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Abstract. In this paper we explore the potential of a VoD system that is
based on a paradigm that has been recently proposed: that of combining
many distributed servers to handle the delivery of each requested media.

When faced with a system comprised of N servers and M clients, the
problems to be addressed are: (i) how to split the delivery task among
different servers and (ii) how to pair clients and servers, the objective
being to minimize the access time of the clients.

To this end, we present an analytical framework that enables the division
of the delivery process for each client in a distributed manner. This
framework is coupled with a genetic algorithm that enables an optimal
or near-optimal solution to the problem of pairing clients and servers, in
a small number of generations.

The paper is concluded by a rigorous study of a N-servers, M -clients
system that answers a number of important questions like, what is the
quality of service achieved and how our proposed system behaves under
increased load.

Keywords: multiple servers, multiple clients, genetic algorithms, video on
demand, divisible load.

1 Introduction

VoD presents a number of significant problems that have limited the scope and
clientele of most deployed systems to-date. The size of the data involved, even
with the latest codecs available (MPEG4), presents serious challenges to the
video servers and the carrier network. Multicasting [6] and other technologies like
simulcasting [7] permit the shift of the bottleneck from the servers themselves.
Alas, these delivery approaches also ”shift” control away from the end-user which
is ultimately the main allure of the VoD paradigm.

Keeping up with the user demands, puts hefty requirements on the servers.
Parallel video servers and intelligent disk scheduling has the potential needed,
but more-often-than-not they offer a localized solution. Clients with a slower



connection to a server have to wait for a very long time before the playback can
commence (a.k.a. Access Time - AT).

A recently proposed approach to the delivery of continuous documents is
to employ multiple distributed servers to deliver a requested document. The
framework needed for scheduling such a delivery has been originally presented
in [20] and further expanded and refined in subsequent publications [3] for the
case of a single client. In this paper we address the problem of how a system
with multiple clients and servers behaves and what are the characteristics of the
services offered. Our contribution also lies in the proposal of a genetic algorithm
for solving the server-client mapping problem under the constraint of minimizing
the average access time.

As a first step we describe the mathematical framework that enables the cal-
culation of a multi-server delivery schedule for a single client. Both single and
multi-installment strategies are described, the latter offering better utilization of
available resources, smaller AT and better suitability to adaptive strategies. The
genetic algorithm works by randomly producing a population whose individuals
are possible solutions to the client-server mapping problem. The algorithm pro-
duces optimal (or near optimal) mappings without suffering from intractability.
Our genetic algorithm is hybridized, i.e. departs from classical GA techniques,
by employing procedures for finding feasible schedules and for avoiding prema-
ture convergence to local optima. We have used a GA since we do not have an
exact solution for the delivery strategies and since GAs were successfully used
in solving a variety of optimization problems [8][15].

Our simulation study shows that the proposed solution offers a vastly im-
proved level of service from the traditional single server/per client approach.
Not only are average AT substantially lower, but even under extreme loads that
would cause denial of service to some clients, our system deteriorates gracefully.
Please note that the term server is used here to refer to server sites and not
particular machines. Each site could be a parallel server farm.

The paper is organized as follows: Section 2 presents related work in the field.
Section 3 holds a formal definition to the problem followed in Section 4 by the
mathematical framework needed for computing how to service a single-client’s
request. The genetic algorithm used to compute a near-optimum schedule for
a battery of clients is presented in Section 5. A simulation study concludes the
paper by comparing our work to the classical single-server per client approach.

2 Related Work

The idea of combining multiple geographically distributed servers for video data
delivery was originally introduced in [20]. The idea of using multiple connec-
tions to geographically distributed mirror sites has been also suggested by Ro-
driguez et.al. for minimizing FTP download times [18]. In similar premises, the
GridFTP protocol extension and associated tools facilitate speedier object repli-
cation/mirroring in high-performance computational grids [19]. GridFTP sup-
ports both parallel and stripped transfers , the latter being closer to the technique



utilized by our multiserver distribution strategy. In this paper we assume only
single connections for each client-server pair, although multiple connections can
be supported without modifications to the partitioning framework of section 4.

Most of the work on VoD has been focused on parallel video servers. A good
introduction on the subject is given by J. Lee in [14]. Jung et.al [12] have also
proposed the use of a data partitioning scheme among servers that resembles
data-interleaving in disk arrays (RAID).

Multicasting [6] can maximize network utilization while at the same time
minimize the server load. Patching has been proposed by several researcher as a
way of accommodating clients with different playback-starting times - a major
obstacle in the use of multicasting for VoD. Patching minimizes communication
overheads by retransmitting only the parts of the movie that a client has missed
[5]. The problem with multicasting is that it requires infrastructure changes like
special routers, etc.. Also, traffic localization is needed in order to cope with
network errors and communication delays. Not to mention of course, that each
movie should be requested by many clients at the same or close-enough time.

The simulcast protocol [7] has been proposed as an alternative to multicast-
ing. The advantage is that no modification or special treatment by the network
is required. Simulcasting uses the clients as repeater nodes. The problem is that
asymmetrical connections like ADSL are not designed to efficiently support such
operations, making simulcast a choice only for low bit-rate content.

Rejaie et.al. [17] proposed a layered video format and associated mechanism
for tuning data volume to network capacity. Pejhan et.al. [16] have demonstrated
a similar technique adapted to the MPEG standard. By storing a single video
along with the motion vectors needed for encoding it at smaller frame rates can
be efficiently used for quality adaptation. Both techniques allow the adapta-
tion of the QOS to network congestion and/or different communication speeds.
However, compromising quality can be a downside to a commercial service.

3 Problem description

The architecture examined in this paper consists of N servers connected to M
clients by generally non-uniform connections via the Internet. Each server holds
complete copies of the movies that could be requested.After a client requests a
particular movie, a number of servers ≤ N are devoted to serving this request,
by sending disjoint parts of the requested movie to the client.

Each server Si devotes bwi,j bandwidth for servicing client Cj . The number
of connections that can be simultaneously activated to a client are limited by the
client’s available bandwidth bwCj . Similarly, a server cannot accept connections
that would exceed its total bandwidth bwSi (see section 4.3). In the remaining
sections bandwidth is expressed in time-per-data-transferred units (e.g. sec/MB)

The arrangement described above for the distribution of the media files is
a proxy-at-client architecture [14], i.e. each client has to merge the individual
server streams prior to playback. An alternative approach could be to have the



proxy implemented by an ISP, thus making the client totally agnostic to the
details of the implementation and thus far simpler.

In order to build a model of the whole process, we assume that an affine model
dictates the communication costs. Thus, sending a part m of a movie from server
Si to client Cj requires bwi,j m Lj + o, where o is a constant overhead that can
be associated with setup activities or the cost of establishing a connection etc.,
and Lj is the length of the movie requested by client Cj . In this paper we assume
that o is incurred only once for each request and that it is the same for all servers.

The problem of a single client with multiple servers has been examined be-
fore in the literature [20], where a thorough comparison of single and multi-
installment strategies is available. The derivations presented in subsections 4.1
and 4.2 are simplifications of work presented in [3]. In this paper we focus on ex-
amining the behavior of a large scale system involving many clients and servers
using a multi-server delivery strategy. Such a system can offer improved customer
service while maximizing server utilization. Our model simplifications may in-
troduce a level of inaccuracy as far as real systems are concerned (for example
data losses are ignored) but these issues can be addressed in the future.

In the remaining sections we also use these notations: R represents the in-
verse of the movie playback rate (expressed in sec/MB). R is assumed to be
constant for each movie, i.e. we have Constant Bit-Rate media. mj,i represents
the document part that is delivered by server Si during installment j. For the
next subsection only, mi is used instead of m0,i for simplicity.

4 Scheduling Document Delivery

4.1 The Single Installment Case

If we assume that the clients don’t share any communication links apart from
the ones originating from the servers, then the delivery schedule can be found
for each individual client separately.

To simplify notation, in this subsection we remove the index related to client
identification from our parameters. If k ≤ N servers upload content to a client,
continuity of the playback is ensured if the following hold:

AT + m0 R L ≥ m0 L bw0 + o (1)

AT + (m0 + m1) R L ≥ m1 L bw1 + o (2)

. . .

AT + R L

k−1∑
i=0

mi ≥ mk−1 L bwk−1 + o (3)

In order to minimize the AT , the equality sign should be used in the above
inequalities. By doing so, and by subtracting successive inequalities, we get
mi+1 = bwi mi

bwi+1−R for i = 0, . . . , k − 2. Or in general

mi+1 =
m0

∏i
l=0 bwl∏i+1

l=1 (bwl − R)
(4)



Since the sum of all mis should be equal to 1 (also referred to as the normal-
ization equation), then we can compute m0 from:

k−1∑
i=0

mi = 1 ⇒ m0 =

(
1 +

k−1∑
i=1

∏i−1
l=0 bwl∏i

l=1(bwl − R)

)−1

(5)

and the access time from:

AT = L (bw0 − R)m0 + o (6)

In the case of uniform connections bwi ≡ bw, the above equation can be used
for estimating the number of servers that would be needed given a desired AT :

(5), (6) ⇒
(

bw

bw − R

)k

=
R L

AT − o
+ 1 ⇒ k = � log( R L

AT−o + 1)

log( bw
bw−R )

� (7)

4.2 The Multi-Installment Case

Server utilization can be substantially improved by splitting the document de-
livery into several installments, as each server stays idle for less time. Using a
multi-installment approach means that each server uploads disjoint document
parts in sequence (see Figure 1).

The continuity of the playback given N servers and W installments, is ensured
by satisfying the following N ·W inequalities for each j installment, i server pair:

AT + R L

(
i∑

l=0

mj,l +
j−1∑
k=0

N−1∑
l=0

mk,l

)
≥ L bwi

j∑
k=0

mk,i + o (8)

In order to minimize the AT , the equality sign should be used in the above
inequalities. By subtracting successive equalities for the parts delivered during
the first installment it can be shown similarly to the single installment case, that

m0,i+1 =
m0,0

∏i
l=0 bwl∏i+1

l=1 (bwl − R)
(9)
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Fig. 1. Example of a multi-installment delivery by 3 servers employing 2 installments.



Using the same approach for installments j = 1, . . . , W − 1, we can show
that:

mj,i =

⎧⎪⎨
⎪⎩

bwN−1

∑j−1

k=0
mk,N−1−bw0

∑j−1

k=0
mk,0

bw0−R , i = 0

bwi−1

∑j

k=0
mk,i−1−bwi

∑j−1

k=0
mk,i

bwi−R , i = 1, . . . , N − 1

(10)

Equations (9) and (10) define each mj,i as a linear function of parts that
precede it in the play-back order. Since (9) to (10) represent linear relationships
between each mj,i and m0,0, computing the latter can be done by assuming that
m0,0 is a constant, i.e. 1. This is equivalent to multiplying all parts by a constant
C ≥ 1 which can be estimated by the normalization equation:

W−1∑
k=0

N−1∑
l=0

mk,l = 1 (11)

since the sum of the computed parts will equal C. The above constitutes a
O(N W ) process that can yield very quickly the desired movie partitioning/schedule.

4.3 The General Case

In the general case, we have M distinct clients Cj , each requesting a different
movie of Lj length and with a playback rate of Rj . The additional problem that
needs to be addressed is that of determining which servers should be allocated to
each client in order to minimize the average AT . To solve this mapping problem
we employ a genetic algorithm that is shown to converge to a solution in a small
number of generations.

All requests are assumed to be simultaneous and have to be serviced concur-
rently. Despite this being an unrealistic assumption, it is not without merit as
it allows us to investigate the steady-state of the system. Also, the genetic al-
gorithm we present, can be employed in an adaptive system, where the network
conditions constantly change and the pairing of clients-servers has to change in
response. An incremental GA [1] might be appropriate for solving this problem.
In this case, the genetic algorithm could be employed for revising the distribu-
tion plan at regular intervals. The new schedule would take effect for each client
at the beginning of each new installment, hence the benefit of using multiple
installments. Such a modification could be easily incorporated in our algorithm.

The objective function that has to be minimized is the following:

Z = AT =
AT1 + AT2 + . . . + ATM

M
(12)

All the above are subject to the following constraints:

– Each server allocates only one slot to each client, i.e.:

kj ≤ N ∀ j = 0, . . . , M − 1 (13)

where kj are the number of servers/connections utilized by Cj .



– The total bandwidth consumed should not exceed the servers’ capacity:
M−1∑
j=0

bw−1
i,j ≤ bw−1

Si
(14)

∀ i = 0, . . . , N − 1. If a server Si is not employed by a client Cj , bwi,j = ∞.
– Each client’s bandwidth should not be exceeded:

N−1∑
i=0

bw−1
i,j ≤ bw−1

Cj
∀ j = 0, . . . , M − 1 (15)

5 A Genetic Algorithm for the Mapping Problem

Genetic algorithms have been adopted for solving a variety of engineering, sci-
ence, and operations research problems [8][15]. In the following subsection, we
give background information on the genetic paradigm and subsequently we de-
scribe how a GA can be adapted for solving the mapping problem.

5.1 Background

Genetic algorithms are based on the mechanics of natural evolution [9]. Through-
out their artificial evolution, successive generations each consisting of a popu-
lation of possible solutions, called individuals (or chromosomes, or vectors of
genes), search for beneficial adaptations to solve the given problem. This search
is carried out by applying the Darwinian principles of “reproduction and survival
of the fittest” and the genetic operators of crossover and mutation which derive
the new offspring population from the current population.

Reproduction involves selecting, in proportion to its fitness level, an indi-
vidual from the current population and allowing it to survive by copying it to
the new population of individuals. The individual’s fitness level is usually based
on the cost function given by the problem under consideration. Then, crossover
and mutation are carried on two randomly chosen individuals of the current
population creating two new offspring individuals. Crossover involves swapping
two randomly located sub-chromosomes (within the same boundaries) of the two
mating chromosomes. Mutation is applied to randomly selected genes, where the
values associated with such a gene is randomly changed to another value within
an allowed range. The offspring population replaces the parent population, and
the process is repeated for many generations. Typically, the best individual that
appeared in any generation of the run (i.e. best-so-far individual) is designated
as the result produced by the genetic algorithm.

In the following subsections, we describe how genetic algorithms can be
adapted for solving the mapping problem. We present the components of a hy-
brid genetic algorithm (GA) for minimizing the function Z defined in Eq. (12).
The algorithm is hybridized by procedures and design choices that account for
both the likelihood of producing infeasible individuals as a result of crossover
and mutation, and for the premature convergence to a local optima. An outline
of the algorithm is given in Fig. 2.



Generation of initial population, Size POP

Set rates for genetic operators

Evaluate fitness of individuals

Repeat

Rank individuals & allocate reproduction trials

for(i=1 to POP step 2) do

Randomly select 2 parents from list of reproduction trials

Apply crossover & mutation

Endfor

Evaluate fitness of offspring’s

Check feasibility of individuals

Do hill-climbing

Preserve the fittest-so-far (elitism)

Until (termination criterion is satisfied)

Solution = Fittest.

Fig. 2. Hybrid Genetic Algorithm for the Mapping Problem

5.2 Population, Chromosomal Representation and Feasibility

GAs population is an array of POP number of individuals. An individual in
the population is encoded as an (N × M)-element vector [X1,1, X1,2, ... X1,M ,
X2,1,X2,2, ... X2,M , ... XN,1 XN,2, ... XN,M ] where N is the number of the servers
and M is the number the clients, and it corresponds to a candidate solution to
the allocation of servers to clients that provides a candidate solution to the
optimization problem. The sub-vector X1,1, X1,2, ... X1,M corresponds to the
clients allocated to server 1, sub-vector X2,1, X2,2, ... X2,M the clients allocated
to server 2, and so forth. An element (gene) Xi,j = 1 (or 0), for i ∈ [1...N ] and
j ∈ [1...M ], indicates the allocation (or deallocation) of server i to customer j.

The initial population of individuals is usually randomly generated. However,
in our case, a random generation of individuals introduces too many infeasible
individuals to the population. An individual is considered infeasible, if it does
not satisfy the given constraints (14) and (15). In other words, an individual is
infeasible if it is not able to service all the clients because the sum of the active
links to each server from a client is greater than the maximum bandwidth of
that client, or the sum of the links to each client from a server is greater than
the maximum bandwidth of that server. The constraint set (13) is by default
satisfied by the above described chromosomal representation of an individual.

In order to reduce the infeasibility problem, the initial individuals generator
was written in such a way that it assigns at random one of the servers to a
client. Then, it tries to assign another server, if the second server does not make
the individual infeasible (too much bandwidth for the client). This method is
good in decreasing the infeasibility in the population. It only generates feasible
solutions, unless the servers are too slow or overloaded.



5.3 Objective Functions Evaluation and Reproduction Scheme

Using the genes of an individual, the fitness Z of an individual is evaluated
as described in (12). Henceforth, the minimal average access time of all clients
corresponds to the minimum value of the fitness Z of all feasible individuals.

In GA, the whole population is considered a single reproduction unit within
which random selection is performed. Our reproduction scheme involves elitist
ranking, followed by random selection of mates from the list of reproduction
trials (or copies) assigned to the ranked individuals. In the ranking scheme [2],
the individuals are sorted by their fitness value. After sorting, each individual is
assigned a rank based on a scale of equidistant values for the population. The
ranks assigned to fittest and least-fit individuals are 1.2 and 0.8, respectively.
Individuals with ranks greater than 1 are first assigned single copies. Then, the
fractional part of their ranks and the ranks of the lower half of individuals are
treated as probabilities for random assignment of copies.

It has been found that ranking based selection with a maximum rank of 1.2
produces individual survival percentage of 92 to 98% in different generations[2].
This helps in maintaining population diversity and controlling premature con-
vergence. Elitism is used to exploit good building blocks and to ensure that
good candidate solutions are saved if the search is to be truncated at any point.
Preservation of the fittest individual is done by replacing the least-fit individual
by the fittest-so-far individual if the latter is better than the current-fittest.

5.4 Genetic Operators, Hill-Climbing and Termination Criteria

The genetic operators employed in GA are crossover and mutation. Pairs of in-
dividuals are randomly selected from the mating pool. Each pair of these strings
undergoes crossover as follows: an integer position k along the individual is se-
lected at random between [1..(N ∗ M)], where N ∗ M is the individual length.
The two new individuals are created by swapping all characters(genes) between
k + 1 and N ∗ M inclusively. In our case, a random selection of the crossover
point (i.e. k) produces two infeasible individuals. In order to solve this problem,
a smarter mode of crossover was implemented. Rather being totally random,
the crossover point is taken only at the end of a client. In this way, we preserve
each client’s feasibility. Moreover, in order to preserve servers feasibility, many
crossover points are tried in order to select a point that produces two feasible
individuals. The standard mutation operator is employed. Individuals and gene
positions where the alteration of the value is going to occur are selected ran-
domly. A mutation rate of 0.02 and crossover rate of 0.7 [10] are used in our
implementation.

To refine the solution quality, a simple problem-specific hill-climbing pro-
cedure which may decrease the individual’s fitness values is incorporated. Our
GA determines how many individuals to “hillclimb” by computing the function
numHill that starts with tightened hillclimbing rate and increases this rate as
the run progresses. We have experimented with different hillclimbing functions
and we have found that the following one yields the best solution quality:



numHill =
{

0.5 × NumFeasible if 0 < t ≤ 100
0.7 × NumFeasible if t > 100 (16)

where t is the current generation and NumFeasible is the number of feasible
individuals in the current population. Our GA randomly selects numHill feasible
solutions formed in each generation and applies to each of them the following hill-
climbing procedure that searches the space nearby an individual solution using a
simple “add link” methodology. The procedure randomly selects (N*M)/3 genes
and then applies the following to each one: If the value of the gene is 0, then it is
provisionally incremented to 1. If the resulting solution is feasible, the provisional
change is made permanent and the new solution becomes the incumbent. This
means that a link between a certain client and a server is established. This
decreases this client’s access time, and thus decreases the average access time of
the individual. However, if the resulting solution is infeasible, the provisionally
incremented gene is restored to its original value. This hill-climbing procedure
enables individuals to rapidly climb the peaks, speeding up the evolution process.

The termination criterion is satisfied when we converge to a solution. In this
work, convergence is indicated when the best-so-far string does not change its Z
value for 15 consecutive generations. We experimented with different values of
POP size, and it was found that POP=20 yields the best solution quality.

6 Simulation Study

In order to test the effectiveness of the proposed scheme over a traditional single-
server approach, we run rigorous simulation tests estimating how each of the
problem parameters reflects on the quality of the delivered service, measured
by the AT . It should be noted that although other objective functions could be
employed as well, e.g. service costs, client buffer-space, AT variability, etc., these
are going to be treated in future extensions of this work.

The parameters that were used in the simulations are listed below:

– N : the number of servers ranged between 2 and 5
– M : the number of clients ranged in [100, 500 · N ], targetting a wide variety

of loads, including ones that cause server saturation.
– W : the number of installments ranged between 1 and 5
– bwS : the servers’ bandwidth was fixed at 0.08s/MB (equiv. to 100Mb/s)
– bwC : to represent the variety of clients that could use the service, each

client’s available bandwidth was randomly selected from 3 possible values:
• 16 s/MB: equivalent to a 500 kbps ADSL, with a probability of 30%
• 21 s/MB: equivalent to a 384 kbps ADSL, with a probability of 60%
• 63 s/MB equivalent to a 128 kbps ISDN, with a probability of 10%

– bwi,j : the connection speed between client Cj and server Si was uniformly
selected from

[
bwCj , 125s/MB

]
, the upper limit corresponding to 64kbps.

– Lj : movie sizes were chosen from a uniform distribution in the [500, 1000]MB
range, which is typical for MPEG-4-coded feature-length movies.
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Fig. 3. AT vs the number of clients, for different number of servers and installments.

– Rj : playback rates were chosen randomly from a uniform distribution in the
[600, 1200]kbps range, again typical MPEG-4 rates for high-quality media.

As a benchmark, we calculated the AT that the clients would enjoy if they
were serviced by a single server only. In this “sequential” approach, each client Cj

connects to the fastest available server, i.e. the non-saturated one that exhibits
the smallest bwi,j .

For each combination of N , M and W values, a total of 100 runs were per-
formed. The average AT versus the total number of clients is shown in Figure
3. As can be clearly observed, increasing the number of servers acts favorably in
improving the offered service. The shape of the curves is dictated by the avail-
ability of server resources. As the number of clients grows, some of them may
settle for slow connections, or even for just a single server. As a result, the av-
erage AT increases but the success of our multi-server GA-based scheme is that
the clients can be continuously served even when the sequential scheme begins to
fail, as indicated by the absence of data points for high M in the corresponding
curves of Figure 3. In these situations a large number of clients is denied service.

It should be noted that the clients are examined in a non-specific order, i.e.
they are not sorted prior to pairing them with a server in the sequential scheme.
Although a sorting step could possibly extend the viability of the sequential
scheme to more clients, it is unlikely that this would improve the exhibited AT
which is consistently above the one provided by our multi-server scheme.
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Figure 3 also shows that increasing the number of installments improves the
average AT . Performance gains are however scant after 2 or 3 installments. More
installments might offer an edge for the deployment of an adaptive (responding
to connection-state changes) delivery scheme.

The ratio of the bandwidth a server uses for uploading movies over its total
bandwidth can be used as a metric of a server’s saturation. We refer to this ratio
as “server occupancy”. Figure 4 shows the number of generations required for
the GA to converge, versus the server occupancy. The generations needed take a
sharp decline following a slight increase as the server occupancy increases. The
reason for this is that the GA fails to improve the original solutions generated,
giving up after exceeding the preset threshold for passed generations before
improvement. Also, as expected, an increase in the number of servers leads to
slightly slower convergence rates due to the expansion of the solution space.

7 Conclusion

In this paper we present a novel approach for optimizing the delivery of movies
to multiple clients by multiple servers. We present a genetic algorithm that can
generate an optimum or near-optimum mapping of servers to each client request,
in an effort to minimize the average AT .

The proposed delivery scheme and mapping algorithm manage to outperform
a traditional sequential delivery in every respect, yielding far superior AT while
at the same time maintaining normal operation under severe loads that would
otherwise cause a denial of service.

Future extension of our work could include:

– Offering different classes of service. Apart from the financial benefits that
such an extension would provide, it is only natural that faster and slower
clients should be not treated in the same fashion in many different levels.



– Extending the genetic algorithm to handle arbitrary request arrival times.
Delivery schedules and mappings could be refined periodically in response
to the changing network conditions and/or servers’ state (e.g malfunction).
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