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Abstract. Dynamically adaptive systems sensetheir environment and adjust them-
selves to accommodate to changes in order to maximize performance. Depend-
ing on the type of change (e.g., modifications of the load, the type of workload,
the available resources, the client distribution, etc.), different adjustments have
to be made. Coordinating them is already difficult in a centralized system. Do-
ing so in the currently prevalent component-based distributed systems is even
more challenging. In this paper, we present an adaptive distributed middlewvare
for data replication that is able to adjust to changes in the amount of load sub-
mitted to the different replicas and to the type of workload submitted. Its novelty
lies in combining load-balancing techniques with feedback driven adjustments
of multiprogramming levels (number of transactions that are allowed to execute
concurrently). An extensive performance analysis shows that the proposed adap-
tive replication solution can provide high throughput, good scalability, and low
response times for changing loads and workloads with little overhead.

1 Introduction

Tuning an information system in order to provide optimal performance for a specific
application is a challenging task. So far, human administrators have traditionally out-
performed software based solutions due to their in-depth knowledge of the application.
However, more and more applications cannot be described anymore with static charac-
teristics but are dynamic in nature. For instance, depending on the time of the day, the
workload submitted to a database can be sometimes update intensive, sometimes read
intensive. Also, the type of users connected to the database at a given time, or the cur-
rent state of the application (e.g., in workflows) will have an influence on which parts
of a database are accessed more frequently. This dynamic behavior requires prompt
and frequent adjustments of the underlying information system. This, however, will be
difficult to achieve when relying on humans to turn the right knobs in the system con-
figuration. Instead, dynamic applications require an adaptive infrastructure. Adaptive
systems use context awareness to perceive the surrounding context and the effect of its
reactions on it. Based on this monitoring information, the system modifiesitself to ac-
commodate to the new conditions in the computing environment in which it operates,
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and thus, behavesin an optimal fashion according to some target performance metrics.
The most ambitious goal of an adaptive system is autonomy, in which a system adapts
itself automatically to ambient changes[18].

In thispaper, wefocus on the automati c adaptation of areplicated database. Database
replication is used for scalability (read-only queries can be executed at any replica;
hence, the more replicas the more queries can be served), fast response times (adding
new replicas reduces the resource consumption on each replica), and fault-tolerance
(the datais available as long as one replicais accessible). Hence, replicating databases
over acluster of workstations has become attractive for current web-based information
systems that are used for read-intensive applications like online bookstores or auction
systems (more than 50% reads). The challengeis replicacontrol, i.e., changes of update
transactions have to be applied at al replicas in a consistent way. Database replica-
tion at the middleware level has received considerable attention in the last years [14,
1,2,26,27,19], since it can be developed without the need to change the underlying
database system. In such systems, transactions are submitted to the middieware which
then forwards it to the appropriate database replica(s) (both to provide replica control
as for load-balancing). For locality and fault-tolerance, the middleware is usually also
replicated. Transactions can then be submitted to any middleware replica.

Target performance metrics for database systems are throughput (rate of executed
transactions) and response time. These metrics depend on the workload (mix of trans-
action types), load (rate of submitted transactions), cache hit ratio, etc. In order to have
optimal resource utilization in areplicated database, transactions have to be equally dis-
tributed among all replicas. Another important aspect of the database system to work
well under a given workload is the multiprogramming level (MPL), i.e., the number of
transactions that are allowed to run concurrently within the database system. Initialy,
when resources are freely available, then a high MPL boosts throughput. Also, if some
transactions are I/O bound, concurrent transactions might keep the CPU busy while |/O
takes place. However, when resources are highly utilized or a single resource becomes
the bottleneck (e.g., the log), increasing the MPL will only increase context switches,
and hence, put even more restraint on the resources. Performanceis then lower than in
a system with less concurrent transactions. Also, if conflict rates are high, additional
transactionswill only lead to higher abort rates, and hence, wasted execution time.

In dynamic environments, workload and/or the load can change over time. As a
result, the system configuration has to be adapted dynamically, i.e., the MPL and the
distribution of transactions across replicas must be adjusted. An additional dynamic
behavior isthe crash of individual components. If anode fails, the other nodes must not
only be able to continue execution but should also take over the load of the failed node.

The contribution of this paper lies in providing a hierarchical approach with two
levels of adaptation for a replicated database. At the local level, the focus is on max-
imizing the performance of each individual replica by adjusting the MPL to changes
in the load and workload. At the global level, the system tries to maximize the perfor-
mance of the system as a whole by deciding how to share the load among the different
replicas. The challenge of performing these kinds of adaptation at the middleware level
is the reduced information that is available about the changesin behavior and internals
of the database making it hard to detect bottlenecks.



At thelocal level, each middleware instance has a pool of active connectionsto the
local database replica. This determinesthe MPL since each transaction requiresits own
connection. If there are more transaction requests than active connections, transactions
are engueued at the middleware. Inthisway, each local replicaisableto handleinterme-
diate periods of high load. In order to adapt to changesin workload and load, the num-
ber of active connections has to be adjusted dynamically. We use an approach adapted
from [11] that only requires to monitor the database load and the achieved throughput
in order to adapt the MPL appropriately. Other approaches that we are aware of [20,
6] require a deeper knowledge of the database internals, and hence are not appropriate.
But even [11] is designed for database internal adaptation. Hence, we had to extend
their approach to work at the middleware level. Using this local approach, each replica
adapts its MPL individualy so that it can execute its load in the most efficient way
without any specific knowledge of the workload nor of the database internals.

However, if the number of transactions to be executed at a replica continuously ex-
ceeds the optimal MPL, the set of transactions enqueued at the middleware becomes
bigger and bigger, and the response time for those transactions deteriorates. Increasing
the MPL would only worsen the situation. Instead, some of the load assigned to this
replica should be redirected to other replicas with free capacity. In order to detect repli-
cas that are overloaded or have free capacity, the local load of each replica has to be
monitored. Our approach achieves this by keeping track of the number of transactions
engueued at each middleware server. If asignificant imbalanceis detected, the load will
be redistributed. Load balancing takes place continuously as a background process in
order to capture workload changes. |n order to not consume too many resources, we use
a greedy-algorithm with little computation overhead. Other 1oad-balancing a gorithms
we are aware of (e.g., [22, 3, 2]) have a quite different transaction execution mode! (i.e.
only deal with queries), and hence, result in different solutions.

We have eval uated our approach extensively for local and global adaptation, bothin
isolation and combined, in acluster of workstations under variousworkloads and loads.
Our results show that hierarchical adaptation provides evenly loaded replicas, avoids
deterioration of individual database replicas, and is able to handle intermediate periods
of overload. Furthermore, it is able to handle various workloads and database sizes, and
adapts smoothly to changesin the environment.

Therest of the paper is structured as follows. Section 2 introducesthe architecture of
Middle-R [14] that was used as our base system. Section 3 discussesthelocal adaptation
of MPL, and Section 4 is devoted to global load balancing adaptation. In Section 5 we
show some of the results of our extensive performance evaluation. Related approaches
are compared in Section 6. We concludein Section 7.

2 Middleware-based Database Replication

Middle-R is a cluster based database replication tool that serves as target and base sys-
tem for our adaptability analysis. [14] describes the system in more detail. The system
consists of NV nodes (machines), each node hosts a database system and a Middle-R
server. Each database system stores afull copy of the database (replica).



The database application programs are written in the usua way, using one of the
standard database interfaces to interact with the database (the current system is based
on C programs with Embedded SQL). Given a transaction in form of an application
program, Middle-R can identify which data objects are accessed by the transaction.
Object granularity can be atable, or any application specific granularity level.

Middle-R is responsible for concurrency and replica control. It uses a group com-
munication system to disseminate information among the replicas. The group commu-
nication system, Ensemble [10], provides support for group maintenance and reliable
multicast. One of the available multicast primitives provides total order delivery, i.e.,
although different servers might multicast messages concurrently, the group commu-
nication system will deliver to each server all messages in exactly the same order (a
sending server will also receive its own message in total order). This order is used as
execution order for conflicting transactions that want to access the same objects. In or-
der to achieve this, Middle-R servers maintain a lock table, and requests locks in the
total order in which transactions are received.

The system applies asymmetric transaction processing to boost scalahility [16, 15].
Each update transaction (consisting of at least one update operation) is only executed
at one replica. The other replicas do not re-execute the transaction (neither read nor
write operations) but simply change the affected records in an efficient manner. This
spare capacity can be used to process additional transactions. Several analyses have
shown that asymmetric processing can outperform symmetric processing [16, 14, 15].
Furthermore, symmetric processing is not feasible for database systems with triggers
or non-deterministic behavior. Hence, most commercia systems use asymmetric repli-
cation approaches. In order to use asymmetric processing at the middleware layer, the
underlying database system has to provide a function to get the changes performed by
a transaction (the write set), and a second that takes the write set as input and applies
it without re-executing the entire SQL statements. Such an extension was implemented
for PostgreSQL and is currently being implemented for MySQL and Microsoft SQL
Server. Oracle uses such mechanism for its own replication protocol [21].

In order to sharetheload among all thereplicas, wefollow aprimary copy approach.
Each set of data objects that can be accessed within a single transaction is assigned a
primary replicathat will bein charge of executing programsthat access this specific set.
For instance, replica N 1 might be primary of object set {O1} and replica N2 of object
sets {02}, {01,02}. That is, overlapping sets might be assigned to different replicas.
With this we allow transactions to access arbitrary object sets. Disallowing overlapping
object sets to be assigned to different replicas means that we partition the data among
the replicas, each replicabeing responsible for transactions accessing object sets within
its partition. Asaresult, we would disallow object sets spanning two or more partitions,
and hence disallow transaction to access arbitrary objects. The primary of a multiple
object set (for transactions spanning multiple object sets) is selected by selecting one
of the primaries of the basic object sets. This is done through a deterministic function
(e.g. a hash function such as SHA-1) applied to the basic object sets of a transaction.
In this way, each transaction has a primary and it is only needed to assign primaries to
each basic object set (instead of selecting a primary for every possible combination of



basic object sets). The conflict-aware scheduling algorithm and its correctness can be
found at [24].

Assigning object sets to primary nodes determines which transactions are executed
at which nodes. Given a static workload, an optimal distribution of object sets can easily
be found. However, when the workload characteristics change over time, areassignment
is necessary. Thisisthe task of our global adaptation (dynamic load balancing).

Let usfirst have alook at update transactionsthat perform at least one update oper-
ation. The client can submit an update request to any Middle-R server which multicasts
it to all middleware servers using total order multicast. Upon receiving a request to
execute transaction T' delivered in total order, all servers append the lock requests for
objects accessed by T into the corresponding queues of the lock table (aform of conser-
vative 2PL locking). The primary executes T' when T”slocks are thefirst in al queues.
It starts a database transaction, executes 7"s code, and retrieves the write set from the
database. Then it commits 7" locally and multicasts (without ordering requirement) the
write set to the other Middle-R servers which apply it at their databases. The Middle-R
server which originally received the client request returnsthe commit confirmation once
it receivesthe write set (or after local commit if it was the primary of the transaction).

For queries (read-only transactions), there exist several alternatives. Firstly, they
could aways be executed locally at the server they are submitted avoiding commu-
nication. However, this disallows any form of load balancing, and if all requests are
submitted to one server, this server will quickly become a bottleneck. Since commu-
nication in alocal area network is usually not the bottleneck, an aternative is to aso
execute queries at the primary. Apart of load balancing issues this might lead to a bet-
ter use of the main memory of the database system since each replicais primary only
of a subset of the data. Hence, we can expect higher cache hit ratios at each replica
[3] than if each replica executes any type of query. In the primary approach, a query
request is forwarded to all replicas; the primary then executes the query, returns the
result to the submitting Middle-R server and notifies the end of the query to al repli-
cas. In this paper, we assume a primary approach for queries. Independently of whether
aloca or primary approach is used the executing Middle-R server might not need to
acquire locks for queries but immediately submit them for execution if the database
uses snapshots for queries (as is done by PostgreSQL or Oracle). The approach pro-
vides 1-copy-serializability because al replicas decide on the same execution order of
conflicting transactions due to the total order multicast. Even if the primary fails after
committing but before sending the changes, anew primary will take over and re-execute
the transaction in the same order due to the total order multicast.

At the start of Middle-R, a pool of connections to the database is created as com-
mon for application servers (since connection creation is very expensive). Initially all
connections are marked as free. Whenever a transaction is able to execute or a write
set can be applied, the system looks for a free connection. If there is none, execution
is delayed. Otherwise the system takes one of the free connections, marks it as busy,
and submits the necessary statements over this connection to the database. Once the
transaction terminates, the connection is again marked as free, and waiting requests
are activated. Dynamically adjusting the size of the connection pool to the workload
characteristicsis the task of our local adaptation protocol.
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Fig. 1. Throughput as a function of the MPL over time

3 Local Level Adaptation

At the local level, each middleware server is configured to maximize the performance
of itslocal database replica. M easurements have shown that Middle-R serversare light-
weight while the database servers are the first to be the bottleneck [14]. Hence, control-
ling the MPL is an important step in dynamic performance optimization, and is done by
limiting the connection pool to the database replica

Our solution to control the MPL is based on the feedback control approach pro-
posed in [11]. Since it does not require database internal information like conflict rate,
memory and other resource consumption, etc. it is suitable for amiddleware-based sys-
tem. In afeedback system, one uses the output of the system as an indicator whether the
input of the system should be changed. [11] proposesto take the transaction throughput
as output parameter. In a system without control on the number of concurrent transac-
tions, the throughput of the database system usually rises with increasing the number
of transactions until the system saturates at a throughput peak. If the number of concur-
rent transactionsincreases further, the database enters the thrashing region in which the
throughput falls very fast until it stabilizes at some low residual value. Fig. 1, adjusted
from [11], illustrates this behavior. The x-axis depicts the MPL, the y-axis depicts the
throughput achieved by the system with it, and the z-axis shows how the curve changes
over time (assuming the workload changes over time). For instance, the percentage of
update transactions has a significant i nfluence on the maximum throughput since all up-
date transactions must access the log. This means, e.g., that aread-only workload could
have a high throughput peak at a high number of concurrent transactions, while update
transactions could have a considerably smaller peak at a smaller number of concurrent
transactions. When now the workload moves from aread intensive workload to a write
intensive workload, so does the dependency between MPL and throughput.

Hence, we have two goals. Firstly, at any given time with a given workload, we
have to determine the optimal MPL, i.e., to deny newly submitted transactions to exe-
cutewhenever thiswould lead to aload that cannot be handled anymore by the database.
That is, we should set a MPL such that the database system is never in the thrashing
region. The optimal MPL is now defined asthe MPL allowing for the maximum achiev-
able throughput. The second goal is to provide dynamic adaptability, that is, to adjust



the MPL when the workload changes such that it is never higher than the optimal MPL.
[11] approximates the relationship between concurrent transactions and throughput at
each time point with a parabola. In order to estimate the coefficients, the system peri-
odically measures the number of concurrent transactions and the throughput. In order
to capture the time dependency of the parabola, more recent measurements are given a
higher weight than older measurements®. After each measurement period, the optimal
MPL is set to the number of concurrent transactions achieving the highest throughput.
The approach also addresses some stability problems. If theload is very stable, too few
different data points are collected to correctly estimate the parabola. If results are im-
precise one can get phenomenalikeinverted parabolas. Finally, if the workload changes
too fast, adaptation can lead to a ping-pong effect. For al of them, [11] proposes several
counter-measureswhich are all implemented in our system.

3.1 Adaptive MPL Implementation

Middle-R implements this approach with all proposed optimizations at the middleware
layer by controlling the connection pool. Each Middle-R server creates a pool of cmax
open connectionsto the database at startup. We assume that cmaz is chosen big enough
to be at least as large as the largest optimal MPL for any given workload (otherwise
cmax could be increased at runtime). At any time, out of the emax connections, at
most mplmaz < emax connectionscan be used. Additionally, Middle-R keepstrack of
mplcurrent, the number of connectionsthat are currently used to execute transactions.
mplcurrent is aways smaller or equal to mplmazx. If mplcurrent < mplmazx, then
there are less requests available for execution than Middle-R would allow to execute.
If mplcurrent = mplmaz, then al alowed connections are used, and Middle-R will
queue any further requests until a currently active transaction has terminated. » depicts
the number of waiting requests. If r is zero, then mplcurrent reflects the current load
submitted to the replica. If r is greater than zero, then the middleware is reducing the
load of the database by queuing requests.

Middle-R now periodically measuresmpl current, and the databaseload and through-
put. From there, it estimates the load/throughput parabola, and mplopt, the optimal
MPL for the given workload. mplmazx is now constantly adjusted. However, mplmazx
is not simply set to mplopt but takes into account that during the last period the load
submitted to the systern might have been smaller than the maximum achievabl e through-
put. Thisisthe case if, for the last period, mplcurrent was smaller than the estimated
mplopt. Insuch case, it isbetter to keep mplmax closer to the actual load, mplcurrent,
in order to guarantee that once mplmazx is changed it will actually have the desired ef-
fect. Asan example why thisis needed, assume the type of workload has changed (e.g.,
many more updates) requiring to decrease the MPL. A decrease in mplmaz will not
have an immediate effect if mplmazx isbigger than mplcurrent. As such, we can dis-
tinguish the following cases.

— The system isin underload (the system isin the increasing slope of parabola).

! Parabola coefficients are estimated using a recursive | east-square estimator with exponentially
fading memory.



o If mplcurrent = mplmaz, then mplmax isincreased. It is set to avalue be-
tween its current value and the newly calculated mplopt. The larger r (waiting
requests), the closer the new value will be to mplopt.

o If mplcurrent < mplmax, then mplmax is decreased to mplcurrent.

o If mplcurrent > mplmazx, nothing is done.

— The system is at peak throughput (mplmaa equalsthe newly calculated mplopt)

o If mplcurrent > mplmax, nothing is done.

e If mplcurrent < mplmaz, then mplmaz is decreased to mplcurrent >
mplmazx.

— The system isin thrashing region (mplmazx > mplopt)

o If mplcurrent = mplmax, mplmaz is decreased by one whenever an active
transaction terminates and as long as mplmax > mplopt.

e The case mplcurrent < mplmaz cannot occur in thrashing region.

If the number of submitted requests is consistently higher than the throughput that
can be handled by the database, the queues at the Middle-R server will become longer
and longer. Middle-R can handle this for a certain time period. After this, the system
performance degrades. The solution is to perform a global adaptation in order to re-
distribute some of the load of the overloaded replicato other nodes. If al replicas are
overloaded, the system should disallow new client requests until active transactions
have terminated.

4 Global Level Adaptation

A replicated database might potentially improve its throughput as more replicas are
added to the system [15]. However, this potential throughput is only reached under an
even load in which al replicas receive the same amount of work (assuming a homo-
geneous setting), which in practice might never happen. If the load is concentrated at
one replica, the throughput will be the throughput of a single replicaor even worse due
to the overhead of the replication protocol to ensure consistency among replicas. Load
balancing is aimed to correct situations in which some replicas are overloaded, while
others have still execution capacity. Thisis done by redistributing the load as evenly as
possible among the replicas. Therefore, any load balancing algorithm requires a means
to estimate the current load at each replica

Each Middle-R server knows the total number of concurrent active transactionsin
the system, since requests are multicast to all servers. All servers acquire locks for the
objects accessed by transactions that are kept until the transaction terminates locally.
Hence, looking at its lock table, each server has a good estimate of the total number of
active transactions. For some of them the server is the primary copy. We call these the
local transactions of the server. Local transactions might either be executing or waiting
for locks or waiting for a free connection. For others, the server is not the primary. We
call them remote transactions. If it is an update transaction the server is waiting for the
write set (it is still active at the primary), or currently applying the write set or waiting
for afree connection (the transaction is committed at the primary). If it is a query, the
write set message is empty and used as an indication of the end of the query.



Each server can estimate the number of local active transactions of any other server
S by looking at its lock table and the active transactions for which S is primary and
for which it has not yet received the write set message. This calculation can be done
without any additional communication overhead.

The number of local active transactions at a server is a good estimate of the load
at this server. The higher this number, the higher the load of this server. If it is known
that different transaction types have different execution times, then this load metrics
can be made more precise by weighting the number of local active transactionswith the
observed average execution time [2]. The degree of balance (or imbalance) is captured
by the variance among the number of local active transactions at each node. A variance
with a value of zero means that the load is evenly distributed (balanced) among all
replicas. On the other extreme, the maximum variance is achieved when the entireload
is concentrated on asingle replica.

4.1 Dynamic L oad Balancing | mplementation

The load balancing algorithm is in charge of finding a primary assignment of object
sets to serversthat minimizesthe variance. Our first a gorithm uses a branch-and-bound
mechanism. For each object set it defines the load of this object set as the number of
active transactions that want to access this set. For each replica it defines the current
load as the sum of the loads of object sets for which that replicais the primary. At the
start all object sets have to be assigned and the load of each replicais zero. Object sets
are now assigned to primariesin the following way. At each step the algorithm selects
the most loaded object set and assignsit to all serversyielding a set of partial solutions.
The algorithm then traverses all partial solutions and prunes those that will not yield in
a better solution than the current one (initialy there are no computed solutions, hence
all partial solutions are explored). The pruning in branch & bound agorithms is based
on an estimation function. This function is applied to a partial solution and provides a
lower bound of the variance of the optimal solution that might be found searching from
this partial solution. The input of the estimation function is the total load of all object
sets that have not yet been assigned, and a partial solution. The function assigns the
transactions in that unassigned load to the less loaded serversin the partia solution in
order to minimize the variance. This assignment, however, does not take into consider-
ation the object sets accessed by these transactions. That is, two transactions accessing
the same object set might be assigned to different servers. Hence, the function provides
a lower bound of the actual possible variance. The agorithm provides an optimal as-
signment dueto it performs an exhaustive search in the solution space. However, its use
islimited to small number of object sets and replicas since its computation time grows
exponentially.

Our aternative is an inexpensive greedy algorithm. It uses the same definitions of
object set load and current replicaload as the branch-and-bound algorithm. The greedy
algorithm assigns at each step an object set to areplica. It selects the unassigned object
set with the highest load and assigns it to the replica with the smallest current load. It
proceeds recursively until all object sets are assigned to areplica.

The cost of both algorithms in terms of CPU time as a function of the number of
replicas and the number of object setsis shown in Fig. 2. The branch-and-bound algo-
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Fig. 2. Computation time of the two load balancing algorithms

rithm goes beyond 1 ms of computing time with a number of object-sets and replicas
higher than 5. The greedy agorithm takes a tenth of millisecond to compute a primary
assignment for 10 replicas and 10 object sets. It is worth to note that the number of
object setsis usually higher than the number of replicas. Fortunately, as can be seenin
the graph, the computational cost of the greedy algorithm grows at a lower pace with
the number of object sets than with the number of replicas.

A Middle-R server S responsiblefor load balancing periodically calculates the oad
variance. If the variance exceeds a given threshold, the load balancing algorithm calcu-
lates anew primary assignment to balance the load. The new primary assignment is not
applied immediately. Instead S checks whether the current imbalance will beimproved
by the new configuration by a significant percentage. This prevents performing redis-
tribution when the system performance cannot be improved appreciably. If the new
configuration is better than the previous one, S multicasts a load balancing message
my in total order to al Middle-R serversto inform about the new primary assignment.
Transaction requests that are received after m; are executed according to the new con-
figuration. Reconfiguration for each object set takes place once all transaction reguests
accessing that object set that were received before m; have been executed. For object
sets that are not currently accessed by any transaction, reconfiguration can take place
immediately. The time of the switch is different for each object set, depending on the
number of transactions requesting access to it.

5 Experimental Results

5.1 Experiment Setup

The experiments were run in a cluster of 10 homogeneous machines. Each machine
is equipped with two processors AMD Athlon 2GHz, 512 MB of RAM, and a 60 GB
disk (with a30 GB partition used for the experiments). The nodes were interconnected
through a 100-MBit switch. The database used is PostgreSQL 7.2 enriched with a cou-
ple of servicesthat enable asymmetric processing at the middleware level [14].

We used two different database sizes in the experiments. One is very small and
easily fits into main memory (a 10MB database). After the warm-up it was guaranteed



that al data was kept in the database cache and that no access to disk was needed to
read data. The other is a medium-sized database (1 GB) that was set up very scattered
forcing I/O on every access with a high probability. In any case, the database consisted
of 36 tables with equal number of tuples (3,000 and 300,000 tuples, respectively).

Three workloads have been chosen to evaluate the adaptation. UPD8 is a pure up-
date transaction that performs 8 SQL update statements on the same table. Each state-
ment changes one tuple that is determined by indicating the value of its primary key.
Hence, access to this tuple is through the B+-tree of the primary key without read-
ing any other tuples of the table. SELUPD is an update statement that queries a table
in order to perform a single update. It represents a mixed workload of read and write
accesses. LQ1 is aread only query that queries a full table. That is, each transaction
accesses a single table, and there exist 36 object sets each containing one table?. The
first three experiments analyze local adaptation, and hence, are run on a single server.
The remaining experiments use up to 9 machines to evaluate global adaptation. In all
experiments an additional machine was used to run the client simulator.

All experiments (except the temporal ones, 1.3 and 2.1) consisted of three phases:
1) A warm-up phase (500 transactions), during which the load was injected but no
measures were taken; 2) a measurement phase (1000 transactions) in which the end-
to-end throughput and response time are measured; 3) and finally, a cold-down phase
(500 transactions) in which the load was kept without taking any measurements. Each
experiment was repeated at |east 3 times.

5.2 Local Adaptation

Experiment 1.1: Optimal MPL This experiment aims to motivate that there is an
optimal value for mplmaz, i.e., the number of connections that are made available at
the middleware server, and this optimal is different under different workloads.

In these experiments, no adaptive algorithmwas run. Instead in each test run, mplmax
was set to a specific value. Then a given load (in transactions per second) was submit-
ted to the system, and the throughput measured. If the throughput was smaller than the
load, the system was overloaded. Each of the Fig. 3(a-d) present the throughput of the
system (y-axis) given different values for mplmax (x-axis) for different loads submit-
ted to the system (different curves). For each curve the maximum value represents the
maximum achievabl e throughput. We can observe that this peak is achieved at different
values for mplmazx, and hence, illustrates the need to adjust mplmazx according to the
application type.

Fig. 3(a-b) show results on a small database where computation is CPU bound,
whereby (a) uses update transactions while (b) uses queries. In both figures, we can
see the throughput behavior as described in Fig. 1. In (), at low loads the maximum
throughput is equal to the load submitted to the system. At 100 transactions per second
(tps), a single connection can already easily handle the load, and any additiona con-
nections will probably never be used. At 200 tps, two connections help to increase the

2 We conducted experiments with transactions that accessed several tables. Response times of
such workloads are generally higher due to the conflict behavior. The relative behavior of the
adaptive system, however, was similar, and hence, we focus our discussion on transactions
accessing asingle table.
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Fig. 3. Experiment 1.1: Optimal MPL for different workloads

throughput over one (which only can handle around 140 tps), and any additional con-
nection is probably never used. Starting at 300 tps, the system is not able anymore to
handle the entire submitted load. Two connections are able to achieve around 240 tps,
but moving to three connections the system starts to deteriorate and allow athroughput
of only 100 tps. All higher loads show similar behavior, however the maximum achiev-
able throughput is even smaller, probably due to the fast growth of enqueued transac-
tions at the middleware layer. The optimal MPL of 2 isthe same as the number of CPUs
available on the test machine. This means, it is optimal for the database that each CPU
executes exclusively one transaction. Any increase in concurrent update transactions
deteriorates performance. We assume that the reason is that all update transactions ac-
cess the log to write the redo information. As far as we know, PostgreSQL does not
perform any group commit (committing several transactions at the same time to reduce
log induced 1/0). Writing the log can easily take as long as executing the entire trans-
action in memory, hence, the degree of parallelism is limited by the time to flush the
log to disk. For query workloads (b), the maximum throughput of 85 tps is achieved
at an optimal MPL of 3-5. This MPL is higher than for update workloads. Queries do
not have the log as single bottleneck. The reason that it is worth to execute more than
one query on each CPU is probably due to the communication delay between applica-
tion program and the database server. For queries, the query result has to be returned
to the application program. The program uses complex data structures to retrieve the



result, and the interaction between program and database can be quite complex. Hence,
whilethe responseistransferred from the database to the program and processed by the
program, the server is free to execute additional queries.

When we now move to an I/O bound configuration (Fig. 3.c-d), the system is less
vulnerable to thrashing and the optimal degree of concurrency is very different. Gen-
erally, maximum achievable throughputs are much smaller than with small database
sizes, since each transaction needs longer to finish. Write intensive workloads (Fig. 3.c)
require a substantially larger connection number (around 20) to maximize throughput.
Each transaction takes now considerabletimeto retrieve the 8 tuplesto be updated since
each operation probably requires 1/0. Hence, the log is no more the bottleneck and we
can take advantage of more concurrency in the system. For read intensive workloads
(Fig. 3.d), once the system works at saturation (load of 10 tps), the optimal MPL is at
around 5 concurrent transactions. We assume the reason why an increase in MPL does
not lead to higher throughput is due to the fact that queries have higher main mem-
ory requirements in the database. The chosen query performs aggregation, and hence,
some temporary results have to be stored in the database before results are returned
to the application program. Hence, if too many queries run concurrently they compete
for main memory and some intermediate results might be swapped to disk leading to
thrashing [6].

The conclusion from this experiment is that there is no single optimal MPL that
holds for every workload, but instead, each workload has a different optimal MPL.
What is more, depending whether the workload is CPU-bound or | O-bound the optimal
degree of concurrency is substantialy different. Therefore, to attain an optimal perfor-
mance on a continuous basis, an adaptive control of the number of active connectionsis
reguired. Note that although the database size might be relatively fixed in a given appli-
cation, the portion of the database that is accessed might change over time. For instance,
in an online bookstore, during daytime there will be alot of queries scanning huge data
sets. During night, update intensive batch processing on subset of the data might be per-
formed. When this change in workload occurs, the system should automatically adjust
the number of active connections.

Experiment 1.2: Local adaptation under constant load This experiment is targeted
to show the behavior of thelocal adaptation under a constant load. Althoughit might ap-
pear surprising at first glance, aconstant load is one of worst case scenariosfor adaptive
algorithms. Thisis dueto the fact that a constant |oad provides little information to the
adaptive system [11]. In each setting of the experiment we measured the throughput for
different values of mplmax and compared it with the one obtained using the adaptive
algorithm (local adaptation). Fig. 4 (a-d) show the achieved throughput (y-axis) when
we increase the load in the system (x-axis) for different numbers of active connections
(curves)®. Additionally, one curve indicates the throughput achieved by our adaptive
algorithm.

The adaptive control exhibitsanear-optimal throughput both for CPU and |O-bound
workloadsaswell asin read and writeintensiveworkloads. That is, for each given work-
load and load it dynamically determines the optimal value for mplmaz. We want to

8 The different data points can be extrapolated from Fig. 3, except for the adaptive curve.
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Fig. 4. Experiment 1.2: Adaptive number of connections vs. fixed number of connection under
constant |oad

emphasize that this adaptation is achieved without having any knowledge of the work-
load or database size but is based solely on the observed throughput. It also does not
need to know the reasons that might lead to the need for low or high MPLs (mplmaz),
as analyzed in the previous experiment. Hence, while manual tuning (increasing or de-
creasing the MPL) will reguire the database administrator to have knowledge of the
current workload characteristics and their possible effects on concurrent transactions,
the local adaptation algorithm chooses a nearly optimal concurrency level without any
application or domain specific knowledge. Hence, it can be a general module of amid-
dleware without any application specific adjustments.

Experiment 1.3: Tempor al evolution of local adaptation Thegoal of this experiment
isto show how long the local adaptation needs to determine the optimal MPL when the
workload characteristics change. The workload chosen for the experiment is SELUPD
and a 10MB database. In this case the maximum throughput was achieved with an
MPL of 2. Since we want to show how long the system needs to adapt to this MPL,
the experiment starts with an MPL of 20, i.e., far of being optimal. Fig. 5 shows the
throughput achieved over timein intervals of 5 seconds and at aload of 200 tps. During
thefirst two seconds of runtime, the system collects the historical information needed to
adapt the MPL. Then, it increasesthe MPL only to determinethat this does not improve
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Fig. 6. Experiment 2.1: Global Adaptation vs. No Adaptation at 3 and 9 replicas

the behavior. However, it helpsto build a parabol a shaped transacti on/throughput curve.
The system now detectsthat it isin the downwards part of the parabolaand realizes that
itisinthethrashing region. At this point, the system startsto reduce drastically the MPL
until it finds itself in the upwards part of the parabola. Then, the MPL stabilizes in a
quasi-optimal interval, between 2-4. The adaptation of the MPL takes around 5 seconds
(subtracting the 2 seconds it takes to collect the historical information). That is, in a
system where workload changes do not appear every couple of seconds, our approach
should not lead to any ping-pong behavior. It should be noticed that this experiment
stress tests the system by imposing a very extreme change in the optimal MPL. Less
extreme workload changes should lead to a quasi-optimal MPL in shorter time.

5.3 Global Adaptation

Experiment 2.1: Performance of Global Adaptation This experiment is aimed to
measure the improvement in throughput provided by the load balancing algorithm. The
experiment compares the performance of Middle-R with and without global adaptation
for different workloads and number of replicas. Fig. 6 shows the throughput achieved
with increasing loads for 3 and 9 replicas respectively. The workload consists of trans-
actions of type SELUPD. Each graph includes four curves. One curve corresponds to
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Fig. 7. Experiment 2.2: Temporal evolution of the performance with dynamic load balancing

the best achievable throughput. This optimal throughput is achieved by Middle-R with-
out load balancing with a totally even load that is, each replicais the primary of the
same amount of objects (tables) and submitted transactions access these objects in a
round-robin fashion. This curve provides an upper bound of the throughput for the load
balancing algorithm. The lower bound is the throughput without load balancing for a
totally imbalanced load. Thisimbalanced load consists in concentrating the entire load
inasinglereplica (onereplicais the primary for all object sets). The other two curves
show the behavior of Middle-R using load balancing for even and uneven loads.

Let usfirst have alook at the results without load balancing. The throughput of the
middleware without load balancing with the totally uneven load (lowest curve) is nearly
the same (around 50 tps) independently of the number of replicas. Thisisalogical result
since the throughput of the system is precisely the throughput of asinglereplica. There-
fore, the number of replicas does not have any influencein the throughput. With an even
load the 9 replicas achieve a higher maximum throughput than 3 replicas. This holds
despite SELUPD is a pure update workload. The reason is the asymmetric processing
of transactions where non-primary replicas only apply updates which require fewer re-
sources. Hence, the maximum achievable throughput is higher. The performancegainis
due to the fact that the primary performs many read operations that are not executed at
non-primaries. Asaresult, for 3 replicas, the maximum throughput achievableis around
140 tps, whilst with 9 replicas it reaches 200 tps. That is, a 43% higher throughput.

When we now look at Middle-R with load balancing, we see that for an even load
the achievable throughput is basically the same as without load balancing. This shows
that the overhead introduced by the load balancing algorithm is negligible. When the
system starts with an uneven load, we can see that the maximum achievabl e throughput
is nearly as good as when the system starts with a balanced load. Thisis achieved by
the global adaptation through redistribution of object sets (tables) to different primaries
such that al replicas are primary of some of the accessed tables. The final distribution
leads to an even load at all replicas yielding a quasi-optimal throughput.

Experiment 2.2: Temporal evolution of the global adaptation The previous experi-
ment showed that the load balancing algorithm achieves a better performance than any



of them in isolation. This experiment complements the previous one by showing how

long the system needs to balance the load starting from a totally imbalanced situation

(all theload is concentrated in asinglereplica). The experiment isrun on 9 replicas and

with a SELUPD workload. A configuration with 9 replicasis more sensitive to load im-

balances and therefore, will better show how good the load balancing is. Three different

loads have been used in the experiment. The load with which the optimal throughput is
obtained (180 tps, the maximum load at which the throughput equal s the load), alower

load (160 tps, underload), and a higher load (200 tps, thrashing) 4. For all the loads, a
single run of the load balancing algorithm achieved the optimal throughput. That hap-

pened in second 4 for 160 tps, and in second 2 for the other loads.

Fig.7.a and Fig.7.b exhibit the average throughput and response time as seen by
clients. Fig.7.a shows that at the beginning the system provides low throughput due
to the imbalance. Once the load balancing a gorithm was triggered, the throughput in-
creases very fast until it peaks at around 250 tps. This is more than the submitted |oad.
The reason is that the achieved throughput (60 tps) was far lower at the beginning of
the experiment than the submitted |oad what forces Middle-R serversto enqueue many
transactions. Hence, once reconfiguration has taken place, the actual load submitted to
the database is higher than the submitted load to Middle-R until al waiting transactions
have been executed. Finally, the throughput levels off at the actually submitted |oad.

The response time (Fig.7.b) takes longer to reach the optimal (around 25 sec.). The
reasonisagain that the system startsfrom atotally imbal anced situati on which enqueues
transactions at the middleware. Once the system has reconfigured itself to attain an
optimal configurationin thefirst 2-4 seconds, there are many queued transactions. These
pending transactions have high average response times (due to the long queues created
by theinitial imbalanced assignment) even with an optimal configuration till the system
isableto catch up.

Experiment 2.3: Combining Local and Global Adaptation This experiment aims
to show that the combination of local and globa adaptation exhibits a performance
close to the optimal. The experiment was run on six nodes and the workload used was
SELUPD. Initially, for all curves, areplicais primary of al object sets (i.e. a totally
imbalanced assignment). The initial number of connectionsin the adaptive curveis 20.

Fig. 8.ab presents the (a) throughput and (b) response time with increasing load.
Two curves are presented for comparison purposes: one with the optimal MPL (2) and
one with the worst MPL (1). Then, athird curveis presented for the middleware with
both dynamic load balancing and adaptive MPL. As can be seen in Fig. 8.a, the com-
bination of local and global adaptation outperforms the load balancing with the worst
fixed MPL and is very close to throughput of a fixed MPL of 2. Fig. 8.b shows that
this quasi-optimal throughput is achieved without degrading the response time. The re-
sponse time of the combined global and local adaptation isthe same as the one of global
adaptation with afixed MPL of 2.

4 Notice that with a load of 200 tps the system is thrashing since the achieved throughput is
dlightly below 200 tps. SeeFig. 6.b
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6 Redated Work

Jim Gray’s paper [9] stated that traditional textbook database replication agorithms
providing 1-copy-serializabilty, were not scalable. This paper, instead of closing down
the area of consistent replication, opened new lines of research. The ideawas to reduce
the communication to the minimum needed to enforce 1-copy-serializability. Some of
these efforts can be found in [1,2,4,5,7,8,12,13,16,17,23, 25,27, 19, 26]. Most of
the approaches implement eager replication, although a few are based on lazy replica-
tion [23, 26]. However, both of these works address the problem of inconsistencies in
lazy replication. [23] provides freshness guarantees whilst [26] enforces alevel of con-
sistency similar to eager replication. Replication at the middleware level can perform
symmetric processing of updates|[1, 2,7, 27,19] or asymmetric processing [14, 26] de-
pending on whether update transactions are run at all replicas or they arerun at asingle
replica while the rest of them just install the resulting updates. If an update transac-
tion performs many reads in order to update a few tuples, the amount of work saved at
the rest of the replicas can be considerable. Symmetric processing can work with any
database but at the cost of an inherent limited scalability. The asymmetric processing
approach requires two servicesto get the updates from a transaction and to install them
at a different replica. These services can be implemented on top of the functionality
provided by commercial databases (black box approach) such as Microsoft SQL Server
(such as triggers or specialized APIs) or they can be implemented within the database
(gray box approach) as it has been done with PostgreSQL for this paper.

Adaptation is receiving a growing attention since the autonomic computing vision
from IBM [18]. [22] uses adaptation at different levelsin a distributed middleware sup-
porting web services. The system administrator can define utility functionsthat are used
by the adaptive middleware to guide its decisions. This middleware provides load con-
trol, connection load balancing, and admission control. A lot of attention is paid to
service differentiation that provides some QoS guarantees for different kinds of clients.

In the area of databases most work has concentrated on implementing adaptation
within databases. [28] summarizes the work performed in the last years around self-
tuning of memory management for data servers. Advances in this areainclude predic-
tive local caching and distributed caching.



Load control has been traditionally static requiring tuning by an experienced ad-
ministrator [20]. Adaptation can be used to perform this tuning automatically. In [20]
adaptive load control is used to prevent data contention thrashing. The undertaken ap-
proach is enacted by monitoring the transaction conflict rate and reducing the degree of
concurrency when conflicts go beyond a given threshold.

[11] uses feedback control to determine the optimal MPL independently of its na-
ture, data or memory contention. A simulation is performed to study different strategies
to provide load control. Their conclusion is that adaptation can improve notably the
performance of a centralized database system under overloads. Our approach for load
control extends the parabola approximation method presented in [11] in that it is able
to work at the middleware level, and provides performance results of areal implemen-
tation. [6] also analyzes a feedback driven approach for determining the optimal MPL.
At the same time the authors attempt to find the optimal main memory alocation for a
transaction type within the database system. As such, the approach can only be applied
within the database kernel.

[29] introduces a dynamic replication scheme in which the location and number of
object replicasis changed dynamically depending on the access pattern. The algorithms
minimize the communication overhead introduced by remote accesses by locating repli-
cas of the accessed objects close to clients. C-JDBC [7] and [3] present a database
replication middleware that performs symmetric replication. They assign incoming new
queries to replicas according to three different policies: round-robin, weighted round-
robin, the replica with the fewest pending queries, or the replicathat recently answered
aquery accessing the same tables.

7 Conclusions

Database replication at the middleware level has attracted a lot of attention in the last
years. One of the goals of replication is to increase the system throughput. That is, the
more replicas the system has, the higher the throughput. However, if the system is not
carefully tuned, the expected throughput increase will not occur.

In this paper we have shown that there are a number of factors to take into account
in order to tune a replicated database. These factors include the load and workload in
the system. Since these parameters typically change dynamically, the system should be
able to adapt itself to the new configuration in order to maximize its throughput. We
combine automatic adaptation at two levels. Local adaptation limits the number of con-
current transactions according to the workload type (but without knowing the workload
type). Global adaptation performs load balancing to distribute evenly the load (queries
and updates) among replicas. The conducted performance evaluation has shown that
the proposed dynamic adaptation is able to achieve a throughput close to the optimal
without disrupting response time.
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