
Composition of Coordinated Web Services

Stefan Tai, Rania Khalaf, and Thomas Mikalsen

IBM T.J. Watson Research Center, Hawthorne, New York, USA
{stai, rkhalaf, tommi}@us.ibm.com

Abstract. The Web services architecture defines separate specifications for the
composition and the coordination of Web services. BPEL is a language for
creating service compositions in the form of business processes, whereas the
WS-Coordination framework defines coordination protocols for distributed
activities. In this paper, we investigate the combination of these two aspects to
compose coordinated Web services. We argue for a policy-based approach to
address this problem and introduce a new model and middleware that enables
the flexible integration of diverse coordination types into (existing) process-
based Web services compositions.

1 Introduction

The landscape of business technology today is shifting. Traditional integrated
enterprises with centralized control are giving way to loosely-coupled networks of
applications owned and managed by diverse business partners. Service-oriented
computing is a distributed computing paradigm that treats the distributed, loosely-
coupled, heterogeneous nature of this trend in a first-class manner. Its approach is
centered on standards and the pervasiveness of Internet technologies.

The Web services architecture defines a set of specifications that provide an open
XML-based platform for the description, discovery, and interoperability of
distributed, heterogeneous applications as services. Included are specifications for
business process management and various quality-of-service protocols supporting, for
example, transactions, reliable messaging, and security [29] [15] [1].

Figure 1 illustrates the Web services architecture. The various Web services
specifications are designed to complement each other, serving as building blocks that
can be combined to provide interoperability at different software layers, from low-
level transport protocols to high-level application interactions. The combined usage of
some specifications is well-understood, such as WSDL [31] for description, SOAP
[30] bindings in the WSDL for interaction, and UDDI [25] registries holding WSDL
descriptions. However, this is not the case for all specifications, in particular, where
the integration of respective middleware implementations supporting the individual
Web services specifications is required.

In this paper, we look at the combined use of the Web services specifications for
service composition and service coordination: the Business Process Execution
Language (BPEL) for Web Services [27], and the specifications that use the Web

2 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

Services Coordination (WS-C) framework [19]. These include Web Services Atomic
Transaction (WS-AT) [20] and Web Services Business Activity (WS-BA) [21].

These specifications can be used in combination to support production workflows
for Web services. In [6], we provided an overview of these specifications and a high
level view of how they conceptually fit together. However, we did not propose a full
solution or detailed strategy for how this may be done. In this paper, we argue for the
use of declarative policies to address this problem, and introduce an approach that
utilizes the Web Services Policy Framework (WS-Policy) [12].

Thus, the paper has two main objectives.
1. To provide a process-based Web services composition model that supports the

integration of a variety of coordination protocols; current approaches to Web
services composition have limited or no support for the external coordination of
Web services.

2. To achieve the composition of coordinated activities using existing Web Services
specifications. Rather than proposing a new service composition language, we
define WS-Policy-based assertions that integrate the existing BPEL language and
the WS-C framework (specifically, WS-AT and WS-BA).

Other
WS

Specs

SOAP

XML, Encoding

WS Reliable
Messaging

WS Security

WS Atomic
Transaction

WS Coordination

WS Business
Activity

BPEL

WSDL, WS Policy, UDDI

Fig. 1. Web Services Architecture

2 Background

Web services are software applications that support open, Internet and XML
standards-based interfaces and protocols [29]. In this section, we provide a brief
summary of the Web services specifications relevant to our discussion. We refer the
reader to the published specifications and diverse Web services literature for further
details [1] [14] [24].

The functional description of a Web service is provided by the Web Services
Description Language (WSDL) [31]. WSDL separates the abstract functionality of a
service from its mappings to available deployed implementations. The abstract
description consists of the operations supported by a service and the definition of their
input and output messages. A portType groups a set of operations.

Composition of Coordinated Web Services 3

The concrete aspects of a WSDL definition include bindings that map operations
and messages of a portType to specific protocol and data encoding formats (such as
SOAP), ports that provide the location of physical endpoints implementing a specific
portType using a specific binding, and services definitions as collections of ports.

The Web services Addressing (WS-Addressing) specification has been developed to
provide transport-neutral mechanisms to identify Web services endpoints through
endpoint references and to address messages through message information headers
[3].

The Business Process Execution Language (BPEL) is a language for creating
compositions of Web services in the form of business processes [27]. Compositions
are created by defining control semantics around a set of interactions with the services
being composed. The BPEL composition model is recursive: a BPEL process, like
any Web service, supports a set of WSDL interfaces that enable it to be exposed and
invoked as a regular Web service.

A BPEL process contains a set of typed connectors known as partnerLinks, each
specifying the portType required from the party being connected along that link and
the portType provided by the process to that party in return. The composition model
explicitly stays away from binding these to actual service endpoints, leaving the door
open for flexible binding schemes and selection algorithms. The “activity” is the unit

of composition. Primitive activities provide such actions as Web services invocations,

waiting, and throwing faults. Structured activities impose predefined control

semantics on the activities nested within them, such as sequence or parallel execution.

Additional control may also be defined using explicit conditional control links. We

mention one BPEL activity that is of particular interest to this paper: the scope. BPEL

scopes contain a set of (nested) activities and provide the unit of data, fault, and

compensation handling.

The Web Services Coordination (WS-C) specification provides an extensible

framework for the definition of protocols that coordinate distributed activities [19].

The framework can be used to support different coordination types, including atomic

transactions and long-running business transactions. WS-C enables the creation of

coordination contexts for propagation among coordination participants, and the

registration of participants for particular coordination protocols of a given

coordination type. Further details are provided in Section 4 of this paper.

Examples of specific coordination types are Web Services Atomic Transaction
(WS-AT) [20] and Web Services Business Activity (WS-BA) [21]. These specifications

define agreement coordination protocols, such as a durable two-phase commit

protocol (WS-AT) or a participant-driven completion protocol for business

transactions (WS-BA). Other coordination types and protocols can be defined using

WS-C.

The Web Services Policy Framework (WS-Policy) defines a general-purpose model

and syntax for expressing functional or non-functional properties of a Web service in

a declarative manner [12]. A policy is an XML-expression that logically combines

one or more assertions which specify concrete or abstract service characteristics such

as a required security authentication scheme or a desired quality of service. Policies

can flexibly be attached to various Web services definitions, including WSDL type

definitions, as described in the Web Services Policy Attachment specification [13].

4 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

3 Motivation: Composing Coordinated Activities

In service-oriented computing, services are the basic building blocks out of which
new applications can be created. With a plethora of services in-place and accessible in
a standardized way, composition languages such as BPEL are needed to weave those
services together and subsequently expose the resulting artifact itself as a Web
service.

Composition and coordination and, correspondingly, composition middleware and
coordination middleware, are two complementary aspects and techniques. The
schema for a service composition is an aspect that is mostly internal to the
implementation of the service that composes other Web services, whereas the
protocols for service coordination are required properties of the external interactions
between Web services [1].

A composition of Web services may not always require additional external
coordination protocols. However, in order to develop production workflows [22] any
functional composition of a set of Web services must be combined with the non-
functional (reliability, transactions, security, and other) coordination properties
required for process partner interactions. Production workflows are processes that
define and implement the business logic and the quality-of-service necessary to
integrate distributed heterogeneous applications. The overall motivating objective for
our work is to enable production workflows using Web services.

Consider a workflow process that must interact with a partner using a reliable
messaging protocol (such as Web Services Reliable Messaging, WS-RM [9]). The
workflow (BPEL process) and the service provider each need to advertise their
support for a reliable messaging protocol as a capability and/or requirement for
interaction. In a dynamic service-oriented computing environment, such
advertisement must be part of the WSDL service descriptions. The process and
partner service use such information to agree on a particular protocol, which must
then be supported by the middleware implementations of both workflow client and
service provider.

Another example concerns declaring a (sub-) set of activities within a business
process to be atomic using the WS-AT atomic coordination type. The service partners
that are part of this atomic scope must correspondingly support the required WS-AT
coordination protocols.

Additionally, another set of activities within the same business process may need
to be coordinated with partners using a loosely-coupled business transaction model. A
transaction coordination type such as WS-BA is required here.

The requirement for different coordination types and their protocols in a single
service composition is illustrated in Figure 2. Here, activity 1 interacts with Web
service A using the WS-RM protocol. Activity 2 and activity 3 are coordinated with
Web service B and C using the WS-AT coordination type. Activity 4 is coordinated
with Web service D using the WS-BA coordination type.

Composition of Coordinated Web Services 5

BPEL Flow

Web Service A

WS-BA

WS-AT

1

4 3

2

WS-RM

Web Service B

Web Service CWeb Service D
WS-AT

Atomic TransactionBusiness Activity

Fig. 2. Coordination requirements for service composition

In this paper, we investigate a policy-based approach and middleware for
composing coordinated activities as illustrated in Figure 2. The objective is to
integrate the use of external coordination protocols (specifically, WS-AT and WS-
BA) for different activities of a BPEL process composition, where BPEL defines the
scope of the coordination. We propose a generic approach that can be applied for
various defined coordination types.

It is not our objective to investigate the integration of all Web services
interoperability protocols (like WS-RM) and of ad-hoc combinations of diverse
protocols (such as a combination of WS-AT and WS-RM). We focus attention on the
integration of (transactional) coordination types that are based on WS-C. Our
approach aims to support any coordination type that is defined using WS-C.

4 Coordination Policies for BPEL

We propose a model for integrating WS-C coordination types and BPEL definitions
using declarative policies attached to selected Web services constructs. The model
does not introduce a new language or Web service specification, but integrates
existing specifications through policy assertions.

4.1 Coordination Model

The WS-C specification defines three main elements that are commonly required for
different kinds of coordination:
• A coordination context: the context that is shared and propagated among the

participants in the coordinated activity
• An activation service: the Web service used to create a coordination context

6 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

• A registration service: the service used by participants to register for inclusion in
specific coordination protocols
WS-C coordination types such as WS-AT and WS-BA extend the proposed

coordination context, adapt the registration service (and optionally, the activation
service) and define a set of specific coordination protocols and corresponding
protocol Web services. The protocol services, registration service, and activation
service together constitute a coordinator (coordination middleware).

Figure 3 illustrates the principle WS-C architecture. A coordination participant, in
role of a requestor or a responder, is an application that uses a coordinator. The
application interacts (locally) with the coordinator to create a coordination context
(omitted in the figure). The context is propagated to any other (remote) participant(s)
via an application message. The context includes the WS-Addressing endpoint
reference of the registration service of the requestor’s coordinator, so that the

responder’s coordinator (“sub-coordinator”) can register for participation in a specific

coordination protocol. The coordination protocol messages are then exchanged

between the coordinators.

Coordination protocol

Registration protocol

Coordination Participant (Requestor)

Coordinator

Protocol
Service 1

RegistrationActivation
Protocol
Service

Application

Coordination Participant (Responder)

Coordinator

Protocol
Service 1

RegistrationActivation
Protocol
Service

Application

AppRequest (Ctx)

AppResponse

Fig. 3. WS-Coordination Architecture

A coordination participant thus is any application that is capable of understanding

WS-C contexts. In addition, a coordination participant requires a coordination

middleware for WS-C protocol registration and specific (WS-AT, WS-BA, or other)

protocol interactions.

Technically, a coordination participant is a set of Web services that support

application-specific and coordination-middleware interfaces (port types) that may

result in multiple endpoints at runtime. In this paper, we use both “coordinated (Web)

service” and coordination participant to refer to the same concept.

4.2 Coordination Policies

The capability (of a Web service or BPEL process) to participate in WS-C

coordination can easily be communicated using a declarative policy assertion. We

define a coordination policy as an XML element referencing a WS-C coordination

type and specific protocols of that type.

Composition of Coordinated Web Services 7

An example policy for the WS-AT coordination type and its durable two-phase
commit protocol is given below. The policy uses the XML syntax defined in the WS-
Policy framework [12] and the XML element <wsce:CoordinatedService> for
coordination policies as proposed in [26].

<wsp:Policy wsu:Name=”tns:WSATPolicy”

 <wsce:CoordinatedService

 CoordinationType=

 ”http://schemas.xmlsoap.org/ws/2003/09/wsat”>

 <wsce:Protocol

 ProtocolIdentifier=

 http://schemas.xmlsoap.org/ws/2003/09/wsat#Durable2PC

 />

 </wsce:CoordinatedService>

</wsp:Policy>

The policy references a (transaction) coordination type that is defined in a

published XML schema. Authoring such policies is a matter of selecting a published
WS-C coordination type and including in the <wsce:CoordinatedService> element the
links that hold the XML schema.

These policies can then be flexibly and meaningfully attached to various Web
services definitions [13]. To declare a coordination capability of a deployed Web
service provider, we attach coordination policies to Web services port bindings. For
example, a banking Web service “ABCBankService” may declare its support for WS-

AT as follows.

<service name=”ABCBankService”

 <port name=”creditAccount” binding=”tns:CreditBinding”

 wsp:PolicyRefs=”tns:WSATPolicy”>

 <soap:address location=…/>

</port>

</service>

The policy attachment defines that the service supports the WS-AT coordination

type and its durable two-phase commit protocol. If a client invocation, such as for

debiting or crediting a customer account carries a coordination context, the invoked

operation will be executed according to the WS-C coordination model.

The policy “WSATPolicy” defined above may also be attributed with a WS-Policy

usage attribute such as <wsp:Required> or <wsp:Optional> [12]. The WS-Policy

usage attributes, if specified for a coordination type, define the processing semantics

of the policy. In this example, the WS-AT coordination type may be declared to be

required or optional for any invocation on the port that the policy is attached to. If a

required attribute is specified and an invocation on the port does not carry a proper

coordination context, a fault will be raised.

Different coordination (and other) policies may also be combined using WS-Policy

operators corresponding to the logical operators AND, OR, XOR. For example, a

service that alternatively supports two coordination types would create a policy for

each and combine them with an XOR. The WS-Policy operators corresponding to

8 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

AND, OR, and XOR are <wsp:All/>, <wsp:OneOrMore/>, and <wsp:ExactlyOne/>,
respectively.

4.3 BPEL Coordinated Partner Links and Coordinated Scopes

Through the attachment of coordination policies coordination semantics are
introduced to (existing) BPEL compositions. We propose to attach coordination
policies to BPEL partner links and to BPEL scopes. As noted earlier, a BPEL partner
link is a typed connector along which a conversation with another party occurs. A
BPEL scope is the demarcation of a group of activities of the process. Scopes are the
units of fault handling and compensation in BPEL.

A partner link with an attached coordination policy is a coordinated partner link.
Such a link describes the (abstract) requirement on any (concrete) deployed Web
service that aims to provide the partner functionality at process execution time. The
interpretation is similar to the attachment of a policy to a WSDL port type definition;
it is a requirement for every deployed service to satisfy the policy [13].

If a coordinated partner link is used within a regular BPEL scope, for the duration
of the scope the conversation with that partner is carried out using the declared
coordination protocol. That is, a coordination context will be created for the
conversation with that specific deployed service. Interactions with other (non-
coordinated) partners in the same scope will not share the coordination context. This
is illustrated in Figure 4.

BPEL

1

4

3

2

Web Service A

WS-AT

Regular
Scope

W
S

D
L+

P
ol

ic
ie

s

Web Service B

W
S

D
L

C
oo

rd
in

at
io

n
M

id
dl

ew
ar

e

Coordination
Middleware

Fig. 4. Coordinated partner links in regular scopes:
Attaching a WS-AT policy on a PartnerLink connecting the process with Web Service A and

required coordination middleware for WS-AT protocol interactions

Composition of Coordinated Web Services 9

In addition to partner links, however, coordination policies can also be attached to
BPEL scopes to define coordinated scopes. The semantics of a policy attachment to a
scope is that a coordination context is created for the scope by the BPEL middleware
and that the context will be propagated to all the partners that are part of the scope.

Using a WS-AT coordination policy, for example, an atomic scope [22] can be
modeled. Using a WS-BA coordination policy, a compensation-based business
activity scope can be modeled.

WS-BA coordinated scopes are not to be confused with the concept of
compensation scopes [22], which are the units of compensation handling that are
already present in BPEL. WS-BA coordinated scopes establish a coordination context
for distributed partners that engage in compensation-based business transaction
protocols; WS-BA defines the messages and message exchange order for driving
compensation. BPEL compensation scopes define actual compensation flows to be
executed.

If coordination policies are attached to both scopes and partner links, the policies
of the scope dictate the required policy for each partner. For example, if a scope is
declared to be atomic using a WS-AT coordination policy, each coordinated partner in
the scope must be compatible and support the WS-AT coordination type. The scope’s

policy defines a requirement on all partner links of the scope, and establishes a shared

context for all partners in the scope. This is illustrated in Figure 5.

BPEL

C
oo

rd
in

at
io

n
M

id
dl

ew
ar

e

Web Service A

W
S

D
L+

P
ol

ic
ie

s

Web Service B

Atomic Transaction

1

4

3

2

WS-AT

Coordinated
Scope W

S
D

L+
P

ol
ic

ie
s

Coordination
Middleware

Coordination
Middleware

WS-AT
Web Service C

W
S

D
L

Fig. 5. Coordinated partner links in coordinated scopes:
Attaching a WS-AT policy to a scope and required coordination middleware for WS-AT

protocol interactions with all partners of the scope

In either case of using a coordination context for a specific partner conversation (in

a regular scope), or for conversation with multiple partners (in a coordinated scope),

the BPEL scope demarcates the coordination. The context is created when entering

the scope and the coordination is completed when closing the scope.

10 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

Notice that with coordinated scopes, BPEL is in the role of the initiator (requestor)
of the coordination. Coordinated scopes do not model BPEL as a participant
(responder) that registers with coordination contexts that have been created outside
the process and propagated to the BPEL process through receive operations. Also,
coordinated scopes do not allow nesting. External coordination and nesting of
coordinated scopes is discussed in Section 6.3.

Using coordination policies, a scope defines a WS-C coordinator that provides the
required registration and coordination type-specific protocol service port types.
Coordination middleware on both sides can then engage in protocol interactions.

The programming complexity of authoring and attaching coordination policies to
BPEL compares to the complexity associated with (declarative) transaction
processing in general. A transaction model (for atomic transactions, long-running
business transactions, or other) must be carefully selected for a given coordination
problem, and the desired transaction semantics of the process must be carefully
analyzed. Our policy-based approach does not simplify the task of understanding
transactional semantics, but allows for a simple and effective way to extend BPEL to
support (different) transaction coordination models.

4.4 Policy Matchmaking

The above proposed model of coordinated partner links and coordinated scopes
introduces the need for two kinds of policy matchmaking:
• A static check on the compliance of coordinated scope and coordinated partner link

policies within the BPEL definition
• Deployment-time and/or runtime policy matchmaking of coordinated partner links

and deployed services

4.4.1 Static Verification
Static verification takes place to ensure that all coordinated partner links support at
least the policies needed by the coordinated scope. For each coordinated scope, all
BPEL constructs that make use of an abstract partner (such as an invoke statement)
are verified: The coordination policy of the partner must satisfy the policies of the
scope. Static verification ensures a correct BPEL process flow before instantiating the
abstract partners; it ensures the ability of a single coordination context of a particular
coordination type to be shared among all partners of the scope.

4.4.2 Dynamic Matchmaking
After static verification is successfully completed, all coordinated partner links,
within regular scopes or within coordinated scopes, describe valid requirements for
the interaction with deployed services that aim to fulfill the partner role at process
execution time.

The partner links can be instantiated at BPEL deployment time or dynamically
through the exchange of endpoint references at runtime. When instantiation occurs,
the coordination policies of the partner links must be matched with the coordination
policies declared by the deployed services. The policies must be evaluated for

Composition of Coordinated Web Services 11

compliance of their coordination type and protocols, and they must not conflict with
one another.

Policy matchmaking determines if the BPEL requirements on coordination can be
fulfilled by the deployed service under investigation. Matchmaking is required only
once for each partner link, as long as the effective policy and the physical endpoint
reference of the partner do not change.

The policy matchmaking algorithm [32] first calculates for each (potentially
complex) WS-Policy expression the acceptable assertion set in terms of Boolean
algebra. Each assertion, such as support for a coordination protocol, is interpreted as a
unique Boolean variable. The acceptable assertion set is the set that consist of a list of
assertions that when set to true reduce the entire policy to true. For each set, all
assertions that are not on the list are set to false.

Next, the acceptable policy sets are compared to find matching sets that contain
exactly the same list of assertions. A matching set is then selected by the middleware.
If no matching set is found then the requestor and responder are incompatible and a
BPEL runtime exception will be raised. (In future work, a mismatch may be resolved
through dynamic policy negotiation or other application logic.)

4.5 Policy Mediation Meta-Protocol

To compare policies for matchmaking, a policy mediation meta-protocol such as the
GPP described in [32] can be used. The GPP proposes the steps of policy request to
initiate a policy exchange, policy promise as the reply by the responder, and policy
confirmation as the notification of a successful match. The protocol must be executed
for any partner conversation for which no matching policy is in effect.

Alternatively, the recently published Web Services Metadata Exchange (WS-
MetadataExchange) specification may be used [8]. WS-MetadataExchange defines
three request-response message pairs to retrieve the policies, WSDL, or the XML
schema of a Web services endpoint and/or given target namespace. WS-
MetadataExchange replaces a proprietary solution like the GPP.

4.6 Programming Model

The programming model for composing coordinated activities is standard BPEL.
Coordination policies, which may be defined separately, are attached to selected
partner links and/or scopes. Coordinated partner links are interpreted depending on
the declaration of coordinated scopes, as described above. The required coordination
policy for a partner interaction is determined using static verification. Policy
matchmaking, possibly using a policy mediation meta-protocol, is performed when
needed at deployment and/or runtime. Policy mediation and matchmaking, as well as
all coordination protocol interactions are the responsibility of the supporting
middleware.

12 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

5 Middleware Prototype

We have implemented a middleware research prototype that demonstrates and
validates the approach described. This prototype provides a BPEL compiler, a policy
middleware, and a Web services transaction processing middleware (WSTPM) that
supports the WS-AT and WS-BA coordination types.

5.1 Components

Using our prototype, a BPEL definition with coordinated scopes and coordinated
partner links is parsed and processed, together with the WSDL definitions of deployed
partners (those available at deployment time), to generate a Java implementation.
During code generation, the policy middleware is consulted for policy matchmaking.

The resulting code is then deployed as a regular Web service. For those abstract
partners that did not have a concrete service at deployment time, the GPP policy
mediation meta-protocol and dynamic policy matchmaking is executed at runtime.
The generated BPEL Web service interacts with the policy middleware for this
purpose. The generated Web service further interacts with the WSTPM to begin, end,
and manage transactional coordination. Standard J2EE and proprietary APIs are used
for the generated service to interact with the policy and WSTPM middleware. Figure
6 illustrates a sample deployment architecture that utilizes our policy and WSTPM
middleware on all nodes.

SOAP Engine/App Server

Policy
Middleware

Coordination
Middleware

Coordinated
BPEL Web

Service

Coordination Messages

Application Messages

Coordinated
Partner Web

Service

Application Messages

Coordination Messages

SOAP Engine/App Server

Policy
Middleware

Coordination
Middleware

Coordinated
Partner Web

Service

SOAP Engine/App Server

Policy
Middleware

Coordination
Middleware

Fig. 6. Middleware prototype: Sample deployment architecture

Composition of Coordinated Web Services 13

5.2 Process Execution

The coordination policies describe external interaction properties required for process
execution. When entering a scope, a WS-C coordination context is created using the
coordination middleware. In our prototype, the context is created by the generated
service implementation executing the process. Alternatively, the context may be
created by a BPEL middleware (a process runtime engine) or by any other
coordination middleware client.

The context is then propagated to the partner as part of an application message, and
the partner’s coordination middleware in turn registers with the requestor’s

coordination middleware as previously described in Section 4. Subsequent application

messages will carry the coordination context. The context is the means based on

which the coordination middleware on both sides can identify the coordination to

handle messages appropriately.

When the BPEL scope is about to close, the process implementation (the generated

Web service or a process runtime) initiates any completion necessary according to the

chosen coordination type. In case of WS-AT, a commit request is made to the local

coordination middleware, which in turn will drive the two-phase commit protocol

with all registered remote coordinators. In case of WS-BA, a completion request is

made and the local coordinator will send WS-BA completion messages to all

registered participants.

Failures can either be communicated using the defined coordination protocol

messages (such as an “abort” message), in which case they will be handled by the

coordination middleware. Failures may also be detected and handled by the BPEL

middleware, and then communicated by the BPEL middleware to the coordination

middleware.

Notice that heterogeneous middleware systems can be used on either end, as long

as they support the Web services specifications. That is, (transactional) coordination

can be implemented in different ways, with diverse internal options for registering

(local and remote WS-C) resources and handling recovery from failures, as long as

the external messages conform to the WS-C coordination types. For example, a

coordination middleware may use a proprietary transaction service such as the J2EE

Java transaction service. Java transaction contexts must then be mapped to WS-C

XML contexts for all external interaction, and the messages and protocols defined in

the WS-AT and WS-BA specifications must be understood and supported for

interoperability.

6 Discussion and Related Work

In this paper, we presented an approach to composing coordinated Web services by

means of declarative policy attachments to Web services definitions.

We previously reported on our work from the viewpoint of transaction processing

[26] and software engineering [32], independent of the BPEL-related issues presented

in this paper.

14 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

Although the use of policies for combining BPEL with WS-C coordination types
has been mentioned as a desirable approach before [27] [16], we are not aware of
prior work that has concretely combined the composition and coordination of Web
services using policies. In this section, we discuss our approach and study related
work.

6.1 Other Coordination Protocols

This paper provides a solution in which the supported coordination models for BPEL
are WS-C coordination types. Other Web services transaction and coordination
specifications have been proposed, however, including the Business Transaction
Protocol (BTP) [5] and the Web Services Composite Application Framework (WS-
CAF) [4]. Both define coordination types that are similar to WS-AT and WS-BA, but
also feature subtle semantic differences.

In order to support these alternative coordination models with our approach, the
coordination models would need to be represented as WS-C coordination types. Then,
corresponding policies can be defined and attached as described in this paper. We do
not see any reason why a definition of these alternative models as WS-C coordination
types would not be possible. WS-C is a generic framework providing only the very
fundamental coordination mechanisms.

Other, non-transactional coordination protocols have also been proposed. These
include a service availability tracker [28], previously published as WS-Membership.
Since it utilizes the same WS-C coordination model, we believe this coordination type
to also be readily applicable to our approach. In this way, a BPEL process may also
support group membership coordination for selected partners.

In all cases of BTP, WS-CAF, and the service tracker, however, corresponding
middleware systems must also be integrated.

Non-WS-C coordination types, such as the reliable messaging protocol WS-RM,
may also be applicable. This depends however on the extent that the coordination
protocol interactions are (or can be) separated from the application messages. For
example, message acknowledgments of receipt may be communicated via the reliable
messaging middleware. The WS-RM message ordering and sequencing constructs for
application messaging, however, may conflict with the BPEL message sequencing
and flow definition. The composition of WS-RM and BPEL may therefore require
additional integration and preference rules beyond the attachment of policies.

6.2 Other Coordination-aware Composition Models

The most directly related approach to solving part of the problem addressed in this
paper is presented in [10]. In that work, transaction management capabilities are
added directly to BPEL as language extensions. New syntax is proposed to add
support for a subset overlapping with specific business coordination models (WS-BA,
BTP Cohesions).

In contrast, our work uses policies to non-intrusively attach coordination
capabilities to parts of BPEL process definitions. Our approach enables an extensible

Composition of Coordinated Web Services 15

variety of coordination protocols to be used, the potential of dynamically choosing
from a set of supported protocols based on the environment, and the separation of
concerns between the business process logic and the available/required coordination
protocols. While extending the language directly may provide for a more integrated
BPEL (middleware) implementation, we believe our approach using policy
attachments to be more aligned with the dynamic nature of the service-oriented
computing landscape. It is this dynamic nature that has led to the modularity of the
Web services stack of specifications.

In our approach, coordination models are represented as policies that complement
the workflow definition. In this way, a business process may interact with different
services using the diverse coordination protocols that they require without the need to
redefine the business logic or to port it to another language or system.
Implementations executing the business process can then make use of modules that
support the different parts of the Web service stack to make the execution happen. In
this way, our approach introduces a dynamic aspect-oriented programming model for
BPEL.

A large number of existing workflow systems also has built-in, proprietary support
for transactional coordination. This has been a major requirement of workflow since
many years. For example, [22] defines compensating actions on activities and a
default coordination model for the set of compensable activities. The transaction
literature has also proposed many ways to do (extended) transactions, some of which
essentially are coordination-based workflows. The Sagas model, for example, defines
a long-running process to consist of a set of atomic transactions and corresponding
compensating transactions [11]. Some of these extended transactions models have
also been adapted to support Web services, for example [18]. These approaches are
similar to the approach of extending the BPEL language as discussed above in that
they do not provide for an open, dynamic integration of diverse coordination models.

Even BPEL itself defines a built-in compensation mechanism that operates at the
level of scopes. However, as described earlier in Section 4.3, BPEL compensation
scopes differ from (WS-AT or WS-BA) coordinated scopes. BPEL and related
workflow systems have considered the transactions governing the process model’s

activities directly and do not consider the interactions with services in a first class

manner or how their coordination requirements may be composed. This is where the

combination of BPEL and such specifications as WS-C comes into play. Additionally,

these approaches are not adaptable to different coordination requirements of service

providers.

The basic idea of attaching declarative policies to business process definitions is

not new either. However, prior work on policy-based composition has been mainly

used for selecting which service provider(s) to bind to at runtime, using measurable

parameters. [2] devise a global planning approach to optimizing service selection

during execution based on a set of measurable quality of services properties that can

be objectively compared (such as price, reputation, and reliability). This is in contrast

to our work on coordination interoperability protocols. Also, [23] suggests semantic

annotations on BPEL processes that can be used at runtime to perform matchmaking

and possible service chaining. However, our work is unique to our knowledge in that

policies are used to describe and choose from a set of coordination protocols which

require a middleware for runtime interoperability.

16 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

6.3 Future Work

In this paper, we address the problem of composing coordinated Web services
independent of how the services are implemented. It may be that the coordinated
services are themselves compositions, in which case the question of “composing

coordinated compositions” arises. For example, a BPEL process coordinates services

which are implemented as BPEL processes.

In this case, there are two “levels” of composition and coordination. The first level

is the BPEL process that initiates coordinated activities (as presented in this paper);

the second level concerns the BPEL processes that join those coordinated activities.

The first level does not need to differentiate between simple and composed services,

since the composed services appear as regular Web services. This paper so far has

only addressed first level composition of coordinated services.

In order to address the second level, our approach would need to be extended to

allow the coordinated scopes (of the second level) to be coordinated by the first level

composition. This includes the ability to accept and register with incoming

coordination contexts (on receives) in addition to creating new coordination contexts

as described earlier in this paper. Also, the compatibility of a coordinated scope with

the coordination policy declared on the receiving partner link within that scope must

be verified. The propagation of an incoming coordination context to other partners

within coordinated scopes must be guided by policies.

There are also some special cases in the composition of diverse coordination

protocols in BPEL that need to be addressed. The semantics of nested coordinated

scopes requires careful attention. If a coordination type does not support nesting,

BPEL scopes should not be used to introduce nesting into the coordination type. For

example, a WS-BA coordinated scope within a WS-AT coordinated scope is

undefined. One solution is to raise an error during the static process verification, and

to only allow nested coordinated scopes for those coordination types that define

nesting themselves.

Other future work relates to the generation of a Java implementation (to be

deployed as a Web service) for executing the BPEL composition. Our current

prototype does not support code generation for all possible BPEL constructs; for

example, complex partner conversations using asynchronous messaging are not

supported. While the prototype could be extended to fully support all BPEL

constructs, the generated code may become increasingly complex and require

sophisticated support mechanisms. These include support for parallelism, the

conversational nature of BPEL [17], correlation and the handling of faults and

conditional links/joins. The use of a first-class, separate BPEL runtime such as [7]

may therefore be advantageous. The BPEL runtime however would need to be

integrated with a policy and coordination middleware, as described in Section 5.

Composition of Coordinated Web Services 17

7 Conclusion

The Web services architecture intends to provide a standards-based platform for
service-oriented computing. Various specifications supporting the integration of
distributed heterogeneous applications as Web services are proposed. These include
the Business Process Execution Language (BPEL) for service composition and the
Web services Coordination (WS-C), Atomic Transaction (WS-AT), and Business
Activity (WS-BA) specifications for (transactional) service coordination.

Additionally, the descriptive capabilities of WSDL are enhanced by the Web
services Policy Framework (WS-Policy), which extends WSDL to allow the encoding
and attachment of quality-of-service information in the form of reusable declarative
policies.

In this paper, we investigated the combination of BPEL with WS-C, WS-AT and
WS-BA using WS-Policy to support the definition of production workflows for Web
services. We introduced coordination policies and specific BPEL coordination policy
attachments to compose Web services that require coordination protocols for
interaction. We defined the semantics of the proposed policy-based composition
model and discussed methods, programming model, and middleware support needed
for defining and executing composed coordinated services.

Revisiting the two objectives of the paper stated in the beginning, we have (1)
introduced a process-based Web services composition model that supports a flexible,
dynamic integration of diverse coordination protocols, and (2) demonstrated the
feasibility of combining the existing Web services specifications of BPEL and WS-C
using WS-Policy.

We discussed the advantages of our approach, which include the ability to support
an extensible variety of coordination types in BPEL, to dynamically choose among
the types, and to allow for a clear separation of concerns between business process
logic and (different) coordination protocols. The flexibility comes at the expense of a
potentially more complex middleware infrastructure, which must integrate the various
implementations of the individual (BPEL, policy, and coordination) specifications
supported.

Acknowledgements

The research presented is based on joint work with Isabelle Rouvellou, Eric
Wohlstadter, and Nirmit Desai. We gratefully acknowledge their invaluable
contributions.

References

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services. Springer-Verlag, 2004
2. B. Benatallah, M. Dumas, Z. Maamar. De

������� ��� ��	
����� ��
�������	 �	�

Services: The Self-Serv Project. Data Engineering Bulletin, 25(4), 2002

18 Stefan Tai, Rania Khalaf, and Thomas Mikalsen

3. D. Box, F. Curbera (Eds). Web Services Addressing (WS-Addressing). Published online at
http://www.ibm.com/developerworks/library/ws-add, 2004

4. D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky, E. Newcomer, J. Webber,
K. Swenson. Web Services Composite Application Framework (WS-CAF). Published
online at http://developers.sun.com/techtopics/webservices/wscaf/, 2003

5. A. Ceponkus, S. Dalal, T. Fletcher, P. Furniss, A. Green, B. Pope. Business Transaction
Protocol. Published online at http://www.oasis-open.org/committees/download.php/
1184/2002-06-03.BTP_cttee_spec_1.0.pdf, 2003

6. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana. The Next Step in Web Services.
Communications of the ACM, 46(10):29-34, 2003

7. F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, S. Weerawarana. BPWS4J.
Published online at http://www.alphaworks.ibm.com/tech/bpws4j, 2003

8. F. Curbera, J. Schlimmer (eds.) Web Services Metadata Exchange (WS-MetadaExchange).
Published online at http://www-106.ibm.com/developerworks/ library/specification/ws-
mex/, 2004

9. C. Ferris, D. Langworthy (eds.) Web Services Reliable Messaging (WS-
ReliableMessaging). Published online at http://www-106.ibm.com/developerworks/
webservices/library/ws-rm/, 2004

10. T. Fletcher, P. Furniss, A. Green, R. Haugen. BPEL and Business Transaction
Management. Published online at http://www.choreology.com/standards/BPEL.and.
Business.Transaction.Management.Choreology.Submission.html, 2003

11. H. Garcia-Molina, K. Salem. Sagas. Proceedings ACM SIGMOD, 1987
12. M. Hondo, C. Kaler. Web Services Policy Framework (WS-Policy). Published online at

http://www-106.ibm.com/developerworks/library/ws-polfram/, 2003
13. M. Hondo, C. Kaler. Web Services Policy Attachment (WS-PolicyAttachment). Published

online at http://www-106.ibm.com/developerworks/library/ws-polatt/, 2003
14. IBM Corporation. http://www-136.ibm.com/developerworks/webservices/
15. R. Khalaf, F. Curbera, W. Nagy, S. Tai, N. Mukhi, M. Duftler. Understanding Web

Services. In M.P. Singh (ed.), Practical Handbook of Internet Computing, CRC Press,
2004 (to appear)

16. R. Khalaf, F. Leymann. On Web Services Aggregation. Proceedings of the VLDB
Technologies for e-Services Workshop, Springer LNCS, 2003

17. R. Khalaf, N. Mukhi, and S. Weerawarana. Service-Oriented Composition in BPEL4WS.
Proceedings of the 2003 World Wide Web Conference, Web Services Track, 2003

18. N. B. Lakhal, T. Kobayashi, H. Yokota. THROWS: An Architecture for Highly Available
Distributed Execution of Web Services Compositions. Proceedings of the 14th
International Workshop on Research Issues on Data Engineering Web Services for E-
Commerce and E-Government Applications, 2004

19. D. Langworthy (ed.) Web Services Coordination (WS-Coordination). Published online at
http://www-106.ibm.com/developerworks/library/ws-coor/, 2003

20. D. Langworthy (ed.) Web Services Atomic Transaction (WS-AtomicTransaction).
Published online at http://www-106.ibm.com/developerworks/library/ws-atomtran/, 2003

21. D. Langworthy (ed.) Web Services Business Activity Framework (WS-BusinessActivity).
Published online at http://www-106.ibm.com/developerworks/webservices/library/ws-
busact/, 2004

22. F. Leymann, D. Roller. Production Workflow. Prentice-Hall, 2000
23. D. J. Mandell, S. A. McIlraith. A bottom-up Approach to Automating Web Service

Discovery, Customization, and Semantic Translation. Proceedings of the 2003 WWW
Conference Workshop on E-Services and the Semantic Web, 2003

24. Microsoft Corporation. http://msdn.microsoft.com/webservices/
25. OASIS. UDDI. Specifications published at http://www.oasis-open.org/committees/ uddi-

spec/doc/tcspecs.htm

Composition of Coordinated Web Services 19

26. S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, I. Rouvellou. Transaction Policies for
Service-Oriented Computing. In Data and Knowledge Engineering Journal, Special Issue
on Contract-based Coordination and Collaboration, 2004 (in press)

27. S. Thatte (ed.) Business Process Execution Language for Web Services Version 1.1.
Published online at http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003

28. W. Vogels. Tracking Service Availability in Long Running Business Activities. In
Proceedings 1st International Conference on Service-oriented Computing, 2003

29. W3C. Web Services Architecture Requirements. Published online at
http://www.w3.org/TR/wsa-reqs, 2002

30. W3C. SOAP. Specifications published at http://www.w3.org/2000/xp/Group/
31. W3C. Web Services Description Language (WSDL). Specifications published at

http://www.w3.org/2002/ws/desc/
32. E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, P. Devanbu. GlueQoS: Middleware to

Sweeten Quality-of-Service Policy Interactions. In Proceedings of the 26th International
Conference on Software Engineering, 2004

