Virtualizing Stream Processing

Michael Duller!, Jan S. Rellermeyerz, Gustavo Alonso!, and Nesime Tatbul!

! Systems Group, Department of Computer Science, ETH Zurich, Zurich, Switzerland
{michael.duller,alonso,tatbul}@inf.ethz.ch
2 IBM Austin Research Laboratory, Austin, TX, U.S.A.
rellermeyer@us.ibm.com

Abstract. Stream processing systems have evolved into established solutions as
standalone engines but they still lack flexibility in terms of large-scale deploy-
ment, integration, extensibility, and interoperability. In the last years, a substan-
tial ecosystem of new applications has emerged that can potentially benefit from
stream processing but introduces different requirements on how stream process-
ing solutions can be integrated, deployed, extended, and federated. To address
these needs, we present an exoengine architecture and the associated ExoP plat-
form. Together, they provide the means for encapsulating components of stream
processing systems as well as automating the data exchange between components
and their distributed deployment. The proposed solution can be used, e.g., to con-
nect heterogeneous streaming engines, replace operators at runtime, and migrate
operators across machines with a negligible overhead.

Keywords: stream processing, federation, virtualization

1 Introduction

Applications like financial market data processing or network intrusion detection re-
quire processing large volumes of continuously arriving data with high throughput and
low latency. Stream processing supports such applications using a model whereby data
arrives continuously at the stream processing engine (SPE) and triggers the evalua-
tion of queries stored in the SPE. Within the last decade, data stream processing has
gone from a research idea (e.g., Aurora [2], STREAM [20], and TelegraphCQ [9]) to a
widespread solution, with several commercial products already available [27, 29, 16, 4].

Stream processing has proven to be useful for many applications. However, its ap-
plicability is still limited in terms of interoperability and deployment.

Interoperability refers to the integration of heterogeneous SPEs [28]. A common
scenario involves different engines run by different and autonomous entities that must
work together but cannot resort to a homogeneous solution. We have encountered such a
scenario in automatic financial compliance checking, where government authorities val-
idate streams of transactions created by financial institutions. A similar scenario arises
in the supply chain management, where different RFID and bar code technologies, pal-
let and container tracking systems, and book keeping and stock control software need to
be coordinated even across large geographic distances. From these scenarios we derive

the requirement to be able to host in a single platform different systems that commu-
nicate through well-defined interfaces, while maintaining the authoritative boundaries
imposed by each organization.

In terms of deployment, there is an increasing need to deploy SPEs flexibly to run
them as virtual entities across a cluster and even across a cloud computing facility.
The scenarios and motivation for this requirement are identical to those for standard
applications and relational databases: elasticity, cost reduction, and fast provisioning.

To address these challenges we explore the possibility of virtualizing any compo-
nent of a streaming engine (operators and buffers as well as entire engines) so that they
can be automatically deployed, managed, and composed in a flexible and dynamic man-
ner. The aim is to build a generic middleware platform that allows to (1) encapsulate
existing engines (either for embedding into applications or for composition); (2) support
combinations of heterogeneous operators; and (3) provide the functionality needed in a
distributed platform (e.g., support for operator migration, replacement, data routing).

Like other virtualization approaches (e.g., machine virtualization like Xen or VM-
Ware, and managed language runtimes for bytecode like Java VMs or the .NET CLR),
the main objective of our approach is to gain flexibility (e.g., location transparency),
ease of management (e.g., push-button deployment of virtual machines), and potential
for optimizations (e.g., replacement of performance-critical code with an optimized ver-
sion at runtime). The architecture proposed is inspired by the concept of the exokernel
for operating systems [12, 19]. Like exokernel, it implements as few policies and makes
as few assumptions as possible to support a wide range of different SPEs well.

Middleware has already proven to be useful in providing additional features for data
processing systems like, e.g., TP monitors or message queueing systems for traditional
databases. In fact, several engines have been extended with middleware platforms:
IBM’s System S [17] or Yahoo’s S4 [21]. These systems are built as extensions to one
particular SPE. Our approach is a pure middleware system that is engine-independent.
In that way, we do not impose engine-specific semantics or a processing model, but cater
to dynamic and distributed operation, deployment, and lifecycle management and pro-
vide interoperability between heterogeneous SPEs with potentially different semantics.
From our own work, we have explored semantic aspects of integrating heterogeneous
SPEs in MaxStream [6], and wide-area, stream-based processing of personal informa-
tion in XTream [11], both through middleware-based solutions.

In this paper, we present the design, use, and implementation of ExoP, an architec-
ture for stream processing. ExoP provides well-defined, extensible interfaces for encap-
sulating stream processing entities (operators, buffers) and building applications on top
of these. It also supports dynamic composition, dynamic data routing, and component
lifecycle management.

The results presented in the paper validate the potential for the ideas behind ExoP as
they cannot be achieved with any other system we are aware of. For instance, we have
ported two existing, different SPEs into ExoP. One of them is the MXQuery engine [7].
We use the implementation of the Linear Road benchmark [5] with MXQuery to show
that ExoP has a negligible overhead (0.7 %; see Sect. 5.4), and yet, it provides the
flexibility to the implementation that we claim: dynamic and distributed deployment
and component lifecycle management. We show that we can replace at runtime part

machinei

SPEX | [SPEv

| spEx | [sPEy | [sPez |

H Exoengine Platform i Exoengine Platform

Fig. 1. Exoengine vision

of the system with a native implementation of the operators without interruption in
service (see Sect. 5.5) and that we can turn the originally centralized implementation of
the Linear Road benchmark into a distributed implementation (see Sect. 5.6) to achieve
one order of magnitude improvement in performance; a load factor of 64, which is equal
to the fastest published results [30] of a highly optimized, distributed implementation.
The other engine ported to ExoP is the Stanford STREAM system [20]. In the paper,
we show that we can deploy the engine on our platform, supply queries as part of our
configuration mechanism, and federate STREAM and MXQuery (see Sect. 5.8) with a
minimal development effort (see Sect. 5.7).

2 Exoengine Architecture

Figure 1 illustrates the vision of the exoengine architecture. It virtualizes stream pro-
cessing and thus enables @ multiple applications written for different engines/query lan-
guages to exchange data across machine (platform) boundaries; @ single applications
to run across multiple machines; and @ applications to be migrated to other machines.

2.1 Layers

The exoengine architecture considers stream processing applications at different layers
of abstraction (Figure 2). On top, a high-level abstraction, e.g., a streaming query lan-
guage, presents the interface to the system. This interface is provided by application
builders (see Sect. 4.2). In the example shown, the interface is CQL [20], a language
for continuous queries. Being able to expose arbitrary, high-level interfaces on top of
the system enables reuse of existing applications developed against these interfaces.

The data processing model is the data management view onto the architecture and
captures how data flows and is processed. It is a graph of entities that process data
(“operators” as a first approximation), which we call slets, and entities that buffer and
forward data, which we call channels. Section 2.2 provides more details. The data pro-
cessing model is generic enough to fit different flavors of stream processing (e.g., push
vs. pull driven engines) and thus enables interoperability.

The implementation model is the systems view onto the architecture. It specifies
implementation details of slets and channels (e.g., interfaces) and adds a connector en-
tity, which captures distribution in the model (see Sect. 2.3). The implementation model
grasps elements as individually managed components, wires them using loose coupling,
enables remote operation through connectors, and thus enables flexible deployment.

{SELECT AVG(priority) 1
Interface {FROM requests [RANGE 1 DAY] j

Instantiation

Fig. 2. Layers of abstraction

Ultimately, an instantiation of these entities is concretely implemented in some pro-
gramming language. The generic parts of these entities, as well as the platform itself,
are implemented by the platform provider and the specific parts of these entities (e.g.,
operator logic, custom buffer implementation) are either implemented manually as part
of the application implementation or generated by the application (e.g., by a query com-
piler).

2.2 Data Processing Model

The two fundamental building blocks of stream processing are operators, which process
data, and buffers, which forward and buffer data (e.g., to form finite windows over
infinite streaming data). The data processing model of the exoengine architecture thus
considers operators, which we call slets, and buffers, which we call channels. Figure 3
illustrates the model as a mesh of channels (rectangles) and slets (ovals). Slets have
input and output ports, and each port can connect to one channel. In the figure, ports
are implicitly illustrated as the places where arrows enter or leave slets. 7-slets process
data and behave like conventional operators. They can have any number of input and
output ports. At the edges of the processing mesh, a-slets adapt data sources and w-slets
adapt data sinks, providing clean interfaces for exchanging data with the platform. a-
slets have no input ports, they only receive data from external sources. Likewise, w-slets
have no output ports and only send data to external sinks. Sources and sinks can be any
external device, application, or component that emits or consumes data, respectively.

Data is processed as discrete items (tuples) that flow from the sources on the left
through the application mesh to the sinks on the right. Slets can transform data that ar-
rives at an input port in any way, including dropping it, aggregating it into internal state,
or creating and emitting new data. Channels can be seen as views over the upstream pro-
cessing mesh. Similar to views in traditional databases, they contain the results obtained
by processing source data (data sources in exoengine, data tables in databases) with the
view definition. In databases, the view definition is a query and in the exoengine ar-
chitecture it is the part of the mesh that is connected to the channel’s input. Channel
implementations can persist their contents, resembling materialized views in databases.

Processing can be push- or pull-driven to support all existing systems and to be
able to combine them. Thus, the puristic, basic interfaces for data exchange define two
methods:

DOJ-

|:| channel

external
entity

Fig. 3. Data processing model

push(item): push an item to the input of a channel or an slet
pull(): request items from the output of a channel or an slet, return a set of 0. ..n items

Advanced functionality and optimizations can be implemented as extensions to
the interfaces, including channels that provide individual windows for connected slets
based on count, time, or explicit eviction from the buffer by the slet (semantic win-
dows); sharing multiple windows and the materialized view from the same physical
buffer; or allowing pull requests that are augmented by a query to push selectivity to-
wards data sources. We use channels that materialize their contents or provide windows
to slets for the Linear Road implementation presented in the evaluation (see Sect. 5).

2.3 Implementation Model

The implementation model captures implementation aspects, which include actual com-
ponent interaction and distributed operation. It is based on service-oriented software de-
sign and the flexible and loose coupling between components, which facilitates dynamic
changes to the processing mesh. It adds an additional type of component, connectors,
as an indirection between slets and channels used to capture distributed operation in
the model. Figure 4 illustrates the implementation model. It depicts all implementation
details from slets emitting items on the left, to input connectors (Conn.), to a chan-
nel, to output connectors, to slets consuming items on the right. Ports, buffers, and the
implementation of slets have been made explicit in the illustration.

Connectors are part of the virtualization strategy to enable distribution. They can be
omitted as an optimization if channel and slet reside on the same instance of the plat-
form. In the distributed case, where a channel residing on one instance of the platform
is accessed by slets residing on another remote instance, remote connectors encapsulate
communication between the instances of the platform. One half of the remote connector
is installed on the platform instance of the channel and the other half is installed on the
remote platform instance, where it represents (proxies) the channel. For every remote
platform instance that accesses the channel, one remote connector is used to serve all
slets on that instance. Section 4.3 with Fig. 6 illustrates distributed operation.

Using connectors as local proxies of channels can also improve performance and
robustness. Smart connectors can, e.g., cache the content of the channel they are repre-
senting, serve requests from their own buffer, and thus reduce latency and save band-
width. Similarly, when the connection between the smart connector and its counterpart

Channel

Slet Slet

@ setvain - @XC.@0 Impl. Classes @ OutputPort © InputPort D Buffer || Service

Fig. 4. Implementation model

on the remote platform is not available, the connector can autonomously work in offline
mode. The wiring of slets to the connector can be left unchanged, because transitions
between online and offline mode happen inside the connector, behind the interfaces.

In Fig. 4, arrows between components are bidirectional as they represent the com-
ponent interaction in terms of service method invocations rather than in terms of data
flow. Ellipses (...) between slets or connectors indicate that any number of instances
thereof can exist and interact with one instance of a connector or channel, respectively.
Service interfaces used in data exchange are depicted using thick bars. To exchange
data, components call the push(item) method on the InputPort or In services, or the
pull() method on the OutputPort or Out services.

The implementation model separates concerns of processing (slets), storage (chan-
nels), and communication (connectors) into separate entities. This separation facilitates
capturing resource requirements and implementing respective optimizations.

2.4 Component Life Cycle Management

Every component running on top of an exoengine platform also provides a management
service. At runtime, the platform interacts with a component through this service to per-
form common, generic management tasks like monitoring, suspending, and restarting it,
or exchanging individual configuration data. The platform takes care of managing and
persisting component configuration data (e.g., the particular query an engine in an slet
is executing), component state (e.g., the counters of an aggregation operator wrapped
as an individual slet), and applications (e.g., which instances of slets are connected to
which instances of channels and thus form an application).

3 Stream Processing with the Exoengine Platform

One way to use our platform is to implement from scratch fully distributed, heteroge-
neous data streaming applications. This implies writing or synthesizing each operator
and the additional components for our platform. As an example, we are in the process of
implementing a wide-area, peer-to-peer stream processing infrastructure for exchanging
personal data in a streaming manner across collections of devices and locations [11].

partial assimilation
/

:‘ B operator
D [buffer
slet
Za O (var. size)
encapsulation .o = [channel

Fig. 5. Wrapping alternatives

3.1 Porting Existing Stream Processing Engines

In addition to implementing applications and their components from scratch, appli-
cations for existing SPEs can be reused by porting these SPEs to our platform. We
distinguish three levels of granularity for porting existing SPEs: individual operators
(“assimilation”), bare stream processing engines (‘“‘partial assimilation”), and complete
applications (“encapsulation”).

If a streaming engine has been implemented in a sufficiently structured way, our
platform allows to wrap operators and buffers so that they become explicitly visible
to the platform as slets and channels, respectively. This allows reusing operators and
buffers without changing the semantics of the underlying engine, while opening up all
three possibilities illustrated in Fig. 1. Assimilation is illustrated in Fig. 5 by individual
operators and buffers being wrapped as slets and channels.

It is possible to wrap monolithic engines as an slet and use multiple instances thereof
to compose an application, e.g., consisting of multiple queries. Each query is executed
by one instance of the engine slet. This is the approach we use in the evaluation (Sect. 5)
to wrap existing XQuery [7] and STREAM [20] engine implementations. Partial assim-
ilation reduces the porting effort, while still providing access to intermediate results and
allowing distributed deployment. It opens up all three possibilities illustrated in Fig. 1
but at a coarser granularity (e.g., at the level of individual queries) compared to full
assimilation. In Sect. 5.6 we show the effectiveness of turning a centralized applica-
tion composed of multiple instances of a partially-assimilated XQuery engine into a
distributed application and, thereby, enabling it to handle higher load. Partial assimila-
tion is illustrated in Fig. 5 by the two big, gray slets containing multiple operators and
buffers/internal state, which are not explicitly visible to the exoengine platform.

In encapsulation, we wrap an entire application with all the engines and queries into
a single slet. This allows to take already existing applications and make them available
as a service, in the form of an slet. While limited in flexibility, this approach still fa-
cilitates the runtime management of the application and the combination of its ultimate
inputs and outputs with other applications. Encapsulation is illustrated by the large,
dashed slet in Fig. 5, which encapsulates everything.

3.2 Extensibility

The exoengine model generally matches stream processing applications. The function-
ality provided by the interfaces (push(item) and pull()), however, is only suitable for

basic data exchange and not sufficient to implement a full-fledged SPE. The interface
between operators and storage/buffer instances in an SPE is typically richer and addi-
tionally supports, e.g., index-based access to data or bulk access to multiple tuples at
once. The exoengine architecture supports any kind of interaction between slets and
channels and thus allows to keep intrinsic implementation details of existing SPEs.

Slet and channel implementations can extend the service interfaces for data ex-
change (thick bars in Fig. 4). Thus, they can interact through additional methods as
needed, without losing the property that the platform manages the dynamic binding
between components’ services. Connectors also need to support the methods of the ex-
tended service interfaces between slets and channels. In the local case, connectors are
empty and simply omitted. In the distributed case, standard remote connectors only
need to pass method calls through. Thus, they are created automatically by the plat-
form by inspecting the extended interfaces of the components using, e.g., reflection.
Distribution-aware implementations of SPEs for the exoengine architecture can provide
implementations of smart connectors for enhanced remote operation.

In addition to extensions of interfaces on the data path, implementations of compo-
nents can also extend their management interfaces to, e.g., allow an optimizer to replace
parts of the processing mesh in a controlled manner (e.g., instruct buffers to pause and
operators to persist internal state) or implement a richer configuration mechanism.

4 Platform Implementation

In this section, we discuss aspects of implementing an exoengine platform conforming
to the data processing and implementation models presented in the previous sections.
We also discuss how to implement applications running on top of it and present our
prototype of an exoengine platform, ExoP. Though we have implemented the aspects
discussed below in our prototype, they are applicable to any platform implementation.

4.1 Component Implementation

Components for the exoengine platform are implemented in a reusable manner, which
allows the use of multiple instances of each component without any side effects (e.g., no
global state, no singletons). Every instance of a component has a unique identifier in the
platform. Every instance of a channel or connector provides one distinct service for its
input and one for its output. Every port of an slet also provides a distinct service for data
exchange. These services implement the basic interfaces defined by the architecture and
potential extensions thereof. In addition, every component implements the respective
management interface (slet, connector, or channel) and potential extensions to it.

An implementation of the exoengine platform provides the generic parts of slets,
connectors, and channels as a library. These generic parts contain the necessary and
recurring glue code that deals with registering a component’s services with the under-
lying service framework, creating and destroying slet ports, exchanging configuration
and state with the exoengine platform, and retrieving the connected components’ input
(port) and output (port) service objects to invoke methods on them. The developer of

a component concentrates on the component’s actual functionality and writes the com-
ponent against the API of the glue code library—thus generally without having contact
with the details of the underlying service-based implementation of the exoengine plat-
form.

4.2 Application Builders

Applications are created, modified, and removed by application builders. These provide
the programming interface and abstraction to the system, typically through a high-level,
declarative interface like a streaming query language or a graphical user interface.

Application builders register slet and channel implementations with the platform,
instruct the platform to create instances thereof and how to wire them, interact with
these instances through the management interface, and interact with remote platform
instances. The controlling parts of a stream processing system (query compiler, op-
timizer, control API) become application builders. A mesh of slets and channels can
have cycles and it is the responsibility of the application builder to ensure that this does
not cause adverse effects.

Similar to the implementation of components, application builders do not need to
know the details of the underlying service-based implementation of the platform. In-
stead, a management service provided by the platform is in charge of composition and
management of all components in one instance of the platform. It provides methods to,
e.g., create a new instance of a component, wire two components, or change the configu-
ration of a component. As a response to these methods, the management service creates
instances of slets, channels, and connectors; assigns a unique component identifier and
configuration (e.g., the query that a particular slet is executing or whether a channel
should persist data); and registers them under the corresponding service interfaces. The
platform persists the configuration of every component and whether the component is
active. This information is reused when an application or parts of it are restarted (e.g.,
migration). Then, components are recreated, receive the persisted configuration, and are
started automatically, relieving application builders from these tasks.

4.3 Distributed Operation

Application builders access remote platforms through a remoting service provided by
the platform. Similar to the management service, it abstracts from implementation de-
tails and provides high-level methods to connect to known remote platforms, discover
channels of interest in the network vicinity (e.g., using multicast discovery), access
the management service of remote platforms, migrate components between platform
instances, and connect local slets to remote channels or vice versa.

Stateful components must implement methods for (de)serializing their state in order
to enable their stateful migration (memento pattern). The platform calls these methods
and handles the serialized state between suspending and resuming a component.

Every instance of the platform maintains one connection to every remote platform
instance. Through this connection, all communication takes place, as is illustrated in
Fig. 6. Remote connectors are provided by the remote operations component of ExoP.
By default, network failures result in the removal of the remote connector service, which

Logical connections
between halves of [J
remote connectors

Exoengine
Platform

Exoengine
Platform

Remote Op. ! .
Net K link " i ! Exoengine
etwork links R-OSGi | ! Platform

between platform

Fig. 6. Distributed operation using connectors

appears like any other dynamic change to the processing mesh. Smart connectors can
override this behavior and remain registered and thus connected.

4.4 Prototype

We have implemented the ideas presented in this paper in ExoP, our prototype of an
exoengine platform. ExoP is implemented as a componentized, service-oriented system
using Java and OSGi. This section presents some of its implementation details.

OSGi. ExoP is based on the OSGi Service Platform [22]. OSGi is a widely used (e.g.,
Eclipse IDE, application servers) framework for module management and service com-
position for Java. Modules are called bundles and explicitly state code dependencies on
other bundles. Bundles can be installed, uninstalled, updated, started, and stopped at
runtime. The OSGi framework handles the dependencies that arise in the process.
Services are implemented as Java classes, which are registered with the OSGi frame-
work’s service registry under one or more interfaces. A service registration can further
be augmented by a set of key/value properties. Service clients can look services up in
the registry, including filters on properties. When fetching a service they receive a direct
Java reference to the object registered as the service. OSGi provides loose coupling and
dynamic service composition within a Java VM. The open source project R-OSGi [25]
extends OSGi to support dynamic service composition across multiple Java VMs.
ExoP is implemented as a set of OSGi bundles and uses R-OSGi as the communica-
tion fabric to interact with remote platforms (see Fig. 6). ExoP is modular and dynamic
itself and a subset of its bundles (e.g., management) can be (un)loaded at runtime.

Component Implementation. ExoP provides an API that facilitates the implementa-
tion of slets and channels. Using the example of slets, one class of an slet implemen-
tation must implement the interface SletMain, which defines methods that are called at
initialization or state transitions. In Fig. 4, this class is represented as solid black disk.

Multiple instances of the same slet can exist and each is instantiated by creating
a new instance of the class implementing SletMain. During initialization, an object of
type SletUtil is passed to the slet. Through this, slets interact with the platform to create
and destroy ports, and to update configuration and state.

ExoP’s component model for slets, channels, and connectors extends OSGi’s life-
cycle management facilities. The API hides the details of the service-based design and
allows developers to concentrate on the actual logic of the slet. Interactions with the
OSGi platform, like registering services or persisting configuration, is implemented in
ExoP and happens behind the API. For example, when an slet calls the API method to
create an input port, a port object is instantiated, a unique identifier assigned, the object
added to the slet’s list of ports, and eventually registered with the OSGi service registry
under the InputPort service interface and with the identifier as service property.

When an instance of an slet is created, a configuration object for that instance is
created and the configuration is persisted with OSGi’s Configuration Admin service,
resulting in a callback to the particular instance of a Managed Service Factory imple-
mentation. The factory then creates an instance of a generic SletImpl and an instance
of the specific SletMain slet implementation (supplying the instance of Sletlmpl as Sle-
tUtil), calls initialization and start methods on it, and eventually registers the SletImpl
under the Slet service interface and with a set of service properties (including the unique
Slet instance identifier) with the OSGi service registry. These steps are implemented in
ExoP’s management bundle and hidden behind its ComponentManager service inter-
face.

Component Binding and Interaction. Components are bound to each other (i.e., a
link is created in the mesh) by assigning the unique identifier of the service of the
component with cardinality one to a specific “connected to” property of the service of
the component with a higher cardinality. When a port is connected to a connector, the
connector’s unique identifier is saved in the port’s “connected to” property. Likewise,
for connectors and channels, the channel’s identifier is saved in the connector’s property.

When a component wants to interact with the component(s) it is connected to (i.e.,
call a method on their service interface), it fetches the matching components according
to the specific “connected to” property and unique identifiers. For example, a channel
fetches all connectors that have the channel’s unique identifier in their specific “con-
nected to” properties, while a connector fetches the channel with the unique identifier
that is saved in the connector’s specific property. Even though the setup of the mesh
typically hardly changes, properties need to be matched for every interaction between
components, which is a rather expensive operation. Therefore, we make heavy use of
OSGi’s service tracker, which pro-actively tracks and caches matching components,
similar to a proxy. The details of setting up and persisting component bindings with
unique identifiers, service properties, and service trackers are implemented in ExoP’s
management bundle and hidden behind its WiringController service interface, provid-
ing straightforward methods to connect and disconnect components.

5 Evaluation

We have ported the MXQuery engine and the Linear Road benchmark (LRB) imple-
mentation presented by Botan et al. [7] to ExoP using partial assimilation (see Sect. 3.1).
The evaluation measures the overhead of the exoengine approach, demonstrates the fea-
tures and benefits gained by porting MXQuery to ExoP (i.e., capability for dynamic
modifications and extensions, distributed operation, federation with different SPEs),
and describes the porting effort.

5.1 The Linear Road Benchmark

The Linear Road benchmark [5] is a well established benchmark for stream processing
systems. It simulates variable tolling based on traffic conditions on a fictitious linear
city, consisting of a number of straight, 100 mile long, parallel highways. The input to
the system increases in rate during a full, three hour run of the benchmark, and consists
of car position reports and requests for toll information and balance reports. The output
of the system consists of accident alerts, tolls, and balance reports. A system running the
Linear Road benchmark must emit an output tuple (e.g., balance report) within at most
five seconds of when the last input tuple that causes the output to be generated (e.g.,
request for balance report) enters the system. The number of concurrent highways (in
units of .5 for separate directions of highways) that a system can cope with constitutes
its load factor L. Due to the coarse granularity of this load factor L, we will fix L
across comparable experiments and examine average tuple latencies a as measure of
performance impact.

5.2 Experiment Setup

Unless noted differently, the experiments were run on a machine with a single Core i5-
750 CPU (quad-core, 2.66 GHz) and 8 GB RAM, running the 64bit version of FreeBSD
8.2 configured to use the CPU’s TSC register as timecounter. We use OpenJDK 6b22
as Java runtime with maximum heap size set to 5 GB.

The numbers presented refer to the toll alerts output of the Linear Road benchmark.
They average 4 repetitions of a full, 3-hour-long run with an input load of L = 5.0.

5.3 Porting MXQuery and Linear Road

Applications for the MXQuery system typically consist of multiple instances of the
MXQuery engine and MXQuery’s storage implementations. Glue code creates and links
them to each other to form the final application. Every instance of the engine executes
one specific XQuery query. A query is compiled into a query graph consisting of multi-
ple operators that potentially have small, internal, implicit state and/or buffers between
each other. The storage instances provide windowing or persistent storage, and serve as
explicit buffers for (intermediate) results between instances of the engine.

The MXQuery engine was wrapped as a 7-slet and the storage implementations as
channels. The rich interface between engine and storage, which, for example, allows

{CarCross}
Car Pos.

slet

4 T
private
shared

Fig.7. Linear Road benchmark implementation on ExoP

for index-based access to data in the storage, remains in use as an extension to the basic
interfaces of ports and channels. Furthermore, the code that loads the input file of the
Linear Road benchmark and feeds it to the benchmark as well as the code that writes
the result files was wrapped as a- and w-slet, respectively. The code that sets up the
Linear Road benchmark by creating instances of all involved components (data loader
and writer, storage, MXQuery engine), assigning queries to the instances of the engine,
and linking these components to each other with custom glue code was turned into an
application builder. The application builder registers the slets (MXQuery, data loader,
data writer) and the channel implementations with ExoP. It then instructs the platform to
create respective instances thereof and to connect them. The queries that each instance
of the engine has to execute as well as input and output file names are passed to the slets
through ExoP’s configuration mechanism. Once the application builder has completed
setting up the Linear Road benchmark implementation in ExoP (as illustrated in Fig. 7),
processing starts. With the exception of the daily expenditures query', the implemen-
tation is the same as the original one presented by Botan et al. [7] and consists of 9
instances of the MXQuery engine, each processing a different query.

5.4 Overhead of the Exoengine Architecture

Since every additional layer potentially adds overhead to a system, we first measure the
overhead incurred by the modular and dynamic design employed by our platform. Fig-
ure 8 compares the original implementation of the Linear Road benchmark (“Without™)
with the ExoP version (“With”). Both implementations can handle the load well and
the overhead added to the average processing time of tuples is negligible (147.90 ms
vs. 148.92 ms). Table 1 provides additional details about the experiment runs. It counts
output tuples grouped by processing time (bins of 1 second) in the 2"¢ and 3"¢ column.

5.5 Replacing an Slet at Runtime

The exoengine architecture encapsulates entities like operators and buffers and uses
loose coupling between them, which enables dynamic changes to the processing mesh.
We demonstrate this feature by replacing the car positions slet in the LRB workflow af-
ter 1 hour of the 3-hour-long run of the benchmark with a native implementation, while

' We have removed the daily expenditures query from both the original and the ExoP imple-
mentation due to its negligible impact on performance and the effort required to deploy the
historical data.

Without ¢ H 147.90 -
With = H 148.92 -
Native F 14914 ~
STREAM = H149.65 -
1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Fig. 8. Average tuple latencies [ms]

the benchmark is running. The query executed by the car positions slet filters car posi-
tion reports from the input and forwards them to the upper part of the workflow shown
in Fig. 7. Our native implementation performs the same functionality directly in Java
instead of using the MXQuery engine and can be seamlessly plugged into the process-
ing mesh. Replacing one instance of the MXQuery slet with a native implementation
happens almost instantaneously and without adverse effects to the benchmark, as the
average latencies “With” compared to “Native” in Fig. 8 show. Table 1 again provides
additional details of the corresponding experiment runs in the 3"¢ and 4" column.

5.6 Distributed Deployment

The encapsulation of entities like operators and buffers behind well-defined interfaces
abstracts from concrete implementations and, thus, allows to transparently introduce
network communication between components. We demonstrate this feature by distribut-
ing the centralized MXQuery engine across multiple machines and scaling the load
factor L of the Linear Road benchmark using data partitioning at the level of highways.

We use 16 cluster nodes on a switched gigabit ethernet. Each node has two Xeon
L5520 CPUs (quad-core, 2.26 GHz) and 24 GB RAM. They run Ubuntu 10.04 64 bit
and Oracle’s JDK 6u22 with maximum heap size set to 5 GB. The maximum possible
load for a single node is L. = 4.5. However, applications designed for the exoengine
architecture can easily be transformed into distributed systems by introducing remote
invocations between components running on different machines. For the Linear Road
benchmark, we chose the partitioning depicted by the dashed line in Fig. 7. Every node
handles the traffic of 4.0 highways (upper part of the figure). The toll balance (lower
part of the figure) runs only on one node (the master) and the other nodes (slaves) update
the shared toll store through a transparent remote service invocation, implemented by a
remote connector. We fixed L = 4.0, as this configuration spared enough capacity on
the master node for the shared part of all experiment setups up to 16 nodes.

Figure 9 shows how we scale the aggregate load (left y-axis) linearly with the num-
ber of nodes (x-axis) and the effect on the mean latency of all tuples (right y-axis). For
every node we add we can process another 4.0 highways, resulting in L = 64.0 being
processed on 16 nodes. The overall tuple latency only increases significantly for the
first few added nodes and then flattens out. The impact of the distributed setup on the
latency is twofold. First, updates to the toll store on the master by the slaves are syn-
chronous in the current implementation and, thus, block local processing on the slaves
until the update has completed successfully. The impact of this constant overhead on the

total average tuple latency is proportional to the number of slaves (0, %, %, %, ...)and

Table 1. Tuple count grouped by processing time

Time Without ExoP With ExoP Native after 1h STREAM

[0,1)s 11329044.00 11333460.50 11333349.00 11324 352.00
[1,2)s 52042.75 48511.00 48009.75 53378.75
[2,3) s 14 830.25 14 367.75 14 373.00 17216.75
[3,4) s 1755.00 1332.75 1940.25 2724.50
[4,5] s 0.00 0.00 0.00 0.00
(5,00) s 0.00 0.00 0.00 0.00

results in the steep increase when adding the first slaves. Second, the load of process-
ing updates to the toll store on the master node increases with every slave added. This
results in slightly increased latency on both the master node’s local traffic processing as
well as responses to slaves’ update requests to the toll store and thus their local traffic
processing as well. The small, steady increase in latencies reflects this effect.

The experiment shows that we can use ExoP to scale out an application that was
based on a centralized engine. We were able to linearly scale up the load of the Linear
Road benchmark implementation on MXQuery with the number of nodes. The com-
munication between nodes happens through ExoP’s communication system, used by
remote connectors which appear to the MXQuery engine slet like a connector to a lo-
cal store. We chose a synchronous and straightforward implementation of the remote
connector to capture all impacts of network communication. Depending on application
semantics, asynchronous remote connectors, with queues, can be used to cut latency.

5.7 Developing with the Exoengine

Since it is not possible to provide universally valid, hard numbers on the effort that is
needed to implement certain functionality in software, we provide at least an inkling of
the overhead and savings when implementing using the exoengine architecture.

The native car positions slet consists of two classes. One class implements SletMain
(see Sect. 4.4 for details) and the other class implements the actual filtering function-
ality. The main class consists of 55 lines of source code, out of which all but 9 lines
have been generated from the SletMain interface. Packaging an slet implementation for
ExoP only requires the addition of one attribute to the manifest of the JAR file.

SletMain of the MXQuery slet consists of 300 lines of code. It uses the original
MXQuery codebase with a set of interfaces and small helper classes, which are again
reused by the data loader and writer slets, the channels, and the native car positions slet.

The overhead of implementing an slet is moderate and limited to implementing the
basic interfaces for management and data exchange. Implementing buffers as channels
follows the same pattern and is equally simple. For the distributed experiment, we only
had to change certain data types of the MXQuery engine to implement the Serializable
interface so that we could ship instances to other machines. The remote invocations
along the boundaries of OSGi services happen transparently with R-OSGi.

80 T T T T T T T T 800
average latency [ms] —<— _| 750
70 - LRB load ---+--

L 700
60 -+ 650 g
50 | T He00 =
° A+ -4 550 2
o Q
o 40 - # 4500 %
5wl + 1450 g
o - 400 g
20 A +4350 &

ol e - 300

W— 250

O | | | | | | | | 200

0 2 4 6 8 10 12 14 16
nodes

Fig. 9. Scale-out of MXQuery-based LRB implementation on ExoP

The MXQuery and the STREAM engines [20], storage implementations of MX-
Query, data loaders and writers were ported by us and are reusable as a library. Addi-
tional applications for these engines can therefore be deployed right away.

5.8 Heterogeneity

ExoP enables the federation of heterogeneous stream processing entities on a common
platform. We demonstrate this feature by combining MXQuery and STREAM into one
application. Figure 10 illustrates the modified setup. We replaced the sink for the toll
notifications with an slet that converts flat XML fragments into binary relational tu-
ples (X2R). The STREAM engine (SE) processes the toll notifications according to its
assigned query and emits the results to a sink that writes relational tuples to a file (RS).

The two engines used in this setup differ in terms of the query model (XQuery
vs. CQL), data model (XML vs. relational tuples), implementation language (Java vs.
C++), and processing model (purely pull-driven vs. thread-driven, pull-based input and
push-based output). Each engine processes queries in its native format. No query trans-
formation or translation takes place and the strengths of each engine and its specific
query dialect are retained. Data is consumed and emitted by each engine in its native
format as discrete items. Conversion slets, like slet X2R in Fig. 10, convert between
different data formats. They can be built using existing conversion tools and libraries.
Federation of applications written and running on different engines typically happens
at few, well-defined interaction points. Therefore, the effort to deploy conversion slets
or provide custom conversion slets for proprietary data formats is manageable.

We measure the overhead introduced by adding the STREAM engine to the MX-
Query-based benchmark by running this modified setup of the benchmark and sim-
ply passing tuples through the STREAM engine using select x from S as query,
where S corresponds to the TolINotR input channel. Connecting STREAM to the pro-
cessing mesh and passing tuples through it adds only 0.5 % overhead to the average

TollNot channel from C++ STREAM library wrapped as
original processing mesh slet and accessed through NI

\ /

---»_TollNot @ TolINotR e ProcToll
pull pull pull push push Tolls
/ /

XML-to-relational tuple relational tuple file
converter written in Java writer written in Java

Fig. 10. STREAM engine attached to toll notifications

latencies (compare “With” and “STREAM” in Fig. 8) and the benchmark runs well
within limits, as can be seen in the 5t column in Table 1.

The seamless integration of the pull-driven MXQuery engine written in Java with
the pull/push-driven STREAM engine written in C++ demonstrates the suitability of
the architecture for supporting different processing models and the composition of het-
erogeneous engines into new applications.

6 Related Work

The fundamental difference between the research [2, 20, 9] and commercial products [27,
29,4, 16] mentioned in the introduction and our exoengine architecture is that it is not
yet another SPE. Rather, it provides a platform for facilitating application development,
deployment, integration, and management of existing or new-to-be-built SPEs.

Related work on distributed SPEs focused on functionalities like load management
(e.g., [1,24]), fault tolerance and high availability (e.g., [1]), integration with sensor net-
works (e.g., [14, 3]), and performance tuning (e.g., [17]). These systems mostly target
fixed cluster-based settings, where the dynamic wide-area architectural requirements
that we consider, such as loose coupling and heterogeneity of components, as well as
flexibility of deployment and reconfiguration, were not considered as equally critical.
Closer to our work, the XFlow Internet-scale distributed stream processing system pro-
poses a loosely-coupled architecture for query deployment and optimization, focusing
on an extensible cost model [23]. XFlow does not provide any abstract programming
models or techniques for building, hosting, or porting various SPE components.

There are a few platforms proposed for facilitating the development of stream-based
applications, such as System S, Auto-Pipe, MaxStream, or PIPES. System S [17] in-
cludes a distributed runtime platform that facilitates dynamic stream processing. The
platform pursues similar goals in terms of deployment as exoengine does but is less ex-
tensible due to its focus on the ecosystem of System S, which includes a language and
run-time framework (SPADE) and a semantic solver (MARIO). In constrast, exoengine
is an independent, pure middleware approach, and as such, is usable for many different
SPEs. Auto-Pipe [8] is a development environment for streaming applications executing
on diverse computing platforms consisting of a hybrid of multicore processors, GPUs,
FPGAs, etc. The authors propose a coordination language X and a compiler that maps
X programs into the native languages of the underlying platforms so that parts of appli-
cations can be run on the platforms that will provide the highest performance for them.
This work focuses on diverse hardware platforms, whereas we focus on diverse SPEs.

The MaxStream architecture [6], on the other hand, integrates heterogeneous SPEs and
databases behind a common declarative query interface, but without considering the
lower-level virtualization and flexible wide-area deployment issues that our exoengine
architecture tackles. PIPES [18] is a flexible and extensible infrastructure that provides
fundamental building blocks (including runtime components like a scheduler, memory
manager, and query optimizer) to implement a stream processing system for the Contin-
uous Query Language (CQL) and a specific operator algebra. In contrast, the exoengine
approach proposes a generic model and platform to host and execute a variety of dif-
ferent and independent stream processing systems, which are not required to share a
common query language, algebra, implementation language, or runtime components,
but can still share them where appropriate.

The importance of elastic stream processing has also been recognized by related
work recently [26]. This work focuses on elastically scaling the performance of indi-
vidual streaming operators on multicore machines, whereas our work provides a more
general architecture for distribution and a platform that can also serve as basis for elas-
tic stream processing. Yahoo’s S4 [21] provides an architecture and platform for pro-
cessing streaming data similar to MapReduce [10] for stored data, and the similar key
property of a specific, simple processing model that enables automatic parallelization
and deployment on a large number of machines. StreamCloud [15] is a middleware
layer that sits on top of streaming engines and focuses on how to parallelize continuous
queries by splitting them into subqueries and distributing them to nodes. The exoengine
approach provides a platform that hosts different streaming engines and could bene-
fit from StreamCloud by integrating it as application builder. Lastly, in our XTream
project [11], we explore how an exoengine-like platform and stream processing in gen-
eral can facilitate personal information processing and dissemination at global scale.

Publish/subscribe systems also provide mechanisms and an infrastructure to dissem-
inate and filter data from sources to sinks [13]. They decouple senders from receivers
by topics, which can be modeled by channels in our architecture. However, they do not
support sophisticated in-network data processing, distributed operation in a peer-to-peer
manner, access to intermediate results, or in-network storage, as stream processing with
the exoengine does.

7 Discussion and Outlook

In this paper, we have proposed a new architecture for implementing data stream pro-
cessing applications by virtualizing components of stream processing systems and de-
ploying them on a common middleware platform. While being radical in its puris-
tic approach inspired by the exokernel architecture, the non obtrusive nature of the
approach—it does not dictate a specific query language, algebra, operator implementa-
tion, or scheduling model—allows to leverage any existing stream processing system
and its particular strengths. In contrast, yet another concrete implementation of a stream
processing system would require a much more radical reimplementation of existing
applications. The exoengine architecture defines the fundamental elements of stream
processing (slets/operators, channels/buffers) using extensible interfaces to allow rich

interaction between specific slet and channel implementations of a particular system,
while retaining basic data exchange capabilities with other systems.

Depending on the granularity of the integration of streaming systems with the exo-
engine platform (see Sect. 3.1), the benefits range from the automatic management of
deploying and executing an encapsulated application and its federation with applica-
tions for other engines (through its ultimate inputs and outputs) to the reuse of engines
or individual operator implementations and the ability to replace them with a different
implementation at runtime, as demonstrated in Sect. 5.5. The architecture transparently
provides data transport in a distributed setup and allows to run centralized engines in a
distributed setting, as demonstrated with the scale-out experiment in Sect. 5.6.

Finally, we have provided brief conceptual instructions for building an exoengine
platform using SOA in Sect. 2.3 and discussed concrete implementation aspects as well
as showed a concrete prototype implementation in Sect. 4. The prototype confirms that
the dynamic nature and additional indirections (ports, connectors) can be implemented
efficiently with negligible overhead, as validated in Sect. 5.4.

Future work includes automatic state capturing of slets for migration (currently slets
need to implement serialization and deserialization of internal state to allow migra-
tion); deriving common, generic channels and slets (e.g., round robin distributor) and
providing them as a base library (similar to the platform providing common function-
ality for deploying, running, and managing configuration and state); and extending the
exoengine’s area of application to elastic/cloud computing—the holy grail of dynamic
operation, automated management, and distributed deployment.

Acknowledgments. Part of this work was funded by the Swiss National Science Foun-
dation SNF ProDoc program and by the Microsoft ICES initiative.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design
of the Borealis Stream Processing Engine. In: CIDR (2005)

2. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,
M., Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for Data Stream Man-
agement. The VLDB Journal 12(2), 120-139 (Aug 2003)

3. Aberer, K., Hauswirth, M., Salehi, A.: A Middleware for Fast and Flexible Sensor Network
Deployment. In: VLDB (2006)

4. Ali, M.H,, Gerea, C., Raman, B.S., Sezgin, B., Tarnavski, T., Verona, T., Wang, P., Zabback,
P., Ananthanarayan, A., Kirilov, A., Lu, M., Raizman, A., Krishnan, R., Schindlauer, R.,
Grabs, T., Bjeletich, S., Chandramouli, B., Goldstein, J., Bhat, S., Li, Y., Di Nicola, V., Wang,
X., Maier, D., Grell, S., Nano, O., Santos, I.: Microsoft CEP server and online behavioral
targeting. Proc. VLDB Endow. 2, 1558-1561 (August 2009)

5. Arasu, A., Cherniack, M., Galvez, E.F., Maier, D., Maskey, A., Ryvkina, E., Stonebraker,
M., Tibbetts, R.: Linear Road: A Stream Data Management Benchmark. In: VLDB (2004)

6. Botan, 1., Cho, Y., Derakhshan, R., Dindar, N., Haas, L., Kim, K., Lee, C., Mundada,
G., Shan, M., Tatbul, N., Yan, Y., Yun, B., Zhang, J.: Design and Implementation of the
MaxStream Federated Stream Processing Architecture. Tech. Rep. TR-632, ETH Zurich De-
partment of Computer Science (2009)

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.
26.
217.
28.

29.
30.

. Botan, I, Kossmann, D., Fischer, PM., Kraska, T., Florescu, D., Tamosevicius, R.: Extending

XQuery with Window Functions. In: VLDB (2007)

. Chamberlain, R.D., Franklin, M.A., Tyson, E.J., Buckley, J.H., Buhler, J., Galloway, G.,

Gayen, S., Hall, M., Shands, E.B., Singla, N.: Auto-Pipe: Streaming Applications on Archi-
tecturally Diverse Systems. IEEE Computer Magazine 43(3), 42-49 (2010)

. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,

Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In: CIDR (2003)

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
OSDI (2004)

Duller, M., Alonso, G.: A lightweight and extensible platform for processing personal infor-
mation at global scale. Journal of Internet Services and Applications 1, 165-181 (2011)

. Engler, D.R., Kaashoek, M.F., O’Toole, Jr., J.: Exokernel: An Operating System Architecture

for Application-Level Resource Management. In: SOSP (1995)

Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of Pub-
lish/Subscribe. ACM Comput. Surv. 35(2), 114-131 (2003)

Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O.,
Edakkunni, A., Hong, W.: Design Considerations for High Fan-In Systems: The HiFi Ap-
proach. In: CIDR (2005)

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Valduriez, P.: StreamCloud: A Large
Scale Data Streaming System. In: ICDCS (2010)

IBM InfoSphere Streams: http://www—01.ibm.com/software/data/
infosphere/streams/

Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.: Design,
Implementation, and Evaluation of the Linear Road Benchmark on the Stream Processing
Core. In: SIGMOD (2006)

Kriamer, J., Seeger, B.: PIPES - A Public Infrastructure for Processing and Exploring
Streams. In: SIGMOD (2004)

Leslie, 1., McAuley, D., Black, R., Roscoe, T., Barham, P., Evers, D., Fairbairns, R., Hyden,
E.: The Design and Implementation of an Operating System to Support Distributed Multi-
media Applications. IEEE Journal on Selected Areas in Communications 14(7), 1280-1297
(Sep 1996)

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C.,
Rosenstein, J., Varma, R.: Query Processing, Approximation, and Resource Management in
a Data Stream Management System. In: CIDR (2003)

Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed Stream Computing Platform.
In: ICDMW (2010)

OSGi Service Platform: http://www.osgi.org/

Papaemmanouil, O., Cetintemel, U., Jannotti, J.: Supporting Generic Cost Models for Wide-
Area Stream Processing. In: ICDE (2009)

Pietzuch, PR., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.L.:
Network-Aware Operator Placement for Stream-Processing Systems. In: ICDE (2006)
Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications through Soft-
ware Modularization. In: Middleware (2007)

Schneider, S., Andrade, H., Gedik, B., Biem, A., Wu, K.L.: Elastic Scaling of Data Parallel
Operators in Stream Processing. In: IPDPS (2009)

StreamBase Systems, Inc.: http://www.streambase.com/

Tatbul, N.: Streaming data integration: Challenges and opportunities. In: NTII (2010)
Truviso, Inc.: http://www.truviso.com/

Zeitler, E., Risch, T.: Scalable Splitting of Massive Data Streams. In: DASFAA (2010)

