
A Middleware Layer for Flexible and
Cost-efficient Multi-Tenant Applications

Stefan Walraven, Eddy Truyen, and Wouter Joosen

IBBT-DistriNet, Katholieke Universiteit Leuven
3001 Leuven, Belgium

{stefan.walraven,eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract. Application-level multi-tenancy is an architectural design
principle for Software-as-a-Service applications to enable the hosting of
multiple customers (or tenants) by a single application instance. Despite
the operational cost and maintenance benefits of application-level multi-
tenancy, the current middleware component models for multi-tenant ap-
plication design are inflexible with respect to providing different software
variations to different customers.
In this paper we show that this limitation can be solved by a multi-
tenancy support layer that combines dependency injection with middle-
ware support for tenant data isolation. Dependency injection enables
injecting different software variations on a per tenant basis, while dedi-
cated middleware support facilitates the separation of data and config-
uration metadata between tenants. We implemented a prototype on top
of Google App Engine and we evaluated by means of a case study that
the improved flexibility of our approach has little impact on operational
costs and upfront application engineering costs.

Keywords: Multi-tenancy, Dependency injection, Software-as-a-Service,
Google App Engine

1 Introduction

Context. An important trend in the landscape of service-oriented software has
been the rise of the “Software-as-a-Service” (SaaS) delivery model [31] where
software applications are created and sold as highly configurable web services. A
well-known SaaS provider delivers for instance a Customer Relationship Manage-
ment (CRM) application [28] as a configurable service to a variety of customers
that each have their specific preferences and required configurations.

SaaS applications differ from traditional application service provisioning (ASP)
in the sense that economies of scale play a much more important role. A tradi-
tional application service provider typically manages one dedicated application
instance per customer. In contrast, SaaS providers typically adopt a multi-tenant
architecture [7], meaning that a shared application instance hosts multiple cus-
tomers, which are called tenants. The primary benefit of this approach is that
the operational costs can be significantly reduced : (i) hardware and software re-
sources can be more cost-efficiently divided and multiplexed across customers,



and (ii) the overall maintenance effort is seriously simplified because upgrading
the application software can be performed for all tenants at once.

Problem. Application-level multi-tenancy comes however also with a number
of disadvantages. More specifically, in this paper we focus on two challenges
when implementing multi-tenancy at the application level. First application en-
gineering complexity is increased. The engineering of multi-tenant application
software is more complex than traditional single-tenant applications that are
deployed per individual tenant. The primary cause is that the application de-
veloper should take measures to ensure isolation between different tenants with
respect to the application configuration and data of each tenant [15]. Moreover,
a tenant-specific management facility needs to be created such that application
configuration management per tenant is separated from the core application
management by the SaaS provider.

Secondly, in order to meet the unique requirements of the different tenants,
the application must be highly configurable and customizable. The current state
of practice in SaaS development is that configuration [7,15] is preferred over
customization which is considered too complex [30]. Configuration usually sup-
ports variance through setting pre-defined parameters for the data model, user
interface and business rules of the application. Customization on the other hand
involves software variations in the core of the SaaS application in order to address
tenant-specific requirements that cannot be solved by means of configuration.
Compared with configuration, customization is currently a much more costly ap-
proach for SaaS vendors because it introduces an additional layer of application
engineering complexity and additional maintenance overhead.

Approach & Contribution. This paper presents a software development and
execution platform1 for building and deploying customizable multi-tenant appli-
cations, narrowing down the gap between configuration and customization. More
specifically, we present a multi-tenant middleware layer on top of Platform-as-
a-Service (PaaS) platforms that (i) supports improved customization flexibility,
(ii) preserves the operational cost benefits of the application-level multi-tenancy
principle, and (iii) frees the application developer from a lot of initial application
engineering costs for multi-tenancy.

We implement our middleware layer on top of Google App Engine (GAE) [13].
We extend the Guice dependency injection framework [14] with support for
tenant-specific activation of software variations and use the scalable and high-
performance datastore of GAE for storing and isolating tenant-specific applica-
tion metadata. We evaluate the feasibility of our middleware layer by comparing
a standard single-tenant and multi-tenant application with a flexible version
that is developed using our middleware layer. This shows that the impact of our
middleware layer on operational costs and additional application engineering
complexity is minimal.

Structure of the Paper. The remainder of this paper is structured as follows.
Section 2 introduces the case study and motivates the need for a middleware

1 Other aspects of SaaS applications such as SLA management, metering and billing
are out of the scope of this paper.



that supports true application-level multi-tenancy with improved customization
flexibility. Subsequently, Section 3 presents the architecture of our middleware
layer and its implementation on top of Google App Engine. Section 4 presents
the evaluation of our middleware architecture in the three dimensions of cus-
tomization flexibility, operational costs, and initial engineering costs. Section 5
elaborates on related work and Section 6 concludes the paper.

2 Problem Elaboration & Motivation

This section first explores the design space of multi-tenant applications and po-
sitions our intended middleware architecture in this space. Subsequently our
work is motivated by means of an application case. Finally, the main require-
ments for our middleware layer are derived from a customization scenario in this
application case.

2.1 Multi-tenancy Architectural Strategies

Multi-tenancy aims to maximize resource sharing among customers of a SaaS ap-
plication and to reduce operational costs. However different architectural strate-
gies can be applied to achieve multi-tenancy. As shown in Fig. 1, multi-tenancy
can be realized at the application level, middleware level or virtualized infras-
tructure level. Each approach makes a different trade-off between (i) minimiz-
ing operational costs (including infrastructural resources as well as maintenance
cost), (ii) minimizing upfront application (re-)engineering costs, and (iii) maxi-
mizing flexibility to meet different customer requirements.

Fig. 1. Different architectural approaches to achieve multi-tenancy.



As stated in the introduction, application-level multi-tenancy maximizes the
level of resource sharing but is also the least flexible choice with additional engi-
neering overhead. At the other end of the spectrum, virtualization technology can
be used to run multiple operating system partitions with dedicated application
and middleware instances for each tenant on shared servers. The advantage of
this approach is its increased flexibility and low upfront application engineering
cost. However, fewer tenants can be hosted on a single server and maintaining
separate application instances per tenant also has a much higher cost than with
application-level multi-tenancy.

Middleware-level multi-tenancy [5,2] uses a separate middleware platform
that is able to host multiple tenants on top of a shared operating system, which
may be either placed on a physical or virtualized hardware. In this way, the
initial engineering complexity for multi-tenancy is shifted from the application
level to a reusable middleware layer that also offers basic support for isolation
of tenants. However, the component and deployment model of these middleware
architectures still require that a separate application instance is deployed for
each tenant which again implies a higher maintenance cost.

Our proposal is to create middleware support for building true multi-tenant
applications with the flexibility to adapt to tenant-specific requirements. Because
all tenants are served by the same instance of the application, this means that
there is need for tenant-specific software variability in the application compo-
nents. We assume that such multi-tenant application components do not main-
tain tenant-specific state, but that all tenant-specific state is stored in a (sepa-
rate) database. To ensure scalability when user load increases, a pool of identi-
cal application instances with our middleware layer have to be created. Existing
PaaS platforms already take care of this scalability requirement in a transparent
way. For example, Google App Engine automatically scales up (and down) by
creating extra instances as the load increases. We therefore propose to incept
our middleware layer as an extension for PaaS platforms.

2.2 Motivating Example

Consider the example of a SaaS provider for on-line hotel booking (see Fig. 2).
The SaaS provider offers a highly configurable web service that travel agencies
can use for booking hotels and flights on behalf of their customers. Travel agen-
cies play in this example the role of tenant whereas employees and customers
of a travel agency are considered the users that belong to a tenant. Employees
are offered a customized user interface and customers of the travel agency can
login to check the status of the travel items through a URL with a custom-made
domain-name that corresponds with the travel agency. A special ‘tenant admin-
istrator’ role is assigned to someone who is responsible for configuring the SaaS
application, setting up the application data and monitoring the overall service.
This role can be played by an internal or external client of the SaaS provider
or even resellers who are an intermediate business proxy. In the context of this
simple example, the tenant administrator belongs to the ICT staff of a travel
agency company.



1
n

…

tenants = 

travel agencies

SaaS provider

1a 1i

…

na nj

…
users belonging to tenant =

employees/customers 

of travel agency

SaaS Application for on-line hotel booking

Presentation 
Tier

Business 
Tier

Data 
Tier

Client 
Tier

Fig. 2. SaaS application for on-line hotel booking.

2.3 Requirements Derived from a Customization Scenario

Suppose that a particular travel agency wants to be able to offer price reductions
to their returning customers. As such, the on-line hotel booking application
should be extended with an additional service for managing customer profiles
and a service for calculating price reductions. We assume that SaaS providers
employ a business model where the base application is offered to tenants at
no or low cost, but tenants incur an additional price for additional services.
Based on this simple scenario, we can derive requirements with respect to core
development, service customization and runtime support.

With respect to development, the application development team of the SaaS
provider should be offered a simple way to manage the different tenant-specific
variations as separate units of deployment that can be selectively bound to
the core architecture of the application. Moreover, the overall ‘multi-tenancy
concern’ should be well separated from the application layer.

With respect to customization, tenant administrators should be offered a
configuration facility to select what software variations should be enabled for
them (e.g. the price reduction service). In addition, this facility should also
allow to specify specific configuration parameters (e.g. business rules for the price
reduction service). This configuration data should be stored in the datastore of
the SaaS provider in an isolated way under a specific tenant ID.

The runtime support of the middleware layer must provide support for in-
jecting software variations on a per tenant basis. When a user (either customer
or employee) logs in, the tenant to which the user belongs should be determined.
Based on the acquired tenant ID, the multi-tenant middleware should then ac-
tivate the appropriate software components to process the requests of the user.
Another key requirement of the execution platform is that the tenant-specific
software variations should be applied in an isolated way without affecting the
service behavior that is delivered to other tenants.

3 Middleware Support for Tenant-specific Customization

This section presents the overall architecture of our middleware layer to support
tenant-specific customization of SaaS applications. The component model of our



middleware layer targets multi-tier applications and structures the application
into a core architecture with declared variability points for multi-tenant soft-
ware variations. Building on top of this component model, the middleware layer
consists of a support layer for tenant administrators and run-time support for
injecting software variations on a per tenant basis.

In this paper we focus on the customization of component-based multi-tier
applications, rather than business processes (e.g. BPEL). The latter requires a
different approach where software variations are deployed as separate services,
and per tenant a separate business process is responsible for the coarse-grained
composition of the appropriate services. In the context of component-based ap-
plications, dependency injection (DI) [11] is a common composition mechanism.
With standard DI however, separate object hierarchies are maintained per tenant
in a shared address space which increases heap memory storage and supports
only static binding of software variations. Therefore, we prefer a composition
mechanism that allows in situ run-time rebinding of variations. This requires an
extension to the DI mechanism.

This section is structured as follows. We first propose an extension to the
the multi-tier component model to make it tenant-aware. Next we describe in
depth the architecture of our multi-tenancy support layer. Finally, the prototype
implementation of this middleware layer on top of Google App Engine [13] is
presented.

3.1 Tenant-Aware Component Model

To cope with the different and varying tenant requirements, we apply a feature-
based approach. Software variations are then expressed in terms of features. A
feature is a distinctive functionality, service, quality or characteristic of a soft-
ware system or systems in a domain [17]. Ideally these features are modular
software units that can be easily composed into the base application. As illus-
trated in Fig. 3, variation points are specified in the base application, repre-
senting the locations where features should be composed. A feature can have
several alternative implementations (e.g. I1 and I2 in the figure). Based on the
tenant-specific configuration, one of the feature implementations is bound to the
variation points across the different tiers.

Fig. 3. Illustration of the feature-based approach.



Our extension to the component model supports the application developers
of the SaaS provider to develop features as software modules. For each feature
different implementations can be registered. A feature implementation consists
of a set of software components (possibly at different tiers) and specifies how
these components are bound to the base application. The concept of features is
necessary to enable the SaaS provider to easily ensure the consistency of software
variations across the different tiers of the SaaS application.

In addition, the developers need to be able to tag the locations in the base
application where tenant-specific variation is allowed. To annotate these varia-
tion points, we introduce a new annotation: @MultiTenant. Listing 1 shows the
annotation of a field with the price calculation service interface. This variation
point initiates customization of the on-line hotel booking application based on
the currently applicable tenant-specific configuration, for example price calcula-
tion with price reduction. Because a variation point can be bound by different
features, the annotation has an optional parameter specifying the feature it be-
longs to. This enables developers to limit the variation point to a specific feature.

Listing 1. Annotation of a variation point for price calculations.

. . .
@MultiTenant
private IP r i c eCa l cu l a t o rS t r a t e gy p r i c eCa l cu l a t o rS t r a t e gy ;

. . .

3.2 Architecture of the Multi-tenancy Support Layer

The architecture of our middleware layer supporting flexible multi-tenant appli-
cations is presented in Fig. 4. This support layer consists of a flexible middleware
extension framework to manage features, specify tenant-specific configurations
and to dynamically activate the required variations on a per tenant basis via
dependency injection. This approach relies on a multi-tenancy enablement layer,
offering basic multi-tenancy support and facilitating the separation of data and
configuration metadata. Our multi-tenancy support layer serves as an exten-
sion to middleware platforms, but especially to Platform-as-a-Service (PaaS)
solutions. Possibly such a PaaS already offers built-in support for tenant data
isolation.

Multi-tenancy Enablement Layer. The base for application-level multi-
tenancy is isolation between the different tenants, such as isolation of data,
performance and faults. To achieve tenant-specific customization the main re-
quirement is isolation of data, more specifically configuration metadata. With the
default single-tenant approach, the configuration of an application is specified in
a global configuration file. In a multi-tenant context a global configuration file
results in a uniform application for all tenants, preventing tenant-specific cus-
tomization. Any change to the configuration would affect all tenants. Therefore
tenant-specific configurations have to be stored separately and applied within
the scope of a tenant, instead of globally.



Fig. 4. Overview of the multi-tenancy support layer.

To achieve tenant data isolation three main components are required: (i) the
tenant context containing the information of the tenant linked to the current
request (via a unique tenant ID), (ii) tenant-specific authentication to identify
the tenant, and (iii) multi-tenant data storage. Incoming requests are filtered to
retrieve the tenant ID (e.g. based on the request URL) and to set the current
tenant context. Multi-tenant data storage can be obtained by applying filters
that intercept the calls to the storage API and inject the tenant ID from the
associated tenant context. In addition, comparable interceptors are necessary
for the caching service (distributed in-memory storage). This allows to rapidly
retrieve tenant-specific configurations, without large I/O performance overhead.

Flexible Middleware Extension Framework. The flexible middleware ex-
tension layer provides the following functionality:

1. a feature management facility providing an API to manage the variability of
the application and the available feature implementations,

2. a configuration management facility to manage the default and tenant-specific
configurations,

3. a feature injector to dynamically inject the required software variations con-
forming the tenant-specific configurations.

Feature Management. The FeatureManager manages the set of available features
and their different implementations. A Feature specifies at least the following
information: a unique identifier (e.g. feature name) and description for the fea-
ture, and the set of registered implementations for that feature.



A FeatureImpl contains the description of the feature implementation, a set
of bindings, and a reference to the configuration interface of this implementation.
Each Binding specifies the mapping from a variation point to a specific software
component. This metadata about the features is globally accessible by both
the SaaS provider and the tenants, and therefore should not be isolated. The
FeatureManager offers a development API to enable the SaaS provider to create
and register features and feature implementations, while the tenants are able to
inspect the different features via the tenant configuration interface.

Configuration Management. Since a feature can have multiple implementations,
each tenant can specify its preference for a specific feature implementation via
the tenant configuration interface. Such a Configuration description defines the
mapping from a feature to a specific feature implementation, more specifically
from a feature ID to a FeatureImpl. The different tenant-specific configurations
are then managed by the ConfigurationManager. In contrast to the feature
descriptions, the tenant-specific configurations are stored on a per tenant basis.

Furthermore, the SaaS provider has to specify a configuration containing for
each feature the mapping to a default feature implementation. If a tenant does
not specify his tenant-specific configuration, this default configuration will be
automatically selected.

Tenant-aware Feature Injection. Based on the features registered in the Feature-
Manager and the default as well as tenant-specific configurations, our multi-
tenancy support layer has to activate the appropriate feature implementations
when required. To achieve this we apply the dependency injection (DI) pat-
tern [11]. Instead of instantiating the feature implementations directly in the
application, the flow of control is inverted: the life cycle management of feature
implementations is controlled by a dependency injector or provider. This injector
binds dependencies in the application to an implementation file. Such a binding
is traditionally but not necessarily a mapping between a type (generally an in-
terface or abstract class) and an implementation type (a class or component).
This concept of a binding between a dependency and an implementation corre-
sponds to our Binding between a variation point and a software component, as
specified in the FeatureImpls. As a result, in the above ConfigurationManager
a tenant-specific configuration corresponds to a specific configuration of the DI
framework.

For each variation point in the application the tenant-aware FeatureInjec-

tor decides at runtime which implementation needs to be used, based on the
configuration that applies. First, the FeatureInjector intercepts the requests to
a dependency and consults the ConfigurationManager. The latter queries the
multi-tenant data storage using the tenant ID to retrieve the tenant-specific con-
figuration. Subsequently, the right binding is obtained from the Configuration,
specifying the mapping between the variation point and a specific software com-
ponent. This software component is instantiated and injected in the application
to further handle the request. If the appropriate binding is not available in the
tenant-specific configuration, the default configuration is used. In case the feature



ID parameter was given, the search to the appropriate binding can be narrowed
down to the bindings of a specific feature implementation.

Finally the injected instance is stored in the cache in an isolated way using
the tenant ID. For the following requests by this tenant that involve the same
variation point, the FeatureInjector queries the cache. Using this tenant-aware
caching service enables us to support flexible multi-tenant customization of a
shared instance without the associated performance overhead.

3.3 Implementation

We implemented a prototype of our multi-tenancy support layer on top of Google
App Engine (GAE) [13] (SDK 1.5.0), using the Java programming language and
the Guice dependency injection framework [14] (v3.0). Google App Engine is a
PaaS plaform to build and host traditional web applications developed with Java
Servlets and Java Server Pages (JSP). GAE has built-in support for tenant data
isolation via the Namespaces API. A separate namespace is assigned to each
tenant. We only had to implement a TenantFilter to map incoming requests
to a specific namespace and to configure that all requests have to go through
this filter. For caching we use the Memcache service.

We chose Guice as DI framework because it is type-safe and compatible with
GAE. However, it does not support the execution of tenant-specific injections:
all dependencies are set globally. Any modification would affect all tenants. This
is a general problem with dependency injection because it does not support
activation scopes.

To solve this issue, we added an extra level of indirection. Instead of injecting
features, we inject a Provider for that feature. This way the servlets have a de-
pendency to a provider of a feature instead of to the feature itself. This generic
FeatureProvider decides based on the tenant-specific configuration which fea-
ture implementation should be selected. However, the customizations that can
be performed this way are limited to switching between implementations of an
interface or abstract class.

4 Evaluation

The evaluation of our approach consists of several measurements of the opera-
tional and reengineering costs for our multi-tenancy support layer. In particular
we want to measure the overhead introduced by the multi-tenancy support layer.
We compare the results of our multi-tenancy support layer with a multi-instance,
single-tenant approach and the default multi-tenant solution without flexibility.

We first describe the general methodology we applied. Next, a general cost
model for the operational and reengineering costs of SaaS applications is speci-
fied. Finally we present the measurements we performed and compare the results
with our cost model.



4.1 Methodology

In this evaluation we measure and compare the operational and engineering
costs between a default and flexible single-tenant version, a default multi-tenant
version (without flexibility), and a multi-tenant version using our multi-tenancy
support layer. For these measurements we use the hotel booking application
described in the case study. The source code of these four versions including our
multi-tenancy support layer, is available on http://distrinet.cs.kuleuven.

be/projects/CUSTOMSS.
To determine the operational costs the diferent versions of the application are

deployed on top of Google App Engine (SDK 1.5.0), using the high replication
datastore (default option). In the case of the single-tenant application, we deploy
a separate application for each tenant, while both multi-tenant versions only
need one application each. Each tenant is represented by 200 users who each
execute a booking scenario. This booking scenario consists of 10 requests to the
application: first several requests to search for hotels with free rooms in a given
period, then creating a tentative booking in one hotel and finally the confirmation
of the booking. The different users of one tenant execute the booking scenario
sequentially, while the tenants run concurrently. Notice that it is not our goal to
create a representative load for this application, but to compare the operational
costs of the different versions under the same load. We retrieve the information
about the execution cost via the GAE Administration Console. It provides a
dashboard displaying the resource usage by the application. The focus of this
comparison is on the relative differences between the execution costs, since the
absolute numbers depend on the current (global) load on the GAE platform.

The reengineering costs are compared based on the quantity of source code
used to develop the case study application for the different versions. We make
a distinction between Java code, JSP pages (for the user interface), and config-
uration files (XML). The number of source lines of code are determined using
David A. Wheeler’s ‘SLOCCount’ application.

4.2 Cost Model

The goal of the cost model is to define the metrics for our measurements, and
to represent our hypothesis about the operational and reengineering costs asso-
ciated with single-tenant and multi-tenant applications. In addition, it enables
us to analyze the impact of customization flexibility on these costs.

Operational Costs. The operational cost can be subdivided in (i) the applica-
tion’s execution cost (resource usage), (ii) the costs to maintain the application
such as performing upgrades, and (iii) the administration cost, i.e. the cost to
provision a new customer (tenant) with an application.
Execution Cost. We use CPU time, memory and storage usage as the main exe-
cution cost drivers. Another important resource is network bandwidth. However,
the introduction of multi-tenancy has no effect on the required bandwidth.

Let t be the number of tenants, u the number of active users per tenant, and
Cpu(t, u), Mem(t, u) and Sto(t, u) the total usage of respectively CPU, memory



and storage. Then, in the case of a single-tenant application (ST),

CpuST (t, u) = t ∗ fCpuST (u)

MemST (t, u) = t ∗ (M0 + fMemST (u))

StoST (t, u) = t ∗ (S0 + fStoST (u))

(1)

where fCpuST (u), fMemST (u) and fStoST (u) are functions of u, representing the
usage of CPU, memory and storage by one single-tenant application instance.
M0 and S0 are constants for the memory and storage usage by an idle instance.

In the multi-tenant case (MT) we introduce an extra parameter i, i.e. the
number of identical multi-tenant instances managed by a load balancer (see SaaS
maturity level 4 in [7]). Then,

CpuMT (t, u, i) = t ∗ (fCpuST (u) + fCpuMT (u))

MemMT (t, u, i) = i ∗M0 + t ∗ fMemST (u) + fMemMT (t)

StoMT (t, u, i) = S0 + t ∗ fStoST (u) + fStoMT (t)

(2)

where fCpuMT (u) is a function of u, representing the additional CPU neces-
sary for tenant-specific authentication and isolation of the incoming requests.
fMemMT (t) and fStoMT (t) are functions of t for the additional memory and
storage required to store (global) data about the tenants, for instance the ten-
ant’s name and address.

Since the number of multi-tenant instances is limited compared to the number
of tenants and the additional amount of memory and storage for multi-tenancy
support is relatively small compared to the shared amount of memory and stor-
age (M0 and S0), this results in:

i � t

fMemMT (t) � (t− i) ∗M0

fStoMT (t) � t ∗ S0

(3)

Thus from Equations (1), (2) and (3), we can compare the execution costs of the
single-tenant and multi-tenant versions:

CpuST (t, u) < CpuMT (t, u, i)

MemST (t, u) > MemMT (t, u, i)

StoST (t, u) > StoMT (t, u, i)

(4)

As a result a multi-tenant application consumes less storage and memory than a
single-tenant application, but requires more CPU. However, the latter is limited
to authenticating the tenant and ensuring isolation.
Maintenance Cost. The maintenance cost largely consists of the cost to develop
and deploy upgrades to the application. Let f be the upgrade frequency, i the
number of instances to upgrade, and Upg(f, i) the total upgrade cost, then:

UpgST (f, t) = fDevST (f) + t ∗ fDepST (f)

UpgMT (f, i) = fDevST (f) + i ∗ fDepST (f)
(5)



where fDevST (f) and fDepST (f) are functions of f, representing the development
and deployment cost of one single-tenant application instance. The number of
single-tenant instances equals the number of tenants t. Often there is only one
multi-tenant application instance that is automatically cloned to spread the
load over multiple identical instances, resulting in i being equal to 1. Besides
the application, the multi-tenancy support should also be upgraded, but since
this is part of the middleware it should not be taken into account here.
Administration Cost. For the SaaS provider the administration cost consists of
two constant costs: (i) creating and configuring a new application instance (A0),
and (ii) provisioning a new tenant with an application (T0), for instance by
registering the tenant ID in the application and providing a URL to access the
application. Let t be the number of tenants, then:

AdmST (t) = t ∗ (A0 + T0)

AdmMT (t) = A0 + t ∗ T0

(6)

Reengineering Costs. When migrating an application to the cloud, reengi-
neering is required to make use of the available cloud services, for example stor-
age. In addition, making an application multi-tenant results in an additional
reengineering cost. The latter is the difference in reengineering costs between
a single-tenant and a multi-tenant application, and is dependent on the mid-
dleware platform that is used. For example, when an API for multi-tenancy is
provided, this reengineering cost stays limited. Without this support, additional
development is required to provide tenant-specific authentication and to ensure
isolation between the different tenants.

Impact of Flexibility. Our multi-tenancy support layer provides multi-tenant
SaaS applications with the flexibility to adapt to the different and varying re-
quirements of the tenants. However, this also has an effect on the operational
and reengineering costs.
Operational Costs. The tenant-specific configuration of single-tenant applications
can be set at deployment time. Therefore the effect of tenant-specific variations
have a negligible effect on the execution cost of single-tenant applications. Only
the base storage S0 will increase with the core application and its features. In the
case of the flexible multi-tenant application, CPU usage fCpuMT (u) (see Eq. (2))
will increase because the tenant-specific configuration should be retrieved and
activated by the FeatureInjector. Further, additional memory (fMemMT (t))
and storage (fStoMT (t)) is required to store this tenant-specific configuration
and the different feature implementations. Though, these differences are not in
such quantity that they will affect Eq. (4).

The impact of adding flexibility on the maintenance cost will be especially
noticeable in the upgrade frequency f, because the features also have to be main-
tained. Since the tenant-specific configuration of a single-tenant application is
set at deployment time, changes to this configuration will require additional work
for the SaaS provider (C0). We add an extra parameter c, the (average) number



of tenant-specific configuration changes which cannot be done by the tenant.
Tenants of a multi-tenant application can set their tenant-specific configuration
themselves. This results in no maintenance overhead for the SaaS provider.

UpgST (f, t, c) = t ∗ (fUpgST (f) + c ∗ C0) (7)

For the administration cost, flexibility only affects the initial configuration
of the application (A0 in Eq. (6)) for both versions. In the single-tenant case
this consists of setting the tenant-specific configuration, while the SaaS provider
needs to specify the default configuration for the multi-tenant application.
Reengineering Costs. To add the necessary flexibility, multi-tenant applications
require development support for the application developers, support to retrieve
and activate the tenant-specific configurations when needed, and a configuration
interface to let tenants specify their configuration based on the set of available
features. Our multi-tenancy support layer provides this support: multi-tenant
applications only have to interact with it. This still results in additional but
limited reengineering cost, for example to define the variation points, register
the features and specify the default configuration. In a single-tenant application
additional reengineering is only needed to facilitate the instantiation of a tenant-
specific configuration.

Providing tenants with the flexibility to customize the application, also re-
quires the development of the different software variations. However, this is part
of the core application development cost and therefore is not taken into account
as reengineering cost.

4.3 Measurements

We focus on the execution cost of running the different versions on top of Google
App Engine, and the reengineering cost. Since the maintenance and administra-
tion costs are hard to measure, we refer to our cost model for more details.

Execution cost. To determine the execution cost we run the four different versions
of our case study application on top of GAE: a single-tenant version, a multi-
tenant version, a single-tenant version with variability, and a multi-tenant version
using our multi-tenancy support layer. However, we noticed that there is no
difference in execution cost between the two single-tenant versions, since all
variability is hard-coded. Therefore we only show the results of the default single-
tenant version. Furthermore, the storage cost is not measured. Because the case
study is not a data intensive application, data usage is too limited to make any
conclusions about the storage cost.

In Fig. 5 we present the evolution of the average CPU usage with an increas-
ing number of tenants. The CPU usage by the single-tenant version is linearly
proportional to the number of tenants, as in Eq. (1). We also notice that the
CPU usage by both multi-tenant versions is also rather linear, but lower than
the single-tenant application, which differs with our cost model (see Eq. (2)).
However, our cost model represents the usage of CPU by the application, while



Fig. 5. Overview of the CPU usage by the different versions.

on GAE the CPU time for the runtime environment is included. This is an addi-
tional cost per application and therefore has more influence on the single-tenant
version. We can conclude that the multi-tenant versions require less CPU time
than the single-tenant application, and that our multi-tenancy support layer
shows limited overhead compared to the default multi-tenant version.

Fig. 6. Overview of the number of instances used by the different versions.

The total memory usage cannot be measured precisely, because several other
factors despite the application binaries add or reduce memory consumption: a
rising number of requests triggers an increase in memory because a new instance
(i.e. process required to handle the incoming requests) is started to provide
better load balancing, and once the requests decline, instances become idle and
are removed to release memory (M0 in Eq. (1) and (2) is 0). Therefore, we use the
average number of instances to represent the maximal possible memory usage.



Figure 6 shows the evolution of the average number of application instances when
increasing the number of tenants. As can be seen, the difference between the
single-tenant and multi-tenant versions is significant. The number of instances
for both multi-tenant versions increases only slightly with the number of tenants.

Reengineering cost. Table 1 shows the quantity of source code used to develop the
case study application. The engineering cost to develop multi-tenancy support
is not taken into account, because this is part of the middleware. The differences
in lines of source code between the single-tenant and multi-tenant versions is the
reengineering cost required to let the application use the multi-tenancy support.

Table 1. Overview of the source lines of code (sloc) of the different versions.

Java JSP XML (config)

Default single-tenant 915 514 131

Default multi-tenant 915 514 139

Flexible single-tenant 1016 514 131

Flexible multi-tenant 1090 514 74

In the default multi-tenant version without flexibility, the developer only has
to write 8 extra lines of configuration compared to the single-tenant version. This
is to specify that the TenantFilter should be used, which uses the Namespaces
API of Google App Engine to ensure data isolation.

When using our multi-tenancy support layer, the difference with the flexible
single-tenant application is bigger. However, the majority of these 74 extra lines
of Java code are required to use Guice, and not to use our layer. Moreover,
the use of Guice resulted in a decrease of configuration lines. Furthermore, in
the flexible single-tenant version the configuration is hardcoded and not user
friendly. Making this more accessible for the developers to configure will result
in more reengineering cost. Finally, we can conclude that adding flexibility to
multi-tenant applications by means of our multi-tenancy support layer requires a
limited reengineering cost. This cost consists of creating and registering features
and their feature implementations, and defining the default configuration.

5 Related Work

Related work can be divided into three domains: a) middleware support for
developing multi-tenant applications, b) work on customization of multi-tenant
SaaS applications, and c) adaptive middleware.

Middleware Support for Multi-tenancy. Multi-tenancy is a key enabler to de-
liver SaaS applications with high cost effectiveness. The current state of the art
especially focuses on approaches to support isolation in multi-tenant software ap-
plications [15,5]. For instance, Guo et al. [15] discuss design and implementation
principles for application-level multi-tenancy, exploring different approaches to
achieve better isolation of security, performance, availability and administration
among tenants.



Only a few Platform-as-a-Service (PaaS) solutions offer support to build
multi-tenant applications. Google App Engine (GAE) [13] facilitates the de-
velopment of multi-tenant applications via the Namespaces API. Application
data is partitioned across tenants by specifying a unique namespace string for
each tenant (the tenant ID). These namespaces are supported by several GAE
services, such as the datastore and the caching service, enabling tenant data
isolation in a transparent way. The Namespaces API is also supported by GAE’s
open-source implementation AppScale [6]. Other PaaS platforms supporting ten-
ant data isolation are Apprenda SaaSGrid [1] and GigaSpaces SaaS-Enablement
platform [12]. None of these platforms directly support tenant-specific customiza-
tions and therefore do not offer the same flexibility as our solution. Note that
these platforms can also be used as underpinning PaaS for our approach.

In the traditional middleware space JSR 342, the Java EE 7 Specification [9],
aims to enhance the suitability of the Java EE platform for cloud environments,
including support for multi-tenancy. A descriptor for application metadata will
enable developers to describe certain cloud-related characteristics of applications,
for example by tagging them as multi-tenant or by specifying the sharing of
resources. This extension of the component model with cloud-specific application
metadata focuses on persistence and security. Our multi-tenancy support layer,
however, offers a way to annotate points of tenant-specific variation, increasing
the flexibility of multi-tenant applications, and thus is complementary.

Customization of Multi-tenant SaaS Applications. Although tenant-specific cus-
tomizations are an important requirement [7,30,3], it is not trival to adapt the
business logic and data to the requirements of the different tenants [15], espe-
cially in Java or .NET, the programming languages commonly used for enterprise
applications.

Bezemer et al. [3] applied their multi-tenancy reengineering pattern to enable
multi-tenancy in software services. This pattern requires three additional compo-
nents: a multi-tenant database, tenant-specific authentication and configuration.
Configuration is however limited to the look-and-feel and workflows.

In [21] variability modeling techniques from software product line engineering
(SPLE) [25] are applied to support the management of variability in service-
oriented SaaS applications. Application templates describe the variability via
variability descriptors. Our work focuses on the realization of tenant-specific
customizations in SaaS applications, which is not covered by this work.

Existing approaches for dynamic customization of multi-tenant SaaS appli-
cations utilize dynamic interpreted languages [28,22]. However, we focus on cus-
tomization of enterprise multi-tier applications, which are commonly written
in statically typed languages such as Java or C#. In this context, a dynamic
software adaptation approach such as dynamic aspect weaving or dynamic com-
ponent reconfiguration is preferred.

Adaptive Middleware. The state of the art in adaptive middleware [4,18,8,20,26]
has mostly focused on adapting applications to one usage context at a time. This
means that application software is adapted by replacing an old configuration to a



new configuration. In other words, the existing configuration interfaces of adap-
tive middleware are inherently oriented towards the dimension of the application
owner or end user, but have no good ways of managing software variations on
behalf of tenants. Adaptive middleware techniques include reflection and aspect-
oriented development. The following paragraphs more closely relate our work to
these two techniques.

Reflective middleware platforms, such as DynamicTAO [19] and OpenORB [8],
provide a configuration interface to inspect and adapt the structure of applica-
tions and middleware at runtime. However, these adaptations are based on a
global configuration and result in the replacement of components, thus affecting
all tenants. They do not allow adaptations scoped to a specific tenant.

Aspect-oriented frameworks such as JAC [24], JBoss AOP [16] and Spring
AOP [29], have improved the modularization and customization capabilities of
middleware platforms and applications. By means of a declarative configuration
application-specific or user-specific extensions can be weaved in where necessary.
Currently also dynamic and distributed aspect weaving are supported [24,20,27],
including in a reliable and atomic manner [23,32]. These AO-techniques are
therefore suitable for usage in a multi-tenant context. Lasagne is an aspect-
oriented middleware [33] that supports concurrent, co-existing configurations
of the same application instance. This approach is however limited to tradi-
tional client-server architectures and does not support customization of multi-
tenant software. Still, aspect-oriented software development (AOSD) [10] looks
a promising alternative for dependency injection to support tenant-specific in-
jections of crosscutting feature implementations.

6 Conclusion

This paper presented a reusable middleware layer on top of an existing PaaS
platform to support customizable multi-tenant applications while maintaining
the operational cost benefits of true application-level multi-tenancy. We have
implemented a prototype on top of Google App Engine and extended the Guice
dependency injection framework to achieve activation of software variations on
a per tenant basis. This prototype shows improved flexibility with a minimal
impact on operational costs for the SaaS provider.

Dependency injection proved to be useful to support the customization of
multi-tenant applications. However, adding new features requires the introduc-
tion of new variations points in the core application. In addition, for each varia-
tion point only one software variation can be injected at a time. This complicates
more advanced customizations, such as feature combinations. In this respect,
AOSD is a more powerful alternative which we will investigate in the future.

A future research challenge with respect to application-level multi-tenancy is
adding support for tenant-specific monitoring and ensuring performance isolation
between different tenants. When performing our measurements we experienced
that GAE lacks performance isolation between the different tenants. Especially
when a number of tenants heavily uses the shared application, this results in a



denial of service for the end users of certain tenants. Additional support from the
operating system and middleware layers is needed to ensure this performance iso-
lation. Furthermore, tenant-specific monitoring enables SaaS providers to better
check and guarantee the necessary SLAs.

Acknowledgments. We thank the reviewers for their helpful comments to
improve this paper. This research is partially funded by the Interuniversity At-
traction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U.Leuven.

References

1. Apprenda Inc.: SaaSGrid Middleware. http://apprenda.com/saasgrid/
2. Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D.,

Weerawarana, S., Fremantle, P.: Multi-tenant SOA Middleware for Cloud Com-
puting. In: International Conference on Cloud Computing. pp. 458–465. (2010)

3. Bezemer, C.P., Zaidman, A., Platzbeecker, B., Hurkmans, T., Hart, A.: Enabling
Multi-Tenancy: An Industrial Experience Report. In: ICSM ’10: International Con-
ference on Software Maintenance (2010)

4. Blair, G.S., Coulson, G., Robin, P., Papathomas, M.: An architecture for next
generation middleware. In: Middleware ’98: IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing. pp. 191–206. (1998)

5. Cai, H., Wang, N., Zhou, M.J.: A Transparent Approach of Enabling SaaS Multi-
tenancy in the Cloud. In: SERVICES-1 ’10: Congress on Services. pp. 40–47 (2010)

6. Chohan, N., Bunch, C., Pang, S., Krintz, C., Mostafa, N., Soman, S., Wolski, R.:
AppScale: Scalable and Open AppEngine Application Development and Deploy-
ment. In: International Conference on Cloud Computing. pp. 57–70. (2010)

7. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail.
Microsoft Corporation, http://msdn.microsoft.com/en-us/library/aa479069.

aspx (April 2006)
8. Coulson, G., Blair, G.S., Clarke, M., Parlavantzas, N.: The design of a configurable

and reconfigurable middleware platform. Distributed Computing 15(2), 109–126
(2002)

9. DeMichiel, L., Shannon, B.: JSR 342: JavaTM Platform, Enterprise Edition 7
(Java EE 7) Specification. http://www.jcp.org/en/jsr/detail?id=342 (2011),
Last visited at May 26th 2011

10. Filman, R.E., Elrad, T., Clarke, S., Akşit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley, Boston (2004)

11. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern.
http://martinfowler.com/articles/injection.html (January 2004)

12. GigaSpaces Technologies Inc.: SaaS-Enablement Platform for ISVs. http://www.
gigaspaces.com/saas-enablement

13. Google, Inc.: Google App Engine. http://code.google.com/appengine/
14. Google Inc.: Guice. http://code.google.com/p/google-guice/
15. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A Framework for Native

Multi-Tenancy Application Development and Management. In: CEC/EEE ’07: In-
ternational Conference on E-Commerce Technology and International Conference
on Enterprise Computing, E-Commerce, and E-Services. pp. 551–558 (2007)



16. JBoss Community: JBoss AOP. http://www.jboss.org/jbossaop/
17. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Tech. Rep. 21, SEI, CMU,
Pittsburgh, PA (1990)

18. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware.
Commun. ACM 45(6), 33–38 (2002)

19. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, C., Campbell,
R.H.: Monitoring, security, and dynamic configuration with the dynamicTAO re-
flective ORB. In: Middleware ’00: International Conference on Distributed systems
platforms. pp. 121–143. (2000)

20. Lagaisse, B., Joosen, W.: True and Transparent Distributed Composition of
Aspect-Components. In: Middleware ’06: International Conference on Middleware.
pp. 41–62. (2006)

21. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability modeling to sup-
port customization and deployment of multi-tenant-aware Software as a Service
applications. In: PESOS ’09: ICSE Workshop on Principles of Engineering Service
Oriented Systems. pp. 18–25. (2009)

22. Müller, J., Krüger, J., Enderlein, S., Helmich, M., Zeier, A.: Customizing Enter-
prise Software as a Service Applications: Back-End Extension in a Multi-tenancy
Environment. In: ICEIS ’09: International Conference on Enterprise Information
Systems. pp. 66–77. (2009)

23. Nicoară, A., Alonso, G.: Dynamic AOP with PROSE. In: ASMEA ’05: Workshop
on Adaptive and Self-Managing Enterprise Applications. pp. 125–138 (2005)

24. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: A flexible solution for
aspect-oriented programming in Java. In: REFLECTION ’01: International Con-
ference on Meta-level Architectures and Separation of Crosscutting Concerns. pp.
1–24. (2001)

25. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer-Verlag New York Inc (2005)

26. Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S., Stav, E.: Composing com-
ponents and services using a planning-based adaptation middleware. In: Software
Composition. pp. 52–67. (2008)

27. Rouvoy, R., Eliassen, F., Beauvois, M.: Dynamic planning and weaving of depend-
ability concerns for self-adaptive ubiquitous services. In: SAC ’09: Symposium on
Applied Computing. pp. 1021–1028. (2009)

28. Salesforce.com, Inc.: http://www.salesforce.com
29. SpringSource: Aspect Oriented Programming with Spring. http://static.

springsource.org/spring/docs/3.0.x/spring-framework-reference/html/

aop.html
30. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H.: Software as a Service: Configuration

and Customization Perspectives. In: SERVICES-2 ’08: Congress on Services Part
II. pp. 18–25 (2008)

31. Tao, L.: Shifting paradigms with the application service provider model. Computer
34(10), 32–39 (2001)

32. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for Distributed Adapta-
tions in Aspect-Oriented Middleware. In: AOSD ’08: International conference on
Aspect-oriented software development. pp. 120–131. (2008)

33. Truyen, E., Vanhaute, B., Jørgensen, B.N., Joosen, W., Verbaeten, P.: Dynamic
and selective combination of extensions in component-based applications. In: ICSE
’01: International Conference on Software Engineering. pp. 233–242. (2001)


