

An Adaptive Batched Patch Caching Scheme for
Multimedia Streaming1

Shaohua Qin1 , Weihong He2 , Zimu Li3 , Jianping Hu1

 1 School of Computer Science, Beijing University of Aeronautics & Astronautics, Beijing
100083,China

{shqin,jianpinghu}@buaa.edu.cn
2 Hengyang Branch of Hunan University, Hengyang 421101, China

hwh@hnbmc.edu.cn
3 Network Research Center of Tsinghua University, Beijing 100084,China

zmli@cernet.edu.cn

Abstract. Large-scale steaming media applications usually consume a significant amount
of server and network resources due to the high bandwidth requirements and the long-lived
nature of the streaming media objects. In this paper, we address the problem of efficiently
streaming media object to the clients over a distributed infrastructure consisting of video
server and proxy caches. We build on the earlier work and propose an adaptive batched
patch caching scheme, which tightly combine the transmission scheduling with proxy
caching. This scheme adaptively caches the next segment data at proxy from the ongoing
entire stream, which depends on the current batching interval that has non-zero requests.
We demonstrate the benefits of our scheme compare to the classical streaming strategies.
Our evaluations show that this scheme can reduce significantly the consumption of aggre-
gate bandwidth on backbone link within much wider range of request arrival rate.

Keywords. Streaming media, Batched patch, Proxy cache, Multicast, Server scheduling

1 Introduction

The emergence of the Internet as a pervasive communication medium, and a mature digital
video technology have led to a rise of various networked streaming media applications such as
video-on-demand, distance learning, video game and video conferencing. As access providers
are rolling out faster last-mile connections, the bottleneck is shifting upstream to the provider’s

1 This work is supported by the NNSF of China under grant 60103005.

backbone, peering links and best-effort Internet. Due to the large size, long-lived nature of the
streaming objects, they need to consume much more network bandwidth and server system re-
source in distribution and delivery. At the same time, the I/O capacity of the video server and
network bandwidth are impossible to be unrestrained enhancement because of hardware costs
limitation. So, in the process of distributing streaming media over the Internet, how to reduce the
backbone bandwidth consumption and efficiently utilize the video server system resource have
become the research hotspot in the area of streaming media applications in recent years.

Existing research has focused on developing transmission schemes that use multicast or
broadcast connections in innovative ways to reduce server and network loads, for serving a
popular video to multiple asynchronous clients. Batching [1], Patch [2], [4], HMSM[11] and
Optimized Batch Patching [3] are reactive in that the server transmits video data only on de-
mand, in response to arriving client requests. These schemes have an underlying requirement
that the multicast or broadcast connectivity between the server and the clients is available. How-
ever, IP multicast deployment in the Internet has been slow and even today remains severely
limited in scope and reach. Therefore, transmission schemes that can support efficient delivery in
such predominantly unicast settings need to be developed..

Another attractive solution for reducing server loads, backbone network traffic and access
latencies is the use of proxy caches. This technique has proven to be quite effective for delivering
traditional Web objects. However, streaming media object can be very large, and traditional
techniques for caching entire objects are not appropriate for such media. Caching strategies that
have been proposed in recent years [7],[12],[13],[14] cache a portion of streaming media object
at the proxy. These prefix and segmentation-based caching methods have a number of advan-
tages including reducing startup latency and jitter on the server-proxy path, while saving band-
width usage along that path. However, they do not take the issue of the transmission scheduling
into consideration. Recent work [10] combines prefix caching with proxy-assisted reactive
transmission schemes for reducing the transmission cost of multiple heterogeneous videos. An-
other work [5],[6],[8],[9] combines multicast-based server scheduling with proxy caching to
minimize the aggregate bandwidth usage. In particular, the Batched Patch Caching (BPC) pro-
posed in [5] which caches the patch data at caching proxy in order to make more clients to share
it, and as thus achieve better performance. However, when the request arrival rate is very high,
these schemes mentioned above are still consume quite a few system resources.

In this paper, we build on early work and propose an adaptive batched patch caching scheme
knows as ABPC which combines dynamic caching at the proxy with scalable transmission
scheme at the origin server. In this scheme, the server-proxy network connections only provide
unicast service, and on the proxy-client path offers multicast capability. By adaptive pre-caching
the patch data for the upcoming request in the next batching interval, it achieves lower band-
width consumption than the BPC scheme over a wider range of request arrival rate.

The rest of this paper is organized as follows. In section 2, some previous works in the mul-
ticast and streaming media caching areas are reviewed. In section 3, we present and formulate

our scheme in detail. Section 4 shows results that compare the performance of new scheme and
BPC. Finally we present our conclusions and ongoing work in section 5.

2 Previous work

Streaming media objects over multicast consumes less network bandwidth and imposes less of a
load on the server than does streaming media objects over multiple unicast channels. Batching is
a simple scheduling strategy based on multicast. It delays the earlier arrival request to wait for
much more clients, and serves them over a single channel. Patching is certainly one of the most
efficient techniques. The server streams the entire video sequentially to the very first client. A
later client receives its future playback data by listening to an existing ongoing multicast of the
same video, and the server only transmits afresh only the missing portion (patch data).
The concept of optimized batch patching (OBP) in literature [3] has recently been proposed,
which aimed at minimizing the average backbone rate. Basically, client requests are batched to-
gether on an interval basis before requesting either a patch or a regular multicast from the server.
There is an optimal patching window after which it is more bandwidth efficient to start a new
entire stream rather than send patches. This scheme outperforms other multicast-based tech-
niques such as optimal patching [4] in terms of average backbone rate over a large range of re-
quest rates [3].

The Batched Patch Caching (BPC) was built on the Optimized Batch Patching idea. Upon
reception of a patch, the proxy stores it in the buffer for a period of the patching window size, so
that it is available for the last requests of the same patching window and consequently reduces
the bandwidth usage of the extra channel. By caching the patch data in the proxy, this scheme
demands the average backbone rate smaller than that of OBP scheme. But, it needs to retransmit
all of the patch data.

We differ from all the above works in that we develop a new mechanism to pre-fetch the
patch data from the ongoing entire stream along the unicast connection of the server and the
proxy. At the same time, the pre-fetching data is cached dynamically at the proxy. They can
serve the requests of the same patching window. Moreover, by varying the size of the patching
window according to popularity of the streaming media object, the minimum consumption of
the backbone bandwidth can achieve, and limited storage space of proxy can utilize efficiently.

S E R V E R

P r o x y P r o x y

Cl ie n tC li en t C li en tCl ie nt
Fig. 1. Illustration of proxy cache for streaming media

3 Adaptive Batched Patch Caching Scheme

In this section, we consider a delivering architecture of streaming media object, which composed
of an origin server, a set of proxies, and a finite set of media objects. Each proxy is responsible
for a group of clients as shown in Fig.1. We assume reliable transmissions over the server-proxy
path, and the access network (proxy-client) is lossless and multicast enabled. We further assume
that the clients are always request play back from the beginning of the media object. Moreover
we impose the proxy to play the role of a client for server. That is, all the streaming media object
data streamed out of the server are requested by the proxy and are thereby forwarded through it.
A proxy streams the prefix directly to its clients if a prefix of the media object is present locally,
and contacts the server for the remainder (suffix) of the stream. Otherwise, the proxy sends the
server a request to start a full stream (unicast) and multicasts it to a set of clients. In order to
shield the client-perceived startup latency, the proxy immediately sends client the first segment
data by unicast channel once a request arrives in each batching interval. This unicast stream will
terminate at the boundary of the batching interval. At this time, the client will join the full stream
and the patch data stream that started by the proxy via multicast channel.

We next introduce the notations used in this paper, as presented in Table 1. We consider a
server with a repository of M Constant-Bit-Rate (CBR) media objects. Let media object m∈M is
characterized by its playback rate rm, duration Lm, and average access rate λm.

Table 1. Parameters used in this paper

Para. Definition

M Number of the media objects

Lm Length of media object m (sec.)

rm Playback rate of media object m(bps)

S The cache size of proxy

Ω Normalized transmission rate

λm Average request arrival rate for object m

Wm Patching window size for object m

µm Total patch data for object m

bm The batching interval

3.1 Scheme Description

The basic idea of the adaptive batched patch caching is that whenever a full stream is started, the
proxies that receive the data from this stream allocate a buffer size of bm units to cache the up-
coming data. And at the end of each batch in the same patching window, these proxies check to
see whether or not there are requests. If there are requests, these proxies separately add bm units
to the buffer and cache the ongoing stream continuously. Otherwise they stop caching. Since we
do not cache the data segments at the end of each batch of zero requests, the proxy will need to
start an extra channel to afresh them if there are requests in the subsequent batching intervals.

S e r v e r t i m e

bm

Wm

Lm Lm

t0 ti-1 tit

F u l l s t r e a m

P r o x y t i m e
A B C D E F

bm (i-1) b m i b m N b m
(i+1) b m

ti+1

F u l l s t r e a m

t1

Fig. 2. Timing Diagram for adaptive batched patch caching

Our scenario is illustrated in Fig.2, The proxy divides uniformly the time axis into intervals
[ti-1, ti] of duration bm, Assume a request arrives at the proxy at time t∈[ti-1, ti], and the most recent
full stream was started at time t0. If ti is such that ti < t0 + Wm, the proxy need to transmit patch
data of duration ti − t0 =ibm to the client at time ti, also the proxy joins the full stream at time ti, and
multicasts it to the clients. However, if ti > t0 + Wm, a new full stream will be started at time ti.
Since the first segment data [0, bm] of the streaming media object has been stored at the proxy at
time t1 after the full stream is started, whether the subsequent segment data need to be cached
depends on the current batching intervals that have no-zero requests before time ti. This is better
explained with the following example.

Suppose there are eight batching intervals in the patching window, that is Wm=8bm. The full
stream was started at time t0. Also at time t0 the proxy began to buffer the first segment data from
this steam. Suppose [t0, t1] had requests, then at time t1 the proxy adds bm units to the buffer and
caches the ongoing stream continuously. This makes the proxy can serve the requests arrive at
time intervals [t0, t1] and [t1, t2], and does not request server for any patch bytes. Suppose the next

two intervals do not have any requests, and the proxy does not cache the corresponding data
segment [2bm,3bm],[3bm,4bm]continuously. If the fourth interval [t3, t4] has requests, at time t4, the
buffer of the proxy has only contained two segment data [0, bm] and [bm, 2bm]. The requests ar-
rive in the fourth interval requires the patches to be 4bm-long, and so the proxy expands the
buffer from having 2bm units to having 5bm units, and then fetches the missing patch data
[2bm,3bm] and [3bm,4bm] from the server by the extra channel while storing the segment data
[4bm,5bm] from the ongoing full stream. The processing method for subsequence intervals is
similar to that for the preview intervals. At last, whether the eighth interval [t7, t8], has requests or
not, the proxy will not store the next segment data from the full stream at time t8.

Our scheme has a remarkable characteristic. That is, the more probability of the request arri-
val each batching interval has (That means the request arrival rate is very high), the little patch
data need to be transmitted afresh become. When each batched interval of patching window has
no-zero requests, the pre-fetching mechanism can assure that the demanded patching data just
obtaining from full stream can satisfy all the request arrived in the same patching window. On
the other hand, if only the last batching interval has requests, the proxy will need to fetch the
patch data up to (N−1)bm via the extra channel.

3.2 Scheme Analyses and Problem Formulation

For simplicity of exposition, we ignore network propagation latency. In order to derive analytic
expressions in evaluating the performance of our scheme, we first make an abstract of our
scheme as follows:

● Assume the access rate of media object m are modeled by Poisson process with parame-

ter λm such that mmb-ep λ= is the probability to have an empty batch (zero request) of

duration bm.
● The proxy stores the patch data in the buffer at least for a period of Wm=Nbm, so that it is

available for the all requests arrived in the same patching window.
● Suppose xi denotes the requests that arrive in the ith batching interval [ti-1, ti]. Let x1 ,

x2 ,…, xN be a sequence of independent random variables with common probability
distribution.

● Whether the proxy need to fetch the patch data by extra channel at time ti depends on the
values of x1 , x2 , …,xi-1 and xi. In particular if x1 = x2 = …=xi=0 or x1 =x2 = …=xi≠0, the
proxy does not request server for any patch bytes.

● Assume the proxy request server for the patches size is ψ in the patching window. It is
obviously ψ will likely take one among the values 0,1bm,2bm ,…,(N−1)bm, we might as
well let pi denotes the probability of ψ=ibm, that is p(ψ=ibm)= pi , i=0,1,2,…,N−1.

With the above assumption, we can achieve the mean value of η, namely

1

1

1

0
∑∑

−

=

−

=
⋅=⋅=

N

i
im

N

i
im pibpibEψ (1)

Now we need to determine pi. Obviously,

)1(

)1(

)1()1()1(
)1()1(

)1()1()1(

)0()00(
00

)00()0(
)0(

0

0

0
0

110
1

220
2

110
1

0
0

122

2211
121

121

111

0

 ppC

pCppC

ppCpp CpC
pppp

pp ppp

xx px,xxp
)x,xx p(x

,xxxpxxp
pp

jjN
N

j
jN

NN

N
N

N
N

N
N

NN

NNN
NN

NNN

NNN

−

=
−

−

−
−

−
−−

−−

−−

−−

−

−=

+−++

−+−+−=

−+−+

+−+−+−=

===+===≠+
+==≠==+

=≠==+≠===
==

∑

L

L

LL

LL

LL

ψ

 ppC

ppCppC

pp CppC

bpp

jjN
N

j
jN

NN

N
N

N
N

m

1111
1

1

1

11
1

221
2

221
2

11
1

1

)1(

)1()1(

)1()1(

)1(

−++−−
−

=
−

−−

−
−

−
−

−=

−+−+

+−+−=

==

∑

L

ψ

)1(

)1()1(

)1()1(

)2(

1212
2

1

2

12
2

222
3

332
2

222
1

2

 pp C

ppCppC

pp CppC

bpp

jjN
N

j
jN

N-N-m
k

N
N

N
N

m

−++−−
−

=
−

−
−

−
−

−=

−+−+

+−+−=

==

∑

L

ψ

1313
3

1

3

13
3

224
3

443
2

333
1

3

)1(

)1()1(

)1()1(

)3(

−++−−
−

=
−

−−

−
−

−
−

−=

−+−+

+−+−=

==

∑ jjN
N

j
jN

NN

N-
N

N
N

m

ppC

ppCppC

pp CppC

bpp

L

ψ

Thus the expression of pi can be written as:

.121,0)1(1

1

1)(−=−= −+
−

=

++−
−∑ ,N,,i ,ppCp ji

iN

j

jiNi
jNi L (2)

Substituting equation (2).into equation (1), by computing all the different possibilities of batching
interval along the patching window, we get the average number of patched data segments, µm at
proxy. It is given by

∑∑
−

=

−+
−

=

++−
− −⋅==

1

1

1

1

1)()1(
N

i

ji
iN

j

jiNi
jNmm ppCibEµ ψ (3)

The aggregate transmission rate on the backbone link, Rm, includes the transmission of patches
(µm) and the full stream of duration Lm from the server. Its normalized transmission rate Ω is thus
obtained from:

 m

mm

m

m

I
L

r
RΩ µ+

== (4)

Where Im represents the interval duration between two adjacent full streams:

 1/)1(mλ++= mm bNI (5)

The average buffer capacity S needed for caching at proxy is then given by

)rµ(µS mmm ′+= (6)

Where µ' denotes the segment data received from the full stream. According to the buffer allo-
cating mechanism in our scheme, µ' is given by

)1)(1(mmm bpNbµ −−+=′ (7)

We now compute the proxy network bandwidth. Recall that the proxy deliver the first segment
data to clients via unicast channel, and forwards the full stream and the other patching data via
multicast channel. Thus its normalized bandwidth Bproxy is given by:

2

2
)1(

)1()1(
Ω

I

r
bNN

-p+rbN
B

m

m
m

mmm

porxy +

+
+

=
λ

 (8)

4 Numerical Results and Comparisons

In this section, we evaluate the performance of our proposed scheme ABPC and contrast it
against BPC in three aspects using numerical result. Suppose the duration of the streaming me-
dia object is 120 minutes, and its average play back rate is 1.5 Mbps (MPEG-1).

First, we examine the transmission quantities of patching data that needed to get by the extra
channel with respect to the request arrival rate and the patching window size. As shown in Fig.3,
adopting the ABPC scheme, the average number of transmitted patches decreases rapidly as the
request arrival rate increases, and that close to zero. This indicates that ABPC scheme only needs
to fetch few patch data through the extra channel while the request arrival rate reaches relative
high. But the BPC scheme needs to fetch all the patch data through the extra channel, and that

close to the patching window size. In other words, whatever the request arrival rate and the
patching window change, under the same conditions, the ABPC scheme can save much more
bandwidth of extra channel than the BPC scheme.

0 1 2 3 4 5 6 7 8 9 1 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

N = 6 0

N = 3 0

N = 1 0

A
ve

ra
ge

 n
um

be
r o

f t
ra

ns
m

itt
ed

 p
at

ch
es

 [m
in

]

R e q u e s t a r r iv a l ra te [re q /m in]

 B P C
 A B P C

N = 1 0

N = 4 0

N = 6 0

Fig. 3. Average number of transmitted patches through extra channel versus the request arrival rate,
bm=1[min]

Secondly, we compare the normalized backbone rate demanded in the case of transmitting
one media object for both schemes ABPC and BPC by showing in Fig. 4(a) ~ (d). From these
diagrams we see that the normalized backbone rate required in the ABPC scheme is always
smaller than that in the BPC scheme at different values of the patching window as well as re-
quest arrival rate. Also, as the patching window size increases, the normalized backbone rate de-
creases.

0 1 2 3 4 5 6 7 8 9 10

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

N
or

m
al

iz
ed

 b
ac

kb
on

e
ra

te
 Ω

Request arrival rate [req/min]

 BPC
 ABPC

N=10

 (a)

0 1 2 3 4 5 6 7 8 9 10

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

N
or

m
al

iz
ed

 b
ac

kb
on

e
ra

te
 Ω

Request arrival rate[req/min]

 BPC
 ABPC

N=20

 (b)

0 1 2 3 4 5 6 7 8 9 10
2.8

3.0

3.2

3.4

3.6

3.8

4.0

N
or

m
al

iz
ed

 b
ac

kb
on

e
ra

te
 Ω

Request arrival rate[req/min]

 BPC
 ABPC

N=40

 (c)

0 1 2 3 4 5 6 7 8 9 10

2.0

2.2

2.4

2.6

2.8

3.0

N
or

m
al

iz
ed

 b
ac

kb
on

e
ra

te
 Ω

Request arrival rate [req/min]

 BPC
 ABPC

N=60

(d)

Fig. 4. Normalized backbone rate versus request arrival rate at different values of patching win-
dow, bm=1[min]

Thirdly, we show in Fig.5 (a) ~ (d) the buffer requirement at proxy to deal with one media
object for both schemes ABPC and BPC with respect to the patching window size and the re-
quest arrival rate. As the patching window size increases, the buffer requirement also increases.
Moreover, under the same conditions, both of these schemes consume almost the same buffers
at proxy, especially in the high request arrival rate. This evidence indicates that ABPC scheme
archives the lower bandwidth saving than the BPC scheme, while it does not consume much
more buffer size.

0 1 2 3 4 5 6 7 8 9 10
70

80

90

100

110

120

Av
er

ag
e

bu
ffe

r o
cc

up
an

cy
 [

M
B

]

Request arrival rate [req/min]

 BPC
 APBCN=10

 (a)

0 1 2 3 4 5 6 7 8 9 10
180

190

200

210

220

230

Av
er

ag
e

bu
ffe

r o
cc

up
an

cy
 [

M
B]

Request arrival rate [req/min]

 BPC
 ABPCN=20

 (b)

0 1 2 3 4 5 6 7 8 9 10
400

410

420

430

440

450

460

Av
er

ag
e

bu
ffe

r
oc

cu
pa

nc
y

 [M
B]

Request arrival rate [req/min]

 BPC
 ABPCN=40

 (c)

0 1 2 3 4 5 6 7 8 9 10
630

640

650

660

670

680

Av
er

ag
e

bu
ffe

r o
cc

up
an

cy

[M
B]

Request Arrival rate [req/m in]

 BPC
 ABPCN=60

 (d)

Fig. 5. Average buffer occupancy at proxy versus request arrival rate at different values of patching
window, bm=1[min]

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

1 0

2 0

3 0

4 0

5 0

6 0

λ m = 8 re q /m in , b m = 1 0 m in

λ m = 8 re q /m in , b m = 1 m in

λ m = 0 .2 5 re q /m in , b m = 1 m in

N
or

m
al

iz
ed

 b
ac

kb
on

e
ra

te

Ω

P a tc h in g w in d o w s iz e [m in]

A B P C s c h e m e

Fig. 6. Normalized backbone rate versus patching windows size

Finally, Fig.6 shows the evolution of the normalized backbone rate Ω versus the duration of
the patching windows under different request arrival rate and the batching interval by adopting
ABPC scheme. We clearly find that the normalized backbone rate may no longer exhibit a
minimum value for the patching window duration within Tm. Moreover, the longer the duration
of patching window, the higher buffer size required at the proxy. Accordingly, in practice the ini-
tial value of the patching window can be determined using the expression in literature [3], af-
terwards, we let the patching window size to adaptively expand or shorten in terms of request ar-
rival rate. Intuitively, if all batches during the duration of the stream have no-zero requests, this
media object is really very popular and we ought to expand the patching window in order to
much cache this entire object at proxy and not have to request from the server. With such a dy-
namical control of patching window, it instructs the proxy to implement an optimal cache for
each media object, thereby achieving the better trade-off between backbone bandwidth and
storage requirements.

5 Conclusions and ongoing work

In this paper, we proposed an adaptive batched patch caching scheme that joints server schedul-
ing and proxy caching aimed at reducing the bandwidth streamed from the server. We formulate
the on-demanded numbers of normalized backbone transmission rate for considering a particular
streaming media object. Compared with the traditional batched patch-caching scheme, the pro-
posed scheme achieves much more savings of backbone bandwidth by adaptive pre-caching the
patch data from full stream. In addition, the adaptability of the proposed scheme keeps on very
well within wide range of request arrival rate. The numerical results show that the adaptive
batched patch caching is a highly efficient method that alleviates bottlenecks for the delivery of
streaming media objects.

For simplicity of exposition, we ignore network propagation latency throughout the paper.
Note that our scheme can be easily adapted to the scenario when the network propagation la-
tency along server-proxy path is not ignorable. In order to hide the transmission delay for a
streaming media object from the server, the proxy cache has to be allocated to accommodate a
prefix for each media object.

We are currently investigating the trade-offs between bandwidth reduction and buffer occu-
pancy at proxy. We are also exploring the scenarios based on ABPC where the proxies can co-
operate.

References

1. A. Dan, D. Sitaram, P. Shahabuddin: Scheduling policies for an on-demand video server with batching.
In Proc. ACM Multimedia, San Francisco, California, (1994) 15–23

2. K. A. Hua,Y. Cai, S. Sheu: Patching: A multicast technique for true video-on-demand services”, in Proc.
ACM Multimedia, Britstol UK, (1998)191–200

3. P. P. White, J. Crowcroft: Optimized batch patching with classes of service, ACM Communications Re-
view, Vol. 30, No.4, (2000)

4. Y.Cai, K. Hua, K.Vu: Optimizing Patching Performance. In proc. of ACM/SPIE Multimedia Comput-
ing and Networking, (1999) 203–215

5. O.Verscheure,C.Verkatramani, P. Froassard, L. Amini: Joint server scheduling and proxy caching for
video delivery. Computer Communications, Vol.25, No. 4, (2002) 413–423

6. C. Venkatramani, O. Verscheure, P. Frossard, K. W. Lee: Optimal proxy management for multimedia
streaming in content distribution networks. In proc. of ACM NOSSDAV 2002, Miami Beach, FL, USA,
May (2002)147–154

7. S. Sen, J. Rexford, D. Towsley: Proxy prefix caching for multimedia steams. In proc. of IEEE
INFOCOM’99, New York, USA, (1999)1310–1319

8. Pascal Frossard, Oliver Verscheure: Batched patch caching for streaming media. IEEE Communications
Letters, Vol.6, No.4, (2002), 159–161

9. S.-H. Gary Chan, Fouad Tobagi: Distributed servers architecture for networked video services.
IEEE/ACM Trans. on Networking, Vol.9, No.2, (2001) 125–136

10. B. Wang, S. Sen, M. Adler, D. Towsley: Optimal proxy cache allocation for efficient streaming media
distribution. IEEE Trans. on Multimedia, Vol.6, No.2, (2004) 366–374

11. D. Eager, M. Vernon, J. Zahorjan: Minimizing Bandwidth Requirements for On-Demand Data Delivery.
IEEE Trans. on Knowledge and Data Engineering, Vol. 13, No. 5, (2001) 742–757

12. K. Wu, P. S. Yu, J. Wolf: Segment-based proxy caching of multimedia streams. In Proc. of WWW,
Hong Kong, may (2001) 36–44

13. S. Chen, B. Shen, S. Wee, X. Zhang: Adaptive and lazy segmentation based proxy caching for steaming
media delivery. In proc. of ACM NOSSDAV’03, Monterey, CA, (2003) 22–31

14. S. Chen, B. Shen, S. Wee, X. Zhang: Investigating performance insights of segment-based proxy cach-
ing of streaming media strategies. In proc. of MMCN’2004, San, CA, (2004) 148–165

