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Abstract. The effect of packet loss on the quality of real-time audio
is significant. Nevertheless, Internet measurement experiments continue
to show a considerable variation of packet loss, which makes audio error
recovery and concealment challenging. Our objective is to predict packet
loss in real-time audio streams based on the available bandwidth and
delay variation and trend, enabling proactive error recovery for real-time
audio over the Internet. Our preliminary simulation and experimentation
results with various sites on the Internet show the effectiveness and the
accuracy of the Loss Predictor technique.

1 Introduction

Quality of an audio communication is highly sensitive to packet loss [4],[17]. Ma-
jority of packet loss in the Internet occurs as the result of congestion in the links.
Packet loss for audio is normally rectified by adding redundancy using Forward
Error Correction (FEC) [11]. However, unnecessarily high degree of FEC can
actually be detrimental rather than beneficial to the ongoing communication
because of the excessive traffic. Here the challenge is to ensure a bandwidth-
friendly transmission with an effective degree of loss recovery by dynamically
changing the degree of FEC. In this paper, we present the investigations to de-
velop a mechanism to predict packet loss in real-time audio streams based on
delay variation and trend, which will enable proactive error recovery and rate
control for real-time Internet audio.

The basic idea of our proposed on-line loss prediction method is to success-
fully track the increase and decrease trends in one way delay, and accordingly
predict the likelihood of packet loss due to congestion leading to lack of avail-
able bandwidth. However, this task becomes difficult due to the unpredictable
and dynamic nature of cross traffic in the Internet. In this paper we attempt to
formalize a framework to express the likelihood of loss in the next packet train
in terms of (1) changes in the available bandwidth, manifested as end-to-end
delay variations, and (2) near-past history of congestion in terms of short-term
and long-term trends in delay variation. The value returned by the Predictor
indicates the current degree and severity of congestion and lack of available
bandwidth, hence the likelihood of packet loss, created by cross traffic bursts.
The predictor value is fed back from the receiver to the sender in order for the
sender to take proactive FEC actions and rate control.



In our approach, we designate the minimum delay of a path as the baseline
delay, signifying the delay under no congestion. We also identify the delay at the
capacity saturation point of a path as the loss threshold delay, after which packet
loss is more likely. We track the increase patterns or trends of the delay as an in-
dication of congestion causing packet loss. We have seen in our experiments that
each site shows a consistent minimum baseline delay. We also observe a range
of loss threshold delay values after which loss is observed more often. The loss
threshold delay shows a variety of ranges and behaviors due the unpredictable
nature of the cross traffic in the network at that time. To measure these path
delay characteristics, we propose certain measurement metrics classified in three
categories - Delay Distance, Short Term Trend and Long Term Trend. Delay Dis-
tance gives an absolute ratio of the delay value in relation to the baseline and
loss thresholds. The Short-term Trend and the Long-term Trend metrics give
indications of sharpness and consistency of upward and downward delay trends
in short and long term window of past packets. In the Loss Predictor approach
we determine these metrics from the ongoing traffic and combine them with dif-
ferent weights based on their importance in order to estimate of the packet loss
likelihood.

Subsequent sections are organized as follows. Section 2 contains references
to the related work. Section 3 presents the Predictor approach, with subsections
describing the delay-loss correlation model and the Predictor formalization. We
present the evaluation results in Section 4, and conclusion and future work in
Section 5.

2 Related Work

Paxson examined the delay-loss correlation issue in his PhD thesis [16]. But he
concluded that the linkage between delay variation and loss was weak, though
not negligible. In contrast with Paxson’s observations, we predict packet loss
based on the observed patterns of delay variation, rather than depending on the
overall amount of delay variation as indicator of congestion.

Moon’s Technical Report and PhD thesis [13] explored this issue to a certain
degree. They reported a quantitative study of delay and loss correlation patterns
from offline analysis of measurement data from the Internet. But they did not
attempt to take a further step of real-time prediction of packet loss from the
delay variation data of an ongoing communication.

The researchers measuring performance of Mbone, a virtual Internet Back-
bone for multicast IP, observed that there is a correlation between the bandwidth
used and the amount of loss experienced [5],[6].

Pathload [10] uses the delay variation principle to measure available band-
width. They send streams of increasing rate till the stream saturates the available
bandwidth and starts showing distinct increase in delay. The same principle is
used in TCP Vegas [3], which exploits RTT variation to measure the difference
between the actual and the expected sending rate to provide better congestion
detection and control. Packet loss is highly probable when the available band-



width is low and is consumed by the ongoing cross traffic. Our research methods
and experiments are based on this premise.

Sender based Error and Rate Control mechanisms for audio, such as by Bolot
& Garcia [2], Bolot & Fosse-Parisis [1], Padhye, Christensen, & Moreno [15],
Mohamed et al. [12] adapt to packet loss using RTCP feedback from the receiver
- thus these mechanisms react to packet loss. In contrast, we predict packet loss
and take FEC actions based on the nature of the prediction; hence our approach
handles packet loss proactively based on the current loss likelihood.

3 Loss Predictor Approach

3.1 Analysis of Delay-Loss Correlation Model

Here we formalize a number of propositions which constitute our framework
based on baseline, loss threshold delay and trends.

Let the path from the sender to the receiver consist of H links, i = 1, . . . , H.
Let the capacity of the link be Ci . If the available bandwidth at link i be Ai, the
utilization of link i is ui = (Ci − Ai)/Ci. We assume that the links follow FCFS
queuing discipline and Droptail packet dropping mechanism. Let the sender send
a periodic stream of K packets, each of size L bytes, at rate R0, to the receiver.
Hence a packet is sent in L/R0 = T time interval. Also there are (Ci − Ai)T
(in other words, uiCiT ) bytes of cross-traffic, in addition to the source stream,
arriving at link i in interval T . It has been shown in [10] that the One-Way Delay
(OWD) Dk of the k-th packet is:

Dk =
H∑

i=1

(
L

Ci
+

qk
i

Ci
) =

H∑
i=1

(
L

Ci
+ dk

i ) (1)

and the OWD difference between two successive packet k and k + 1 is

ΔDk = Dk+1 − Dk =
H∑

i=1

Δqk
i

Ci
=

H∑
i=1

Δdk
i (2)

where qk
i is the queue size at link i upon arrival of packet k (not including the kth

packet), and dk
i is the queuing delay of packet k at link i, and Δqk

i = qk+1
i − qk

i ,
Δdk

i = dk+1
i − dk

i . Clearly, the minimum OWD a packet can have is when there
is no queuing delay, denoted as the baseline delay. From (1):

Dbaseline =
H∑

i=1

L

Ci
(3)

Proposition 1. Δdk increases as the available bandwidths at the tight links
decrease, and vice versa.



Let a set of ’tight’ links be the set of links in the path that contribute to the
majority of the queuing delay. Over the interval T , the link i receives (Ri−1T +
uiCiT ) bytes (stream and cross traffic) and services CiT bytes, where Ri−1 is
the exit-rate from link i − 1. As shown in [10], we can express Ri as follows:

Ri =
{

Ri−1
Ci

Ci+(Ri−1−Ai)
if Ri−1 > Ai

Ri−1 otherwise
(4)

The change in queue size Δqk
i can be expressed as the difference of the

arrival rate (packet and cross-traffic) at i-th link and service rate at i-th link:
(Ri−1T + uiCiT ) − CiT = (Ri−1 − Ai)T > 0 if Ri−1 > Ai. Thus,

Δdk
i =

{ (Ri−1−Ai)
Ci

T > 0 if Ri−1 > Ai

0 otherwise
(5)

Suppose there are k ’tight’ links, i.e. for links m1, m2, . . . mk, Ri−1 > Ai.
Then from (2) and (5),

ΔDk =
H∑

i=1

Δdk
i =

Rm1−1 − Am1

Cm1

T + . . . +
Rmk−1 − Amk

Cmk

T (6)

Hence ΔDk will increase if the available bandwidths at the tight links Am1 ,
Am2 ,. . . ,Amk

, decrease, and vice versa. Thus Dk will show steeper rate of increase
if there is lesser available bandwidth at the tight links, i.e. if there is higher rate
of cross traffic through the tight links.

Suppose in particular, m-th link is the considerably narrow link, s. t. Cm <<
Ci, i = 1, . . . H, i �= m. For the sake of simplicity, let us also consider that (i)
m-th link is the most tight link (bottleneck link), i.e. the available bandwidth
at this link Am = (1 − um)Cm is the minimum available bandwidth of the path,
and (ii) Ri−1 > Ai only for i = m, since m-th link is much narrower than others.
Then from (4), Rm−1 = Rm−2 . . . = R0. Then (6) can be simplified as:

ΔDk =
Rm−1 − Am

Cm
T =

R0 − Am

Cm
T (7)

Hence ΔDk increases if the minimum available bandwidth at the bottleneck
link decreases, and vice versa. �

Thus under simplified conditions, Dk will show steeper rate of increase if
there is lesser available bandwidth at the tightmost link, i.e. if there is higher
rate of cross traffic through the tightmost link.

Proposition 2. There exists a range of OWDs in which packet loss is likely.

In this proposition we show the existence of a range of delays in which loss is
likely, that is, we establish a range of loss threshold delays. Since Cm < Ci, hence
1/Cm > 1/Ci, i = 1, . . . H, i �= m. Then M/Cm ≥ qi/Ci, i = 1, . . . H, where M



is the queue capacity at m-th link, assuming that the queue capacities at each
link are same. When the queue at m-th link is filled up, the OWD is given by:

DObservedLoss =
H∑

i=1,i �=m

(
L

Ci
+

qk
i

Ci
) +

L + M

Cm
(8)

DObservedLoss is the observed loss threshold delay (OTD). Delay values higher
than this value indicate that loss of the next packet is likely. From (3) and (8),

DObservedLoss > Dbaseline (9)

In particular,

H∑
i=1

L

Ci
+

HM

Cm
≥ DObservedLoss ≥

H∑
i=1

L

Ci
+

M

Cm

Thus OTD is bounded by the minimum loss threshold delay (lower bound),
DminOTD =

∑H
i=1

L
Ci

+ M
Cm

, when only one link is the bottleneck, and the max-

imum loss threshold delay (upper bound) DmaxOTD =
∑H

i=1
L
Ci

+ HM
Cm

when all

H links are bottlenecks. In particular, if M
Cm

≥ ∑H
i=1

qk
i

Ci
, i.e. the occupied queue

size at the tight link is larger than the sum of queue sizes at the rest of the links,
which is possible when there is a single bottleneck considerably narrower than
the rest of the links,

DObservedLoss =
H∑

i=1

L

Ci
+

M

Cm
≥

H∑
i=1

(
L

Ci
+

qk
i

Ci
) (10)

In that case the observed loss threshold delay is equal to the maximum ob-
served delay. �

Thus the likelihood of loss of the packet k at m-th link can be expressed as
a combination of the following delay factors: (1) the current total queuing delay
relative to the worst queuing delay (from (1), (3), (8) and (9)),

=
Dk − Dbaseline

DObservedLoss − Dbaseline
=

∑H
i=1 dk

i∑H
i=1,i �=m dk

i + M
Cm

(11)

which is a value between 0 and 1, and (2) rate of delay increase, (from (7))

=
δDk

δT
=

R0 − Am

Cm
(12)

3.2 Loss Predictor Formalization

The challenges of implementing the above model and deriving the likelihood of
packet loss from network delay measurements are as follows: (1) to establish a
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We also use the average of MinMax for a long term packet window, which pro-
vides a long-term trend of the relative increase in delay magnitude. We consider
an average of above three measures to calculate the long-term factor. In Fig. 2
oval 2 this metric successfully tracks consistent increasing and decreasing trends
of one way delay over 20 to 50 packets.

Short Term Trend Metrics These metrics are required to measure short-
term trends in the delay increase, signifying how fast the delay is increasing
over last small window of packets. The length of this packet window is adjusted
dynamically based on the mean delay deviation observed so far, and is typically
5 to 10 packets. As the delay gets close to the loss threshold, more weight should
be given to these metrics, because a sharp change in the delay will become more
critical for loss. We present SI as an indicator of sharpness of increase (the ’slope’
of the increase), and SpctST/SpdtST as indicators of the consistency of increase.

Sharpness Indicator (SI) This metric determines how fast the delay is ap-
proaching the loss threshold by measuring the slope of the line joining the delay
values of the current packet and the previous packet.

SI = max(−1, min(1, (Dk − Dk−1)/(tk − tk−1)))

Under a sudden burst of high congestion, the slope is observed to be steeper.
Thus higher degree of slope indicates higher congestion, and hence higher like-
lihood of packet loss. The range of this metric is truncated from [−∞, +∞] to
[-1,1] and scaled to [0,1].

We also use SpctST and SpdtST, which are short term versions of Spct and
Spdt. As SpdtST is more sensitive to sudden changes to delay, we choose the
short-term trend to be the average of SI and SpdtST. This metric fluctuates
considerably from packet to packet, but successfully tracks the short term in-
creasing and decreasing trends (Fig. 2 oval 1).

3.3 Predictor Weight Factor Formalization

Here we describe the intuitions behind the selection of the metric weights w1, w2
and w3 described in 3.1. Since MinMax is the best indicator of the delay increase
in terms of the baseline and loss threshold, w1 is chosen higher than the short
term and the long term trend weights w2 and w3. We divide the range of possible
values [0,1] of MinMax into three zones ’Yellow’, ’Orange’ and ’Red’, signifying
the levels of criticality in regard to packet loss likelihood.

Yellow Zone (0 ≤ MinMax ≤ 40%): The low value of MinMax is not im-
portant in this zone, neither are short-term fluctuations. The long-term metric
indicates if there is an over all increasing trend, and thus is a significant factor
to consider. Thus we choose w2 = 0, and an increasing w3.

Orange Zone (40% < MinMax ≤ 70%): This is the critical alert period
where we see the signs of delay increase which is of concern, and any sign of sharp
increase, showed by the short-term trend, should be considered with increasing
weight. Thus we choose an increasing w2, and a decreasing w3.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 10.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

M
inM

ax value

weight value

Yellow
 zone

O
range zone

R
ed zone

w
1

w
2

w
3

F
ig.3.

W
eight

Function
Set

R
ed

Z
one

(70%
<

M
in

M
a
x≤

100%
):

In
this

zone
the

delay
is

high
enough

to
be

close
to

the
loss

threshold.H
ere

every
possible

sign
ofshort

term
increasing

trend
should

be
taken

into
account

along
w

ith
the

high
M

inM
ax

value.T
he

long
term

is
ignored

here.
T

hus
w

e
choose

an
increasing

w
2 ,

and
w

3 =
0.

In
the

follow
ing

prototype
function

w
e

use
functions

w
1 ,

w
2

and
w

3
as

w
eights

for
M

inM
ax,ST

erm
T
rend,LT

erm
T
rend

and
a

fourth
function

w
4

to
controlthe

behaviors
of

ST
erm

T
rend

and
LT

erm
T
rend

follow
ing

the
w

eight
control

’rules’
in

different
zones.

p
red

ictor
=

w
1 ∗

M
in

M
a
x

+
w

2 ∗
S

T
erm

T
ren

d
+

w
3 ∗

L
T

erm
T

ren
d

w
1

=
1−

√
M

in
M

a
x
/2,w

2
=

√
M

in
M

a
x
/2∗

w
4 ,w

3
=

√
M

in
M

a
x
/2∗

(1−
w

4 )

w
4

= ⎧⎨⎩
1

in
Y

ellow
zone

1−
(M

in
M

a
x−

0
.4)/0.3

in
O

range
zone

0
in

R
ed

zone

In
F
ig.

3
w

1 ,
w

2
and

w
3

follow
the

w
eight

’rules’,
w

ith
proper

increas-
ing

and
decreasing

behaviors
in

different
zones.

W
e

give
m

ore
appreciation

to
LT

erm
T
rend

by
selecting

an
increasing

w
2

in
the

Y
ellow

zone.
B

ut
as

M
in-

M
ax

approaches
O

range
and

R
ed

zones,
ST

erm
T
rend

is
given

m
ore

priority
by

choosing
an

increasing
w

3 .
T

his
enhances

the
im

portance
of

the
trend

factors
and

incorporates
the

zones
in

the
predictor

calculation.

4
P

red
ictor

E
valu

ation
:
S
im

u
lation

A
n
d

E
xp

erim
ent

R
esu

lts

In
this

section
w

e
present

the
sim

ulation
and

experim
ent

results
that

evaluate
the

P
redictor

algorithm
in

term
s
ofaccuracy

and
effi

ciency.Ideally
the

predictor
should

behave
accurately,that

is,the
predictor

should
report

high
values

for
the

m
ajority

ofpacket
loss

occurrences.T
he

predictor
should

also
be

effi
cient

by
not

over-estim
ating

w
hen

there
is

no
loss.

W
e

used
the

netw
ork

sim
ulator

ns-2
[14]to

evaluate
the

P
redictor

algorithm
sim

ulating
congestion

under
a

range
ofcross-traffi

c
and

interm
ediate

hop
scenar-

ios.W
e

created
tw

o
scenarios

described
in

F
ig

4.W
e

assum
ed

F
C

F
S

queuing
and



n
1

n
2

n
3

n
4

r1
r2

C
B

R
 Cross Traffic S

cenario 1

n
1

n
2

n
3

n
4

r1
r2

C
B

R
 Cross Traffic

S
cenario 2

n
5

n
7

n
9

r3
r4

r5

n
6

n
8

n
10

F
ig.4.

Sim
ulation

Scenarios

D
roptail

packet
dropping

for
the

links.
In

scenario
1,

a
C

B
R

stream
of

64kbps
flow

ed
from

n1
and

n2
through

tw
o

interm
ediate

hops,r1-r2
being

the
bottleneck

link
(capacity

700kbps)
and

four
P
areto

cross
traffi

cs
w

ith
shape

param
eter=

1.9
(m

eaning
infinite

variance)
flow

ed
from

n3
to

n4
via

r1-r2.In
scenario

2,a
C

B
R

stream
of

64kbps
flow

ed
from

n1
and

n2
through

five
interm

ediate
hops

(r1,r2,
r3,

r4
and

r5),
and

four
P
areto

cross
traffi

cs
flow

ed
through

the
interm

ediate
hops

as
show

n
in

the
figure.

In
both

cases
w

e
gathered

a
large

num
ber

of
data

by
introducing

a
varied

num
ber

oftransient
cross

traffi
cs

ofdifferent
packet

sizes
(100

bytes
to

1000
bytes)

and
rates

(200kbps
to

900kbps)
at

dispersed
points

in
tim

e,
causing

different
degrees

of
congestion

resulting
in

stream
packet

loss
at

the
interm

ediate
links.

For
the

Internet
experim

ents
w

e
conducted

tw
o

sets
ofexperim

ents
on

R
O

N
/

N
etB

ed
[7],and

P
lanetL

ab
[8],tw

o
w

ide-area
netw

ork
testbeds

consisting
ofsites

located
around

the
Internet.A

”M
aster”

program
from

a
U

S
site

sent
a

1
m

inute
speech

segm
ent

to
various

sites
across

the
w

orld
and

received
it

back
recording

statistical
inform

ation.
T

he
packet

size
varied

betw
een

three
sizes

(256
bytes,

512
bytes,1K

)
and

the
send

rate
varied

am
ong

tw
o

values
(1m

s
gap,10m

s
gap),

generating
stream

s
of

high
rates

ranging
from

204K
bps

to
8M

bps
in

order
to

create
tem

porary
congestion

in
the

path
and

observe
the

effects
m

anifested
as

packet
loss.

W
e

ran
this

experim
ent

every
4

hours
for

a
period

of
seven

days.

P
red

ictor
B

eh
av

ior
in

S
im

u
lation

an
d

In
tern

et
E
x
p
erim

en
ts

In
F
igs.

5(a)
and

(b)
w

e
present

exam
ples

of
sim

ulation
results

from
scenarios

1
and

2.
B

oth
these

figures
show

an
identifiable

baseline
delay.

T
he

loss
thresholds

on
the

other
hand,vary

from
one

another
considerably.Scenario

2
has

increasingly
w

ider
loss

threshold
range

and
delay

variation
com

pared
to

scenario
1.

T
his

is
due

to
variable

and
random

degrees
of

cross
traffi

c
flow

ing
through

m
ultiple

links
causing

unpredictable
congestion

at
different

parts
of

the
path.

In
con-

trast,
congestion

at
one

bottleneck
link,

though
created

by
various

degrees
of

cross
traffi

c,
produces

m
ore

predictable
results

in
scenario

1.
In

both
scenarios,

predictor
value

lies
consistently

betw
een

0.75
and

0.92
around

the
loss

regions,
denoting

high
likelihood

of
packet

loss,but
decreases

to
low

values
in

the
range

of
0

to
0.2

w
hen

the
delay

decreases
close

to
the

baseline.
T

hus
the

predictor
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F
ig.5.

(a)
&

(b):
O

W
D

,
loss

threshold
and

P
redictor

(Sim
ulation

Scenarios
1

and
2)

successfully
reacts

to
the

baseline,
loss

threshold
and

increasing
and

decreasing
trends

of
the

delay
in

a
w

ide
variety

of
congestion

situations.
F
igure

6(a)
show

s
the

P
redictor

for
a

selected
exam

ple
from

an
Internet

experim
ent.

W
e

see
that

around
the

loss
regions

the
predictor

value
lies

consis-
tently

betw
een

0.8
and

0.9,denoting
high

likelihood
ofpacket

loss,but
decreases

to
low

values
in

the
range

of
0.1

to
0.3

w
hen

the
delay

decreases
close

to
the

baseline.
T

hus
the

predictor
successfully

reacts
to

the
baseline,

loss
threshold

and
increasing

and
decreasing

trends
of

the
delay.F

ig
6(a)

also
show

s
the

effect
of

the
Short-term

and
L
ong-term

T
rend

on
the

P
redictor.

In
O

val
1,

m
arking

a
R

ed
zone

(M
inM

ax
value

larger
than

0.70),the
short-term

trend
accentuates

the
P

redictor
based

on
im

m
ediate

sharp
increase

of
delay.In

O
val2,the

L
ong-term

trend
pulls

up
the

P
redictor

value
based

on
the

long-term
increasing

trend
in

the
Y

ellow
and

O
range

zones,
even

w
hen

M
inM

ax
value

is
not

very
high.

P
red

ictor
A

ccu
racy

W
e

ran
the

P
redictor

algorithm
against

all
the

data
w

e
collected.T

he
data

is
presented

in
F
igure

6(b)
as

a
sum

m
ary

ofthe
P

redictor
effi

-
ciency

and
accuracy

for
Internet

experim
ents.W

e
divided

the
data

into
’around

loss’
and

’no
loss’

regions
-

an
’around

loss’
region

being
-20

to
+

20
packets

around
a

loss,and
packets

outside
’around

loss’regions
being

in
’no

loss’region.
W

e
took

predictor
values

for
the

packets
in

the
’around

loss’regions
to

determ
ine

the
predictor

accuracy.
Ideally,

the
predictor

should
predict

accurately,
that

is
there

should
not

be
any

loss
at

low
values

of
the

predictor.W
e

see
that

there
is

about
10%

loss
at

low
values

(values
sm

aller
than

0.6).
T

he
accuracy

for
the

sim
ulation

is
show

n
in

T
able

1.
A

round
loss

regions,
the

predictor
value

is
greater

than
0.6

78%
of

the
tim

es
in

scenario
1

vs.59%
in

scenario
2.

O
nly

2%
of

the
tim

es
the

predictor
value

has
been

under
0.4

in
loss

regions,com
pared

to
19%

for
scenario

2.In
scenario

2
w

e
sim

ulate
m

ore
variable

and
random

degrees
of

congestion
at

different
parts

of
the

path
com

pared
to

scenario
1,

resulting
in

less
accuracy

for
the

predictor.
T

his
m

otivates
us

into
refining

the
predictor

for
better

accuracy
under

such
variable

conditions.

P
red

ictor
E
ffi

cien
cy

H
ere

w
e

study
the

other
side

of
the

sam
e

coin,
that

is,
how

effi
cient

the
predictor

is
by

not
over-estim

ating
w

hen
there

is
no

loss.B
oth

the
sim

ulation
scenarios

show
very

sm
allpercentages

(5%
for

Scenario
1,2%

for
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F
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P
redictor

behavior
in

Internet
E

xperim
ents:(a)

L
oss

T
hreshold

and
P

redictor:
U

SA
-K

orea
(b)

P
redictor

A
ccuracy

and
E

ffi
ciency

T
ab

le
1.

P
redictor

A
ccuracy

in
Sim

ulation
Scenarios

P
redictor

V
alue

P
ercentage

R
atio

P
redictor

value
in

’around
loss’

region
Scenario

1
Scenario

2
>

0.6
78%

59%
0.4

to
0.6

20%
22%

≤
0.4

2%
19%

scenario
2)

ofpredictor
value

larger
than

0.7
in

the
’non

loss’region.F
igure

6(b)
show

s
a

sm
allpercentage

(about
16%

)
ofhigh

predictor
value

(value
larger

than
0.7)

in
the

non
loss

region
for

Internet
experim

ent
sites.

T
he

effi
ciency

is
a

criticalinput
to

the
P

redictor.A
s

part
ofour

future
w

ork,
w

e
shall

use
the

effi
ciency

factor
as

a
self-feedback

to
the

P
redictor

m
echanism

in
order

for
it

to
evaluate

and
refine

its
prediction

on
an

ongoing
basis.

5
C

on
clu

sion
an

d
F
u
tu

re
W

ork

T
his

paper
presents

a
fram

ew
ork

ofa
P
acket

L
oss

P
redictor:a

novelm
echanism

to
predict

packet
loss

in
real-tim

e
audio

stream
s
by

observing
the

delay
variation

and
trends.L

oss
P

redictor
approach

is
based

on
(i)

determ
ining

certain
m

etrics
for

m
easuring

the
delay

variation
characteristics

from
the

ongoing
traffi

c,
(ii)

com
bining

them
w

ith
w

eights
based

on
their

im
portance,

and
(iii)

deriving
a

predictor
value

as
the

m
easure

of
packet

loss
likelihood.

T
he

P
redictor

value,
fed

back
to

the
sender,

indicates
current

degree
and

severity
of

congestion
and

likelihood
of

packet
loss,

and
can

be
a

vital
com

ponent
in

sender-based
error

and
rate

control
m

echanism
s

for
m

ultim
edia.

T
he

proactive
predictor

feedback
m

akes
the

fram
ew

ork
superior

to
m

echanism
s
w

ith
static

and
reactive

feedbacks,
and

a
viable

technique
for

m
ajority

of
netw

ork
conditions.

W
e

present
sim

ulation
and

experim
ent

results
show

ing
the

accuracy
and

ef-
ficiency

of
the

algorithm
achieved

so
far.

T
he

results
of

the
P

redictor
under

sim
ulation

scenarios
and

experim
ents

show
60%

-90%
accuracy

and
85%

-98%
ef-

ficiency.
A

s
future

w
ork,

w
e

need
to

refine
the

m
etrics

and
the

w
eight

factors
to

im
prove

the
accuracy

and
effi

ciency
of

the
P

redictor.
T

his
w

ill
enable

us
to

use
the

P
redictor

m
ore

reliably
in

proactive
error

and
rate

controlm
echanism

s.



Various packet window sizes introduced in this paper also need to be tuned. For-
malization is also necessary for sender initiated proactive FEC and rate control
actions, which depend on the Predictor feedback values. Also, we would like to
extend the concepts of the Loss Predictor to paths with Random Early Detection
(RED) packet dropping mechanisms and apply the Loss Predictor to DiffServ,
Overlay and Multicast frameworks.
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