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Abstract. The effect of packet loss on the quality of real-time audio
is significant. Nevertheless, Internet measurement experiments continue
to show a considerable variation of packet loss, which makes audio error
recovery and concealment challenging. Our objective is to predict packet
loss in real-time audio streams based on the available bandwidth and
delay variation and trend, enabling proactive error recovery for real-time
audio over the Internet. Our preliminary simulation and experimentation
results with various sites on the Internet show the effectiveness and the
accuracy of the Loss Predictor technique.

1 Introduction

Quality of an audio communication is highly sensitive to packet loss [4],[17]. Ma-
jority of packet loss in the Internet occurs as the result of congestion in the links.
Packet loss for audio is normally rectified by adding redundancy using Forward
Error Correction (FEC) [11]. However, unnecessarily high degree of FEC can
actually be detrimental rather than beneficial to the ongoing communication
because of the excessive traffic. Here the challenge is to ensure a bandwidth-
friendly transmission with an effective degree of loss recovery by dynamically
changing the degree of FEC. In this paper, we present the investigations to de-
velop a mechanism to predict packet loss in real-time audio streams based on
delay variation and trend, which will enable proactive error recovery and rate
control for real-time Internet audio.

The basic idea of our proposed on-line loss prediction method is to success-
fully track the increase and decrease trends in one way delay, and accordingly
predict the likelihood of packet loss due to congestion leading to lack of avail-
able bandwidth. However, this task becomes difficult due to the unpredictable
and dynamic nature of cross traffic in the Internet. In this paper we attempt to
formalize a framework to express the likelihood of loss in the next packet train
in terms of (1) changes in the available bandwidth, manifested as end-to-end
delay variations, and (2) near-past history of congestion in terms of short-term
and long-term trends in delay variation. The value returned by the Predictor
indicates the current degree and severity of congestion and lack of available
bandwidth, hence the likelihood of packet loss, created by cross traffic bursts.
The predictor value is fed back from the receiver to the sender in order for the
sender to take proactive FEC actions and rate control.



In our approach, we designate the minimum delay of a path as the baseline
delay, signifying the delay under no congestion. We also identify the delay at the
capacity saturation point of a path as the loss threshold delay, after which packet
loss is more likely. We track the increase patterns or trends of the delay as an in-
dication of congestion causing packet loss. We have seen in our experiments that
each site shows a consistent minimum baseline delay. We also observe a range
of loss threshold delay values after which loss is observed more often. The loss
threshold delay shows a variety of ranges and behaviors due the unpredictable
nature of the cross traffic in the network at that time. To measure these path
delay characteristics, we propose certain measurement metrics classified in three
categories - Delay Distance, Short Term Trend and Long Term Trend. Delay Dis-
tance gives an absolute ratio of the delay value in relation to the baseline and
loss thresholds. The Short-term Trend and the Long-term Trend metrics give
indications of sharpness and consistency of upward and downward delay trends
in short and long term window of past packets. In the Loss Predictor approach
we determine these metrics from the ongoing traffic and combine them with dif-
ferent weights based on their importance in order to estimate of the packet loss
likelihood.

Subsequent sections are organized as follows. Section 2 contains references
to the related work. Section 3 presents the Predictor approach, with subsections
describing the delay-loss correlation model and the Predictor formalization. We
present the evaluation results in Section 4, and conclusion and future work in
Section 5.

2 Related Work

Paxson examined the delay-loss correlation issue in his PhD thesis [16]. But he
concluded that the linkage between delay variation and loss was weak, though
not negligible. In contrast with Paxson’s observations, we predict packet loss
based on the observed patterns of delay variation, rather than depending on the
overall amount of delay variation as indicator of congestion.

Moon’s Technical Report and PhD thesis [13] explored this issue to a certain
degree. They reported a quantitative study of delay and loss correlation patterns
from offline analysis of measurement data from the Internet. But they did not
attempt to take a further step of real-time prediction of packet loss from the
delay variation data of an ongoing communication.

The researchers measuring performance of Mbone, a virtual Internet Back-
bone for multicast IP, observed that there is a correlation between the bandwidth
used and the amount of loss experienced [5],[6].

Pathload [10] uses the delay variation principle to measure available band-
width. They send streams of increasing rate till the stream saturates the available
bandwidth and starts showing distinct increase in delay. The same principle is
used in TCP Vegas [3], which exploits RTT variation to measure the difference
between the actual and the expected sending rate to provide better congestion
detection and control. Packet loss is highly probable when the available band-



width is low and is consumed by the ongoing cross traffic. Our research methods
and experiments are based on this premise.

Sender based Error and Rate Control mechanisms for audio, such as by Bolot
& Garcia [2], Bolot & Fosse-Parisis [1], Padhye, Christensen, & Moreno [15],
Mohamed et al. [12] adapt to packet loss using RTCP feedback from the receiver
- thus these mechanisms react to packet loss. In contrast, we predict packet loss
and take FEC actions based on the nature of the prediction; hence our approach
handles packet loss proactively based on the current loss likelihood.

3 Loss Predictor Approach

3.1 Analysis of Delay-Loss Correlation Model

Here we formalize a number of propositions which constitute our framework
based on baseline, loss threshold delay and trends.

Let the path from the sender to the receiver consist of H links, i =1,..., H.
Let the capacity of the link be C; . If the available bandwidth at link i be A;, the
utilization of link i is u; = (C; — A;)/C;. We assume that the links follow FCFS
queuing discipline and Droptail packet dropping mechanism. Let the sender send
a periodic stream of K packets, each of size L bytes, at rate Ry, to the receiver.
Hence a packet is sent in L/Ry = T time interval. Also there are (C; — A;)T
(in other words, u;C;T') bytes of cross-traffic, in addition to the source stream,
arriving at link ¢ in interval T'. It has been shown in [10] that the One-Way Delay
(OWD) DF of the k-th packet is:

k
DF =3+ B = 3 ) 1)

and the OWD difference between two successive packet k and k + 1 is
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where ¢F is the queue size at link i upon arrival of packet k (not including the kth
packet), and d¥ is the queuing delay of packet k at link i, and AgF = qf“ —qF,
AdF = d¥t — dF. Clearly, the minimum OWD a packet can have is when there

is no queuing delay, denoted as the baseline delay. From (1):

L
Dbaseline = Z 6 (3)
i=1 "

Proposition 1. Ad* increases as the available bandwidths at the tight links
decrease, and vice versa.



Let a set of "tight’ links be the set of links in the path that contribute to the
majority of the queuing delay. Over the interval T', the link ¢ receives (R;_1T +
u;C;T) bytes (stream and cross traffic) and services C;T bytes, where R;_1 is
the exit-rate from link ¢ — 1. As shown in [10], we can express R; as follows:

Cy ; ) .
Rq; _ {Ri_1 CiF(Rici—A)) if Rz_l > Al (4)

R, 4 otherwise

The change in queue size AgF can be expressed as the difference of the
arrival rate (packet and cross-traffic) at i-th link and service rate at i-th link:
(Rz’_lT + uzCzT) - C;T = (Ri—l — Az)T >0 if R > A;. Thus,

(Ri—1—A:) . ) )
Adb =1 o T>0 if RZ,1.> A; (5)
0 otherwise

Suppose there are k ’tight’ links, i.e. for links mqy, ma,...mg, R;—1 > A;.
Then from (2) and (5),
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Hence AD* will increase if the available bandwidths at the tight links A,,,,
Amsyy- - - yAm, , decrease, and vice versa. Thus Dy, will show steeper rate of increase
if there is lesser available bandwidth at the tight links, i.e. if there is higher rate
of cross traffic through the tight links.

Suppose in particular, m-th link is the considerably narrow link, s. t. C,, <<
Ciyi = 1,...H,i # m. For the sake of simplicity, let us also consider that (i)
m-th link is the most tight link (bottleneck link), i.e. the available bandwidth
at this link A,, = (1 — uy,)Cyy, is the minimum available bandwidth of the path,
and (ii) R;—1 > A; only for i = m, since m-th link is much narrower than others.

Then from (4), Ryy—1 = Rim—2... = Rg. Then (6) can be simplified as:
Rn, 1—A Ry— A
ADk — m 77lT — mT 7
- a- (7)

Hence AD* increases if the minimum available bandwidth at the bottleneck
link decreases, and vice versa. O

Thus under simplified conditions, D* will show steeper rate of increase if
there is lesser available bandwidth at the tightmost link, i.e. if there is higher
rate of cross traffic through the tightmost link.

Proposition 2. There exists a range of OWDs in which packet loss is likely.

In this proposition we show the existence of a range of delays in which loss is
likely, that is, we establish a range of loss threshold delays. Since C},, < C;, hence
1/Cpy > 1/Cs,i=1,...H,i # m. Then M/C,, > ¢;/C;,i = 1,...H, where M



is the queue capacity at m-th link, assuming that the queue capacities at each
link are same. When the queue at m-th link is filled up, the OWD is given by:

H X
L ¢ L+ M
DObservedLoss = E ( + = ) + (8)
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DopservedLoss 1S the observed loss threshold delay (OTD). Delay values higher
than this value indicate that loss of the next packet is likely. From (3) and (8),

DObservedLoss > Dbaseline (9)

In particular,

H H
L H L M
§: C C > DObservedLoss §: C C

Thus OTD is bounded by the minimum loss threshold delay (lower bound),
Dpinorp = Zi1 CL + CM, when only one link is the bottleneck, and the max-

imum loss threshold delay (upper bound) D,,4c0rp = ZIH en + M when all

H links are bottlenecks. In particular, if £~ M > Zl 1 C , i.e. the occupled queue
size at the tight link is larger than the sum ' of queue sizes at the rest of the links,
which is possible when there is a single bottleneck considerably narrower than
the rest of the links,

H H
L M L k
DObservedLoss = E C. + C > E (C + %’) (10)
i=1 " meog=1 " v

In that case the observed loss threshold delay is equal to the maximum ob-
served delay. O

Thus the likelihood of loss of the packet k at m-th link can be expressed as
a combination of the following delay factors: (1) the current total queuing delay
relative to the worst queuing delay (from (1), (3), (8) and (9)),

k k
o D* — Dbaseline o Zz 1 dz (11)
DObservedLoss - Dbaseline Zz 1i#m df + C

which is a value between 0 and 1, and (2) rate of delay increase, (from (7))

§D*¥ Ry — A,
oT Chn (12)

3.2 Loss Predictor Formalization

The challenges of implementing the above model and deriving the likelihood of
packet loss from network delay measurements are as follows: (1) to establish a
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Fig. 1. Behavior of MinMaz

range of delays that can be considered as the baseline delay for a particular path,
(2) to determine a range of delays for a loss threshold, (3) to measure the delay
increase ratio and trends, and (4) to find a likelihood of loss from the combining
the above factors.

These challenges lead us to develop the Loss Predictor metrics - (1) Delay
Distance, (2) Short-term Trend and (3) Long-term Trend. Delay Distance is
derived from equation (11). It gives an absolute ratio of the delay value in relation
to the loss threshold. The Short term Trend and the Long term Trend metrics
are derivations of equation (12). They indicate the sharpness and consistency
of upward and downward delay trends over a short and long term window of
past packets. Short term trend metric tracks sharp changes in the delay, due to
sudden burst of high degree of cross-traffic, which is more critical for loss if the
delay is close to the loss threshold. In contrast, the long-term increasing trend
tracks gradual rising trends due to persistent decrease in bandwidth, signifying
gradual congestion build-up leading to packet loss. By considering the rate of
increase, the short-term and the long-term metrics prevent Delay Distance metric
from over-reacting to the absolute value of the delay. Thus these metrics work
complementary to one another. We formalize the Loss Predictor as a weighted
function of these three metrics. The Loss Predictor can be expressed as the
following:

0 < f(DelayDist, ShortTermTrend, LongTermTrend)
= wy * DelayDist + wo x ShortTermTrend + ws * LongTermTrend <1
and wy +wg + w3z =1

The Predictor uses dynamic weights that depend on the current delay situ-
ation and congestion level. This is described later.

Delay Distance (MinMax) This metric gives an absolute ratio of the current
delay value above the baseline in relation to the loss threshold. This can be
expressed as the following:

(13)

k _
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where, base = the most observed delay so far, considered to be the baseline
delay, D¥ = the delay value of the k-th packet, thr = the threshold delay at
which a loss is observed.

The value of this metric lies between 0 and 1. The minimum of the linear
increase ratio and 1 is taken, since we have observed that the maximum delay
in a session can increase much higher than the threshold delay, and thus Dy can
be larger than thr.

This metric is computationally simple. Fig. 1 shows the behavior of the met-
ric. This value of the metric lies between 0 and 0.2 when the delay is close to
the baseline, but rises up consistently to high values (0.8 to 1.0) when the delay
reaches the loss threshold. Thus it is a good indicator of the absolute delay in-
crease or decrease between the baseline and the loss threshold, and hence is an
important component of loss prediction.

Long Term Trend Metrics These metrics are required to measure long-term
trends in the delay increase, indicating if an over all increasing trend is evident for
a large number of preceding packets. The length of this packet window is adjusted
dynamically based on the delay mean deviation observed so far, and is typically
20 to 50 packets. The following metrics indicate consistency in increasing trends,
i.e. how consistently the delay is increasing for every measured packet pair, and
are useful to measure this trend.

Long Term Consistency Measures (Spct/Spdt) We use variations of PCT
(Pairwise Comparison Test) and PDT (Pairwise Difference Test) presented in [10].
Both of them are indicators of consistent increasing trends in a packet train. Spct
is smoother in showing the long-term trends, whereas Spdt reacts with larger de-
gree of increase or decrease over a packet train length of I" . The range of Spct
is [0,1] and of Spdt is [-1,1], scaled to [0,1]. We use Exponential Weighted Aver-
age [9] with gain 0.9 to smooth out undesired oscillations.

S, I(D* > DY)
I'—1 ’
DI — Dt
Sy |DE — DE-1]

Spct =

I(X) =1 if X holds, 0 otherwise

Spdt =



We also use the average of MinMazx for a long term packet window, which pro-
vides a long-term trend of the relative increase in delay magnitude. We consider
an average of above three measures to calculate the long-term factor. In Fig. 2
oval 2 this metric successfully tracks consistent increasing and decreasing trends
of one way delay over 20 to 50 packets.

Short Term Trend Metrics These metrics are required to measure short-
term trends in the delay increase, signifying how fast the delay is increasing
over last small window of packets. The length of this packet window is adjusted
dynamically based on the mean delay deviation observed so far, and is typically
5 to 10 packets. As the delay gets close to the loss threshold, more weight should
be given to these metrics, because a sharp change in the delay will become more
critical for loss. We present ST as an indicator of sharpness of increase (the ’slope’
of the increase), and SpctST/SpdtST as indicators of the consistency of increase.

Sharpness Indicator (SI) This metric determines how fast the delay is ap-
proaching the loss threshold by measuring the slope of the line joining the delay
values of the current packet and the previous packet.

SI = maz(—1,min(1, (D* — D*=1)/(t* — tk=1)))

Under a sudden burst of high congestion, the slope is observed to be steeper.
Thus higher degree of slope indicates higher congestion, and hence higher like-
lihood of packet loss. The range of this metric is truncated from [—oo, +00] to
[-1,1] and scaled to [0,1].

We also use SpctST and SpdtST, which are short term versions of Spct and
Spdt. As SpdtST is more sensitive to sudden changes to delay, we choose the
short-term trend to be the average of SI and SpdtST. This metric fluctuates
considerably from packet to packet, but successfully tracks the short term in-
creasing and decreasing trends (Fig. 2 oval 1).

3.3 Predictor Weight Factor Formalization

Here we describe the intuitions behind the selection of the metric weights w1, wo
and ws described in 3.1. Since MinMaxz is the best indicator of the delay increase
in terms of the baseline and loss threshold, w; is chosen higher than the short
term and the long term trend weights wy and ws. We divide the range of possible
values [0,1] of MinMaz into three zones *Yellow’, ’Orange’ and 'Red’, signifying
the levels of criticality in regard to packet loss likelihood.

Yellow Zone (0 < MinMaxz < 40%): The low value of MinMaz is not im-
portant in this zone, neither are short-term fluctuations. The long-term metric
indicates if there is an over all increasing trend, and thus is a significant factor
to consider. Thus we choose wo = 0, and an increasing ws.

Orange Zone (40% < MinMax < 70%): This is the critical alert period
where we see the signs of delay increase which is of concern, and any sign of sharp
increase, showed by the short-term trend, should be considered with increasing
weight. Thus we choose an increasing ws, and a decreasing ws.
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Red Zone (710% < MinMaxz < 100%): In this zone the delay is high enough
to be close to the loss threshold. Here every possible sign of short term increasing
trend should be taken into account along with the high MinMax value. The long
term is ignored here. Thus we choose an increasing ws, and ws=0.

In the following prototype function we use functions w1y, ws and w3 as weights
for MinMax, STermTrend, LTermTrend and a fourth function wy to control the
behaviors of STermTrend and LTermTrend following the weight control ’'rules’
in different zones.

predictor = wy * MinMaz + wo x STermTrend + ws * LTermTrend

wy =1—vVMinMax/2,wy = VMinMaz/2 x wy, w3 = VMinMaz/2x (1 — wy)

1 in Yellow zone
wyg =< 1 — (MinMax —0.4)/0.3 in Orange zone
0 in Red zone

In Fig. 3 wi, we and ws follow the weight ’rules’, with proper increas-
ing and decreasing behaviors in different zones. We give more appreciation to
LTermTrend by selecting an increasing wsy in the Yellow zone. But as Min-
Maz approaches Orange and Red zones, STermTrend is given more priority by
choosing an increasing ws. This enhances the importance of the trend factors
and incorporates the zones in the predictor calculation.

4 Predictor Evaluation: Simulation And Experiment
Results

In this section we present the simulation and experiment results that evaluate
the Predictor algorithm in terms of accuracy and efficiency. Ideally the predictor
should behave accurately, that is, the predictor should report high values for the
majority of packet loss occurrences. The predictor should also be efficient by not
over-estimating when there is no loss.

We used the network simulator ns-2 [14] to evaluate the Predictor algorithm
simulating congestion under a range of cross-traffic and intermediate hop scenar-
ios. We created two scenarios described in Fig 4. We assumed FCFS queuing and



Scenario 2

Fig. 4. Simulation Scenarios

Droptail packet dropping for the links. In scenario 1, a CBR stream of 64kbps
flowed from nl and n2 through two intermediate hops, r1-r2 being the bottleneck
link (capacity 700kbps) and four Pareto cross traffics with shape parameter=1.9
(meaning infinite variance) flowed from n3 to n4 via r1-r2. In scenario 2, a CBR
stream of 64kbps flowed from nl and n2 through five intermediate hops (rl, r2,
r3, r4 and r5), and four Pareto cross traffics flowed through the intermediate
hops as shown in the figure. In both cases we gathered a large number of data
by introducing a varied number of transient cross traffics of different packet sizes
(100 bytes to 1000 bytes) and rates (200kbps to 900kbps) at dispersed points in
time, causing different degrees of congestion resulting in stream packet loss at
the intermediate links.

For the Internet experiments we conducted two sets of experiments on RON/
NetBed [7], and PlanetLab [8], two wide-area network testbeds consisting of sites
located around the Internet. A ”Master” program from a US site sent a 1 minute
speech segment to various sites across the world and received it back recording
statistical information. The packet size varied between three sizes (256 bytes,
512 bytes, 1K) and the send rate varied among two values (1ms gap, 10ms gap),
generating streams of high rates ranging from 204Kbps to 8Mbps in order to
create temporary congestion in the path and observe the effects manifested as
packet loss. We ran this experiment every 4 hours for a period of seven days.

Predictor Behavior in Simulation and Internet Experiments In Figs.
5(a) and (b) we present examples of simulation results from scenarios 1 and 2.
Both these figures show an identifiable baseline delay. The loss thresholds on
the other hand, vary from one another considerably. Scenario 2 has increasingly
wider loss threshold range and delay variation compared to scenario 1. This is
due to variable and random degrees of cross traffic flowing through multiple
links causing unpredictable congestion at different parts of the path. In con-
trast, congestion at one bottleneck link, though created by various degrees of
cross traffic, produces more predictable results in scenario 1. In both scenarios,
predictor value lies consistently between 0.75 and 0.92 around the loss regions,
denoting high likelihood of packet loss, but decreases to low values in the range
of 0 to 0.2 when the delay decreases close to the baseline. Thus the predictor
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successfully reacts to the baseline, loss threshold and increasing and decreasing
trends of the delay in a wide variety of congestion situations.

Figure 6(a) shows the Predictor for a selected example from an Internet
experiment. We see that around the loss regions the predictor value lies consis-
tently between 0.8 and 0.9, denoting high likelihood of packet loss, but decreases
to low values in the range of 0.1 to 0.3 when the delay decreases close to the
baseline. Thus the predictor successfully reacts to the baseline, loss threshold
and increasing and decreasing trends of the delay. Fig 6(a) also shows the effect
of the Short-term and Long-term Trend on the Predictor. In Oval 1, marking a
Red zone (MinMaz value larger than 0.70), the short-term trend accentuates the
Predictor based on immediate sharp increase of delay. In Oval 2, the Long-term
trend pulls up the Predictor value based on the long-term increasing trend in
the Yellow and Orange zones, even when MinMax value is not very high.

Predictor Accuracy We ran the Predictor algorithm against all the data we
collected. The data is presented in Figure 6(b) as a summary of the Predictor effi-
ciency and accuracy for Internet experiments. We divided the data into ’around
loss’ and 'no loss’ regions - an ’around loss’ region being -20 to +20 packets
around a loss, and packets outside ’around loss’ regions being in 'no loss’ region.
We took predictor values for the packets in the 'around loss’ regions to determine
the predictor accuracy. Ideally, the predictor should predict accurately, that is
there should not be any loss at low values of the predictor. We see that there is
about 10% loss at low values (values smaller than 0.6).

The accuracy for the simulation is shown in Table 1. Around loss regions,
the predictor value is greater than 0.6 78% of the times in scenario 1 vs. 59% in
scenario 2. Only 2% of the times the predictor value has been under 0.4 in loss
regions, compared to 19% for scenario 2. In scenario 2 we simulate more variable
and random degrees of congestion at different parts of the path compared to
scenario 1, resulting in less accuracy for the predictor. This motivates us into
refining the predictor for better accuracy under such variable conditions.

Predictor Efficiency Here we study the other side of the same coin, that is,
how efficient the predictor is by not over-estimating when there is no loss. Both
the simulation scenarios show very small percentages (5% for Scenario 1, 2% for
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Table 1. Predictor Accuracy in Simulation Scenarios

Predictor Value Percentage Ratio
Predictor value in ’around loss’ region|Scenario 1 Scenario 2
> 0.6 78% 59%
0.4 to 0.6 20% 22%
<04 2% 19%

scenario 2) of predictor value larger than 0.7 in the 'non loss’ region. Figure 6(b)
shows a small percentage (about 16%) of high predictor value (value larger than
0.7) in the non loss region for Internet experiment sites.

The efficiency is a critical input to the Predictor. As part of our future work,
we shall use the efficiency factor as a self-feedback to the Predictor mechanism
in order for it to evaluate and refine its prediction on an ongoing basis.

5 Conclusion and Future Work

This paper presents a framework of a Packet Loss Predictor: a novel mechanism
to predict packet loss in real-time audio streams by observing the delay variation
and trends. Loss Predictor approach is based on (i) determining certain metrics
for measuring the delay variation characteristics from the ongoing traffic, (ii)
combining them with weights based on their importance, and (iii) deriving a
predictor value as the measure of packet loss likelihood. The Predictor value,
fed back to the sender, indicates current degree and severity of congestion and
likelihood of packet loss, and can be a vital component in sender-based error
and rate control mechanisms for multimedia. The proactive predictor feedback
makes the framework superior to mechanisms with static and reactive feedbacks,
and a viable technique for majority of network conditions.

We present simulation and experiment results showing the accuracy and ef-
ficiency of the algorithm achieved so far. The results of the Predictor under
simulation scenarios and experiments show 60%-90% accuracy and 85%-98% ef-
ficiency. As future work, we need to refine the metrics and the weight factors
to improve the accuracy and efficiency of the Predictor. This will enable us to
use the Predictor more reliably in proactive error and rate control mechanisms.



Various packet window sizes introduced in this paper also need to be tuned. For-
malization is also necessary for sender initiated proactive FEC and rate control
actions, which depend on the Predictor feedback values. Also, we would like to
extend the concepts of the Loss Predictor to paths with Random Early Detection
(RED) packet dropping mechanisms and apply the Loss Predictor to DiffServ,
Overlay and Multicast frameworks.
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