
data packets) is also possible. If a data packet has priority 255, it is considered invalid 
and the corresponding slot free. The engine has three basic activities: broadcasting 
and receiving radio messages, and aging data packets in the table.  

When a message has been sent, the engine invokes the sent method to calculate the 
new state for each data packet contained in the message. Then it selects the next batch 
of data packets. It looks for the highest (lowest number) even priority data packets 
and packs them into a radio message buffer until it is full. Then it obtains the current 
rank of the node from the flooding policy and passes the radio message buffer to the 
radio stack for transmission. The engine stops sending messages if there are no more 
even numbered data packets in any of the tables. 

When a new radio message is received, the engine first identifies the data type of 
the packets contained in the message, then invokes the accept method of the corre-
sponding flooding policy to determine if further processing is necessary. If so, it un-
packs each data packet contained in the message. For each packet, it locates an analo-
gous data packet in the table. If there is no match, then the user of the flooding 
algorithm is notified of the newly arrived data packet via the receive method. The en-
gine then finds a place for this packet by evicting an existing packet with the lowest 
priority from the table. Note that this selection includes available free slots as their 
priority is 255, the lowest. This evicted packet is overwritten by the newly arrived 
data packet with priority 0. Once the packet (or an analogous packet) is in the table, 
the received method of the flooding policy is invoked to calculate the new state of the 
packet, and the next packet in the message is considered. 

Finally, the DFRF engine periodically ages all valid data packets in the table by in-
voking the aged method of the flooding policy.  

4.8 Initialization 

Since the type description and the corresponding policy of data packets are not passed 
around in radio messages, all nodes in the network (or that part of the network that 
routes a particular type of data packet) must initialize the DFRF engine with the same 
configuration for each data type. This configuration consists of the type ID, the length 
and the unique length of the data packet, and the selected flooding policy. Given that 
the target platform does not support dynamic memory allocation, the configuration 
includes the address and length of a user provided memory buffer where the engine 
will store the data packets. The engine keeps track of all registered data types and it 
can route data packets of different types concurrently. Typically, the types of data 
packets do not change during the lifetime of the application. Nevertheless, it is possi-
ble to register and unregister configurations dynamically. 



4.9 Sending and receiving data packets 

The user of the directed flood-routing protocol interacts with the DFRF engine. When 
the user wants to send a data packet it simply passes it to the send method of the 
DFRF engine. Similarly to the case of data packets received via the radio, the engine 
first checks if an analogous data packet is already in the data table. If yes, then it sim-
ply returns (with an error code) because this packet is already being transmitted. If it 
is not in the table, then it evicts an already existing packet with the lowest priority 
from the table, as described before, and inserts the new data packet with priority 0. 
The actual transmission and life-cycle management is taken care of by the engine. 

The receive event is fired by the DRFR engine to notify the user of the arrival of a 
new data packet. This event is fired exactly once for each family of analogous data 
packets, at the time when the packet was inserted into the table. Unlike in other rout-
ing algorithms, the receive event is fired at each intermediate node towards the target. 
This allows the user to modify or even drop the data packet enroute to the destination, 
a critical feature used in smart data aggregation protocols. We will present examples 
exploiting both of these features in the following sections. Note that this notification 
scheme does not complicate the use of the routing protocol, as the user can easily 
consult the particular routing policy at each node to check if it is the true destination 
of the packet.  

The application component implementing the receive method gets a pointer to the 
data packet as a parameter and returns a boolean value. The received pointer can be 
used to read the data and possibly update its content (other than the first unique length 
bytes that must not be changed). If the receive method returns false, the engine drops 
the newly arrived data packet by not inserting it into its table. Otherwise, the data 
packet enters its life-cycle on this node, as described in Section 4.7. 

5 Flooding policies 

Flooding policies have two central functions. First, they define the meaning and com-
pute the value of the node rank. Second, they implement the state machine that gov-
erns the life-cycle of individual packets on every node. Flooding policies can be clas-
sified by either of these two traits. We can speak of, for example, broadcast policies 
where the node rank is vacuous (an empty array), or energy-aware policies where the 
actions of the state machine depend on the available power of the node and its 
neighbors. We grouped our selection of routing policies according to their definition 
of rank. 

5.1 Broadcast policy 

The broadcast policy is used to route data packets from an arbitrary source node to all 
nodes in the network. A data packet is rebroadcasted one or more times at every node 
until all nodes received it with a high probability. There are several variations where 
the target area is limited in an application specific manner. 



The node rank in the broadcast policy is void. There are several ways intermediate 
nodes can retransmit data packets. First, we present the simplest version where each 
intermediate node retransmits the data packet exactly once, as soon as possible. The 
nodes remember each data packet as long as possible to avoid receiving the old packet 
and classifying it as new. The corresponding state machine is depicted in Fig. 3. 
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Fig. 3. The state machine of the broadcast policy 

Each circle represents a state. The states are numbered by their unique priority, 
from 0 to 255, but possibly not all of them are used. State 0 and state 255 are always 
the initial and terminal states, respectively. The arrows represent state transitions. The 
label of the arrow describes the corresponding type of event: ‘s’ for sent, ‘r’ for re-
ceived, and ‘a’ for aged. State transitions that do not change the state are not shown. 
For example, the aged event does not change the state of the machine in states 0 and 
2. Arrows originating from a composite state, a dashed rounded rectangle, represent 
transitions from each of the contained states. Recall that a data packet is eligible for 
transmission only in even numbered states. 

A data packet always starts its life-cycle in state 0, either because the packet origi-
nates from this node (the user called the send method of the engine), or when it is re-
ceived for the first time by this node. If it is the latter, then its state is immediately 
changed to state 2 by the flooding policy, because we want packets originating from 
this node to have higher priority (i.e. 0) than those that we received from another 
node. Once the packet is in either state 0 or 2, we wait until it gets selected and trans-
mitted by the engine. After transmission, we enter state 3. The sequence of states, 
starting from 3 up to 255, is used to remember the same packet for 126 aging actions 
(63 seconds in the current implementation) before dropping it. If during this period 
the node receives the same packet again, we start counting again from state 3. Note 
that in general this procedure does not prevent a data packet getting into an infinite 
cycle in a large dynamic network. However, the user can terminate this broadcast 
when handling the receive event. 

As an application of the broadcast policy, we outline how to measure the hop-count 
distance from a root node to all other nodes in the network. The data packet shall con-
tain a field for the “current” hop-count, and possibly others for the node ID of the 
root, etc. The unique part of the packet should not include the hop-count field. When 
the root initiates the network-wide broadcast, it fills in 0 for the hop-count in the 
packet. Upon receiving a data packet of this type, the application code should incre-
ment the current hop-count value in the receive event. The DFRF engine will not 
change this value, even if it later receives an analogous message with a different hop-



count value, and will retransmit it with the incremented value. To get a more valuable 
estimate of the hop-count distance, the application should measure the hop-count dis-
tance from the root several times and the nodes should use the average of the meas-
ured values. 

The range of the broadcast can also be limited in a similar way. For example, the 
root enters the required maximum number of hops into the hop-count field of the 
original message. Upon receiving the message, the hop-count fields needs to be dec-
remented. If it reaches zero, then the receive method should return false, which will 
terminate the retransmission of the packet. 

We found this basic policy to work very well on the Mica2 platform for planar 
networks with average degree of five or higher. This can be attributed to the sensible 
connectivity of the network and to the excellent radio collision avoidance of the radio 
stack. However, the same policy does not perform well on linear networks or on plat-
forms with erratic radio collision avoidance. Nevertheless, this can be overcome by 
retransmitting each data packet two or more times on each node, with random delay in 
between. One particular implementation of this modified broadcast policy is shown in 
Fig. 4. 
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Fig. 4. The state machine of the reliable broadcast policy 

Arrows pointing to a composite state stand for transitions that enter one of the con-
tained states based on a random choice. There are several subtle design choices that 
make this broadcast policy more robust than the one pictured in Fig. 3. First, note that 
the composite states (2,3,5) and (6,7,9) facilitate the random delay via the aging 
event. Not only does it wait for a random number of aging events, but also the aging 
events are executed asynchronously in the network. Second, the priority value is de-
creased inside these composite states, because if the engine is short of memory, we 
want to keep those packets that we can retransmit sooner. What is more, the ‘r’ self-
loop at the composite state (6,7,9) implements a random backoff functionality. Ob-
serve that the ‘s’ arrow to state 11 does not come from state 6, the only even num-
bered state in (6,7,9) allowing retransmission, but from the whole composite state. 
The reason is that the engine can select the packet in state 6 for transmission, pass the 
radio message buffer to the OS, receive an analogous message that restarts the back-



off delay, and only then does the OS complete the transmission of the previously 
packed message. As a final point, the source node of the broadcast transmits the 
packet three times in contrast to relaying nodes, which transmit every packet only 
twice. 

5.2 Gradient convergecast 

Convergecast policies are used to route data packets from all nodes of the network to 
a selected node, called the root. Intermediate nodes rebroadcast a data packet zero, 
one or more times until it is received from a node “closer” to the root than the current 
node. In the gradient convergecast policy, being closer means that the hop-count dis-
tance from the root is smaller. Thus, the rank of each node is the hop-count distance 
from the root, and the hop-count distances of the sender and receiver are compared. 
The same data packet can reach the root through several different paths, always de-
scending in the gradient field. This guarantees robustness and fast message delivery at 
the expense of higher communication overhead. The data packet typically arrives at 
the root first through unreliable “long” links, then through more reliable “short” links. 

The hop-count distance can be calculated, for example, by an application of the 
broadcast policy, as described in Section 5.1 above. The gradient convergecast policy 
implements this functionality and allows the user to set and query the current root in 
the network. Data packets of several types can share the same gradient field, or differ-
ent gradient fields can be computed if there are multiple roots in the network. The 
overall cost of calculating the gradient field is rather large; possibly several network-
wide broadcasts. However, once the field is calculated, it takes very little memory 
space, 1 or 2 bytes, to store it. 
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Fig. 5. The state machine of the gradient convergecast policy 

Fig. 5 depicts the state machine of the gradient convergecast policy. The receive 
action has been split into two separate actions: ‘r−’ and ‘r+’ for messages received 
from nodes closer to and further from the root than the current node, respectively. 
Note that nodes with the same rank have been explicitly excluded from this list, be-



cause we want to direct the flooding as mush as possible by preventing the same data 
packet to spread among nodes having the same hop-count distance. The policy avoids 
this case by returning false in the accept method for radio messages with the same 
rank as of the receiving node (see Section 4.7). 

Each node retransmits a data packet up to three times, with two and one aging ac-
tions in between. The delay between the first and second transmissions is relatively 
long but it leaves the nodes receiving the first transmission enough time and radio 
channel bandwidth to retransmit the packet. The transition labeled by ‘r−’ on the left 
hand side in Fig. 5 implements implicit acknowledgment in the following way. If 
node A sends a packet that is received by node B that is closer to the root than A, and 
then B rebroadcast this packet, which is received, among others, by A, then the state 
of the packet on A becomes 7 and A will not retransmit the packet again. The policy 
remembers each data packet for a certain time period since the last time it was re-
ceived from a node further from the root. This is enough, because even if the node re-
ceives an analogous packet from a node closer to the root later, it will immediately 
enter state 7 again. 

Clearly, this policy does not guarantee message delivery, but best effort only. This 
is not a serious limitation for most wireless sensor network applications because they 
have to prepare for message loss as the result of failing nodes and unreliable links. 
However, a variation of this policy can guarantee message delivery in connected net-
works provided the hop-count distance gradient field remains accurate. This variation 
retransmits the packet on each node other than the root until it is received from a node 
closer to the root. 

The gradient convergecast policy yields a very fast and robust routing protocol to 
deliver messages to a root node, but at the expense of significant message overhead. 
Depending on the topology of the network, the number of transmissions during the 
routing of a single data packet can grow as the square of the distance between the 
sender and the root. 

5.3 Fat spanning tree convergecast 

The major shortcoming of the gradient convergecast is its message overhead. The op-
timal solution, with respect to the number of messages, would be to route the data 
packet along a spanning tree towards the root. However, this algorithm is inherently 
fragile: the radio links are not reliable causing message loss in any fixed path. More-
over, a single node failure close to the root can cut off a large portion of the network 
from the root. The speed and robustness of the gradient convergecast and the low 
message overhead of the spanning tree routing protocol can be combined in the fol-
lowing way. Instead of utilizing a single path starting from the source node towards 
the root, define a small neighborhood of this path and flood the data packet in this 
“lane”. The lane can be defined as all nodes one hop away in the spanning tree from 
the nodes of the path. The resulting routing policy is called the fat spanning tree con-
vergecast. The message overhead of the gradient and fat spanning tree policies is il-
lustrated in Fig. 6, where a single data packet is routed from a node in the bottom 
right corner to the root in the top left corner. Red nodes retransmitted the packet, 
while the blue ones received it but did not retransmit it. 



 
Fig. 6. The message overhead of the gradient and fat spanning tree converge cast 
policies in a 5000-node network. Dark blue and light red colors indicate nodes that re-
ceived or received and retransmitted the routed message, respectively 

This particular definition of the lane allows a strikingly simple implementation of 
directed flood-routing in the lane with minimal storage requirement. Each node has to 
know the node IDs of its parent, grandparent, great-grandparent and great-great-
grandparent. The node rank is simply the node ID of the grandparent. The relationship 
between the sender and the receiver of a radio message can be computed by the re-
ceiver from the rank of the sender, which is stored in the message, as follows: 

(1) If the rank of the sender is the node ID of the receiver or its parent, then the 
sender is further from the root than the receiver. The corresponding event will be 
denoted by ‘r+’. 

(2) If the rank of the sender is the node ID of the grandparent of the receiver, then the 
sender is at the same distance from the root as the receiver. These types of mes-
sage are also denoted by ‘r+’. 

(3) If the rank of the sender is the node ID of the great-grandparent or its parent of 
the receiver, then the sender is closer to the root than the receiver. The corre-
sponding event will be denoted by ‘r−’. 

(4) If the rank of the sender is none of the above, then the receiver is either not in the 
lane of the source, or more than two steps away from the sender. In both cases we 
ignore the message by returning false in the accept method of the policy. 

The spanning tree can be constructed and the node IDs of the four ancestors found 
by a simple network-wide broadcast, or by other methods. Finding the spanning tree 
that best supports directed flood-routing is possibly a challenging problem and is not 
addressed here. 

Once the spanning tree is formed and the ‘r+’ and ‘r−’ receive events defined, we 
can reuse the state machine of the gradient convergecast policy (see Fig. 5) for the 
spanning tree convergecast policy. The performance of the spanning tree convergecast 
for arbitrary networks will be similar to that of the gradient convergecast for essen-
tially linear networks. In particular, the number of messages required to route a data 



packet from the source to the root is proportional to the hop-count distance of the 
source from the root. 

6 Conclusion 

We have introduced the directed flood-routing framework for wireless sensor net-
works. We demonstrated that the state machine based language describing routing 
policies is rich enough to capture a wide variety of existing flood-routing protocols. 
The supporting engine and flooding policies were implemented for TinyOS and ex-
tensively tested on the Mica and Mica2 platforms. The gradient convergecast policy 
was used in an acoustic shooter localization application to route acoustic events back 
to a base station. A network of 60 motes covering a 100 by 40 meter urban area with 
diameter of 10 hops was used to evaluate the performance of both the routing and 
shooter localization algorithms. Typically, 25-30 motes were triggered by a shot, half 
of them managed to report their events in the first second, and the other half in the 
next second. 

There are several research opportunities in directed flood-routing in general and 
flooding policies in particular. For example, it seems possible to design convergecast 
flooding policies that implement flow control by delaying retransmission of data 
packets if nodes closer to the root are overloaded. Another challenging research area 
is the study of topology changes with respect to convergecast policies. For example, is 
it possible to dynamically update the gradient field or the spanning tree if the root 
node is mobile? 

The state machines of flooding policies can clearly be optimized for different 
hardware platforms and network configurations, as well as for speed, reliability and 
power consumption. Since these state machines have a limited number of actions and 
are relatively small, it seems possible that they can be mechanically optimized utiliz-
ing a simulator to compute the fitness of policies. 
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