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Abstract. Real-time video streaming with rate adaptation to network
load/congestion represents an efficient solution to its coexistence with
conventional TCP data services. Naturally, the streaming rate control
must be efficient, smooth and TCP friendly. As multimedia clients be-
come mobile, these properties must be preserved also over wireless links.
In particular, they must be robust to random wireless losses. Existing
schemes such as TCP Friendly Rate Control (TFRC) perform well in the
wired Internet, but show serious performance degradation in the pres-
ence of random wireless losses. In this paper we introduce the Video
Transport Protocol (VTP) with a new rate control mechanism based on
the Achieved Rate (AR) estimation and Loss Discrimination Algorithm.
We show that VTP can preserve efficiency without causing additional
performance degradation to TCP, in both error-free and error-prone sit-
uations.

1 Introduction

Real-time video streaming is becoming increasingly important on the Internet.
Unlike conventional applications, real-time streaming generally requires a mini-
mum, continuous bandwidth guarantee as well as stringent bounds on delays and
jitters. Earlier work largely relied on the unresponsive UDP traffic and imposed
potential menace to network stability. Thus the more recent research is focused
on adaptive schemes that respond to the network dynamics and avoid possible
congestion collapses.

TCP, the dominant transport protocol on the Internet, has also been consid-
ered for streaming [11]. However, the instantaneous sending rate of TCP changes
drastically such that buffering is needed at the receiver to accommodate rate
fluctuations [14]. Buffering smoothes the playback rate but also brings up two
concerns. First, it causes a startup delay. For Video-on-Demand (VoD) appli-
cations, startup delays of a few seconds or slightly longer are tolerable, but for
real-time, interactive applications, e.g. video conferencing and online gaming,
startup delays have to be tightly bounded [16]. The second concern is that more
and more mobile/wireless devices are connected to the Internet. These devices
are often small and inexpensive with limited computation and buffer capacities;
storing a large amount of data is simply impractical.



To address the concerns, real-time streaming needs more intelligent rate adap-
tation or rate control mechanisms. Solutions are usually based on two types of
feedback: a) cross-layer feedback from lower layers [9], or b) end-to-end feedback.
On the Internet, cross-layer approaches require modifications on both end hosts
and intermediate nodes, which is not practical, thus end-to-end rate control has
been the preferred choice [3][7].

TCP Friendly Rate Control (TFRC) [7] is one of the most popular end-to-
end streaming protocols and often used as the reference and benchmark. TFRC
attempts to match the long-term throughput of legacy TCP (e.g. Reno) and is
smooth, fair and TCP friendly in wired networks. However, with the increasing
popularity of wireless Internet terminals and the demand for delivering multi-
media to mobile users, it is necessary for streaming protocols to work efficiently
also on wireless links, withstanding the high random wireless errors. Legacy
TCP does not work well in this case; it tends to over-cut its window, leading to
a severely degraded performance. Since TFRC attempts to faithfully match the
throughput of TCP, it suffers the same low efficiency in the presence of moderate
to high random errors [18].

Our goal is to develop a real-time streaming protocol that behaves well in the
wired Internet, and moreover is robust to random errors and can be deployed
with wireless links. We have proposed the Video Transport Protocol (VTP) [2],
which measures the Achieved Rate (AR) and adapts its sending rate according
to the network dynamics. However, we have recently found that the original VTP
tends to be unfriendly to TCP in some scenarios. The main contribution of this
paper is to refine the VTP rate control. The new mechanism should provide
efficient and smooth rate control in both error-prone and error-free situations,
while maintaining fairness and friendliness to coexisting flows.

The rest of the paper is organized as follows: Section 2 lists our design goals
of the VTP rate control. The Achieved Rate (AR) estimation and Loss Discrim-
ination Algorithm (LDA) are introduced in Section 3, followed by the VTP rate
control mechanism in Section 4. We evaluate the performance of VTP in the
Ns-2 simulator in Section 5. Related work is summarized in Section 6 and finally
Section 7 concludes the paper.

2 Design Goals

In this section we discuss the main design goals of the VTP rate control mech-
anism, namely robustness to random errors and TCP friendliness.

2.1 Robustness to Random Errors

As the Internet evolves into a mixed wired-cum-wireless environment, more and
more devices are interconnected via wireless technologies. Wireless links are usu-
ally error-prone due to interference, noise, fading, mobility, etc. [13]. However,
popular error recovery techniques, such as Automatic Repeat reQuest (ARQ)
and Forward Error Correction (FEC), may not completely solve this problem.



First of all, ARQ increases both the end-to-end delay and its variance, which
is undesirable for real-time streaming. Applying ARQ in a single FIFO queue,
as performed in the majority of commercial MAC layer implementations, also
introduces the problem of head-of-of-line blocking, where retransmission of a
packet forces subsequent packets in the same queue to wait. On the other side,
FEC is more effective when errors are sporadic. In practice, errors are usually
bursty due to the interference by external sources. In conclusion, after apply-
ing limited ARQ/FEC where appropriate, packet error rates of a few percent
or higher are still expected in wireless networks [17]. This is the key working
assumption that motivates the rest of the paper. The first design goal of VTP is
to provide efficient streaming rate control in presence of random wireless errors.

2.2 TCP Friendliness

TCP is deployed virtually on every computer. Years of operation have proved
that the well-designed congestion control in TCP contributes significantly to the
stability of the Internet. New protocols must be TCP friendly to avoid potential
congestion collapses.

Different definitions of “TCP friendliness” exist in the literature. A widely
used one is based on Jain’s fairness index [8], which belongs to the class of
max-min fairness. Applying Jain’s fairness index to TCP friendliness results in
a statement like “a flow of the new protocol under evaluation must achieve a
rate similar to the rate achieved by a TCP (usually Reno/NewReno) flow that
observes the same round-trip time (RTT) and packet loss rate”. VTP must com-
ply with this definition in the region where TCP performs efficiently (i.e., with
zero random errors) and can potentially use the entire bandwidth. In the case
of frequent random errors, however, legacy TCP cannot achieve full bandwidth
utilization. Thus the conventional definition of friendliness must be modified
to allow a new, more efficient protocol to opportunistically exploit the unused
bandwidth, even beyond the “fair share”.

In this paper we introduce the notion of opportunistic friendliness to refer
to the ability of a new flow to use the bandwidth that would be left unused by
legacy flows. More precisely, a new protocol NP is said to be opportunistically
friendly to legacy TCP if TCP flows obtain no less throughput when coexisting
with NP, compared to the throughput that they would achieve if all flows were
TCP (i.e., NP flows replaced by TCP). The second design goal of VTP is to
have opportunistic friendliness to legacy TCP.

3 Achieved Rate and Loss Discrimination Algorithm

3.1 Achieved Rate

The Achieved Rate (AR), together with the Loss Discrimination Algorithm
(LDA) that will be introduced shortly, are two important components in VTP.
AR is the rate that the sender succeeds in pushing through the bottleneck. This



is the rate that the receiver can measure, plus the fraction corresponding to
packet losses at the exit of the bottleneck due to random errors.

For the time being, let us assume zero errors. The receiver samples and filters
the receiving rate, using an Exponentially Weighted Moving Average (EWMA).
AR has an intuitive interpretation. Assuming we start with an empty bottleneck,
each sender can safely transmit for an unlimited time at AR and expect its
packets to be delivered to the receiver with no buffer overflow. If the sender
transmits at a rate higher than AR, there is a chance that the extra packets
will get buffered at the bottleneck queue. The sender will typically transmit,
over limited periods of time, at rates higher than AR to probe the bandwidth.
However, following a packet loss, it will step back and restart at or below AR.

An AR sample Sk is obtained, by the receiver, as the number of received
bytes during a time period of T , divided by of T . AR samples are reported back
to the sender, which updates its smoothed AR value ARk as

ARk = σ ·ARk−1 + (1− σ) · 1
2
(Sk + Sk−1) (1)

where σ is a fraction close to 1.
The above scheme works well when no random errors are present. If packets

can get lost at the exit of the bottleneck due to errors, they will not be re-
ceived and counted by the receiver, although they do have succeeded in squeez-
ing through the bottleneck. These packets should be included in the sender’s AR
value. This is done jointly with the LDA. Via the LDA, the VTP sender is able
to estimate the fraction of packet losses that are error-induced, i.e., the error
rate e. The AR sample reported by the receiver is then prorated by 1 + e.

3.2 Loss Discrimination Algorithm

The Loss Discrimination Algorithm (LDA) allows VTP to distinguish error losses
from congestion losses. Intuitively, it suffices to measure the RTT. If RTT is
close to RTTmin measured on this connection, we know the bottleneck is not
congested; the loss must be an error loss. On the contrary, if RTT is quite larger
than RTTmin, the loss is likely to be due to congestion. We propose to use the
Spike [4] scheme as the LDA in VTP. Spike, as illustrated in Figure 1, is an end-
to-end algorithm based on RTT measurement. A flow enters the spike state if 1)
it was not in the spike state, and 2) RTT exceeds a threshold Bstart. Similarly,
the flow exits the spike state if 1) it was in the spike state, and 2) RTT falls
below another threshold Bend. Bstart and Bend are defined as:

Bstart = RTTmin + α · (RTTmax −RTTmin) (2)
Bend = RTTmin + β · (RTTmax −RTTmin) (3)

where α and β are adjustable parameters. If a loss occurs when the flow is in the
spike state, it is believed to be congestion-induced; otherwise it is error-induced.

We must point out that the above LDA works only if the error-prone link is
also the bottleneck. If not, flows that share the bottleneck but do not traverse
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Fig. 1. Spike as a loss discrimination algorithm.

the “error” link will keep the bottleneck loaded and the value of RTT high.
Other flows that also traverse the error link will suffer extra losses. However, the
corresponding senders will not be able to classify these losses as error-induced
due to the consistently high value of RTT. Those latter flows will reduce their
rates and be “suppressed” by the flows that do not experience random errors.
Fortunately, in virtually all wireless scenarios the wireless error-prone link is
also the bottleneck, e.g. a satellite link or last-hop wireless segment. Thus all
bottlenecked flows are subject to random errors. Our LDA scheme thus applies
to most wireless situations.

4 VTP Rate Control

In this section we present the rate control mechanism in VTP. Similar to the
Additive Increase in TCP congestion control, VTP linearly probes the band-
width until congestion is detected. VTP does not perform Multiplicative De-
crease though; instead it reduces the rate to AR, with extra adjustments required
to mimic the TCP behavior.

4.1 TCP Behavior in Terms of Rate

While most streaming protocols operate on the concept of rate, TCP is window-
based: a congestion window cwnd is used to control the number of outstanding
packets. Due to this difference, streaming protocols must first understand the
TCP behavior, in terms of its instantaneous sending rate rather than the window
size, in order to achieve TCP friendliness.

We now consider TCP NewReno operating in congestion avoidance. We ig-
nore slow start since it has less impact on the steady state performance. We also
focus on the losses caused by congestion and assume no random errors. Consider
the topology in Figure 2. C, B and P are the link capacity, queue buffer size and
round-trip bandwidth-delay product (namely the pipe size), respectively. As-
suming the buffer size is equal to the pipe size, we have B = P . Cwnd oscillates
between P and B + P = 2P as the left diagram in Figure 3 shows.
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Fig. 2. A simple topology with buffer size equal to pipe size.
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Fig. 3. Congestion window and instantaneous sending rate of TCP NewReno.

Although TCP increases cwnd at the speed of 1 packet/RTT, it does not
necessarily increase the sending rate, since the extra packets may be buffered
in the queue. With the assumption of B = P in Figure 2, the sender detects
a packet loss when the queue is full, i.e., cwnd = 2P . Cwnd is then halved to
P . Since there are 2P outstanding packets, the sender must temporarily stop
sending and wait until P ACKs have been received, before it can resume the
transmission. Having P outstanding packets means that the queue is drained
while the pipe is full. Next, cwnd will increase by 1 packet/RTT, allowing the
sender to transmit an extra packet every RTT. Other than this, TCP is regularly
transmitting at the rate of the bottleneck capacity C, limited by the arriving
rate of ACKs (i.e., self-clocked).

The right diagram in Figure 3 illustrates the instantaneous sending rate of
TCP as we discussed above. The sending rate of TCP in congestion avoidance,
in the topology of Figure 2, is C + 1/RTT . Note that as RTT grows with more
packets get buffered, the sending rate actually decreases slightly.

4.2 VTP Rate Control

As we explained earlier, TCP instantaneous sending rate drops drastically when
cwnd is cut by half, due to the fact that the sender must wait until half of the
outstanding packets are drained from the queue/pipe. This rate reduction, as
shown in Figure 3, can not be implemented as such in VTP. Yet VTP must
respond to congestion by reducing, on average, its rate in the same way as TCP



in order to be TCP friendly. The tradeoff is between the amount of rate reduction
and the length of time this rate is maintained. Simply speaking, VTP may reduce
the rate by less but keep it longer.

Figure 4 illustrates the VTP rate control mechanism and compares it to TCP.
Note that Figure 4 reflects just one of the three cycles in Figure 3. Also, curves
are approximated by line segments. In Figure 4, TCP chooses the “deep but
short” strategy where its rate is cut to near zero for RTTmin and then restored
to C+1/RTT immediately. In contrast, VTP reduces its rate by a smaller portion
but keeps it longer. The two shaded areas A1 and A2 in Figure 4 represent the
amount of extra data that TCP and VTP would be able to transmit if the loss
did not happen. To make VTP friendly to TCP, these areas should be equal.

sending rate

time

RTTmin

rate reduction

TCP

VTP
A1

A2
C+1/RTT

Fig. 4. Comparsion of rate control between TCP and VTP.

A parameter γ between 0 and 1 is selected as the tolerable rate reduction
ratio. When congestion is detected, VTP reduces its rate to γ ·AR, where AR is
equal to C in this case. Since A1 = A2, the interval over which the reduced rate
is maintained is τ = A1/((1−γ) ·AR) = RTT/(2(1−γ)) = RTTmax/(2(1−γ)).
When τ has elapsed, VTP has given up the same amount of data transmission
as TCP and should then enter congestion avoidance.

During congestion avoidance, VTP must match the TCP behavior. For con-
venience we introduce the concept of equivalent window in VTP and denote it
as ewnd. Ewnd is defined as the number of packets transmitted by the sender
during one RTT. The VTP sender computes its sending rate as follows:

1. The sender measures its current ewnd by counting the packets transmitted
within the current RTT. Letting R be the current transmit rate, we have

ewnd = R ·RTT (4)

2. Following Additive Increase, the new window ewnd′ is given as

ewnd′ = R ·RTT + 1 (5)



3. Converting from window to rate, we have the new rate R′ as

R′ = (R ·RTT + 1)/(RTT + ∆RTT ) (6)

where ∆RTT is the RTT increase after a round.
4. Assuming RTT increases linearly at each round, then

R′ = (R + 1/RTT )/(2−RTT [−1]/RTT ) (7)

where RTT [−1] is the round-trip time during the previous round. Note that
R′ is lower than what would be derived from the conventional linear rate
increase by 1 packet/RTT. All necessary quantities can be readily measured
by the sender.

5 Performance Evaluation

In this section, we evaluate the performance of VTP in terms of efficiency, intra-
protocol fairness and opportunistic friendliness, for both error-prone and error-
free cases. We also examine the ability of VTP to adapt to bandwidth changes.
The experiments are carried out with the Ns-2 simulator.

5.1 Simulation Setup

The topology in Figure 5, representing a mixed wired-cum-wireless scenario, is
used throughout this paper. The Internet segment is abstracted as a set of error-
free links, while the wireless segment, e.g. a wireless LAN, is abstracted as a
shared error-prone link. The wireless link is the only bottleneck in the system
which all traffic goes through. The round-trip propagation delay is 72 msec, a
typical value for a cross-continent path. All queues are drop-tail; the bottleneck
buffer size is 99 packets, equal to the pipe size. Simulation time is 300 seconds
for all runs.

100Mbps
35msec

100Mbps
35msec

11Mbps
1msec

...

Fig. 5. Simulation setup.



5.2 Rate Adaptation and Robustness to Random Errors

First we test the rate adaptation of VTP to bandwidth changes under different
error rates, where a solo VTP flow runs against varying rate CBR traffic. This
test is indicative of the “agility” of the protocol and also of its efficiency in
different loss rate conditions. For comparison we also replace VTP with TFRC
and repeat all experiments.

Figure 6 shows the sending rates of VTP and TFRC as they adapt to the
bandwidth changes caused by CBR traffic. Bandwidth available to VTP/TFRC,
computed as the bottleneck capacity minus the aggregate CBR rate, is included
in Figure 6 for reference. In the absence of random errors, both VTP and TFRC
manage to utilize the bandwidth efficiently, maintain a smooth rate, and react
to bandwidth changes quickly. When errors are present, e.g. 1% or 5% as shown,
VTP is able to maintain its efficiency in bandwidth utilization, while TFRC
suffers the inefficiency problem as we have discussed.
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Fig. 6. Solo VTP/TFRC under different random error rates.

5.3 Inter-protocol Opportunistic Friendliness

We now evaluate the opportunistic friendliness between VTP and TCP under
different error rates. For each error rate we run a couple of experiments. In
the first experiment, one VTP flow and one TCP flow share the bottleneck.
VTP is then replaced by TCP and the experiment is repeated. According to the
definition, if the TCP throughput in the first experiment is comparable to that
in the second, VTP is said to be opportunistically friendly to TCP.



We show the experiment results in Figure 7. Graphs are grouped in pairs
by different error rates. In each pair, the left graph presents the instantaneous
sending rates of VTP and TCP when they coexist; the right graph presents
the rates when the VTP flow is replaced by TCP. More precisely, Table 1 lists
the long-term1 throughput of a TCP flow when it coexists with either VTP or
another TCP flow. In all cases, impact of VTP on TCP throughput is minimal.
Moreover, VTP is able to utilize the residual bandwidth when errors are present,
a perfect reflection of opportunistic friendliness.

We need to point out that in the zero error case, TCP slow start tends to
overshoot the TCP window and result in multiple losses, where NewReno takes
multiple RTTs to recover. During this period the TCP sending rate drops to near
zero. Since VTP rate probing is less aggressive than slow start, TCP overshoots
its window even higher when coexisting with VTP than with another TCP. Thus
in Figure 7 the TCP recovery time is longer when coexisting with VTP. Once
TCP is recovered, VTP is able to share the bandwidth in a friendly manner. We
are still investigating this issue to make TCP recover faster.
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Fig. 7. Opportunistic Friendliness of VTP to TCP under different error rates.
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Table 1. TCP throughput: coexisting with VTP or itself under different error rates

TCP Throughput (Mbps): TCP Throughput (Mbps): TCP Performance
Coexisting with VTP Coexisting with Another TCP Degradation

0% Error 5.09 5.14 1%

1% Error 1.22 1.21 0%

5% Error 0.38 0.38 0%

5.4 Intra-protocol Fairness

By fairness we refer to the relationship between flows of the same protocol. To
evaluate the fairness property of VTP, we run a set of experiments with two VTP
flows sharing the bottleneck. Since both flows have identical network parameters,
they should equally share the bottleneck bandwidth. Figure 8 presents the VTP
sending rates in different error situations. In all tested cases, VTP flows are able
to fairly share the bottleneck while achieving high link utilization in presence of
random errors. This confirms that VTP has an excellent property of fairness to
itself.
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Fig. 8. Fairness between VTP flows.

6 Related Work

In this section we briefly summarize some of the related work. TCP Friendly
Rate Control (TFRC) [7] is an equation-based protocol aiming to achieve the



equivalent long-term throughput of TCP with less short-term fluctuation. TFRC
per se is not robust to wireless losses, but extensions that can operate in mixed
wired-cum-wireless environments have been recently reported. For example, [4]
proposes to apply a LDA to the TFRC receiver and exclude error losses from
the calculation of packet loss rate p used in the equation. [5] proposes another
approach that creates multiple parallel TFRC connections when a single con-
nection is inefficient. We plan to compare VTP to these TFRC extensions in the
future work.

Rate Control Scheme (RCS) [17] uses low-priority dummy packets to probe
the available bandwidth on the path. RCS is able to estimate an admissible
rate similar to the AR and effectively distinguish between error and congestion
losses. However, RCS requires all intermediate gateways to implement a multiple-
priority mechanism. This feature is currently not available on the Internet.

Explicit Congestion Notification (ECN) [12] is a general method to handle
error losses. It is often implemented in conjunction with Random Early Detection
(RED) [6]. It stamps a packet with a designated bit to indicate buffer congestion.
If the sender detects a loss but no ECN bit is reported, it assumes the loss to be
random and does not trigger congestion recovery. The ECN scheme is generally
used for TCP but can also be used for streaming. The main limitation again is
the cost of the network layer implementation.

Binomial algorithms [3] aim to provide smoother rate control than AIMD
for real-time streaming. Wireless losses are not specifically addressed. Streaming
Control Transmission Protocol (SCTP) [15] and Datagram Congestion Control
Protocol [10] are transport protocols that can be used for real-time streaming.
Again they were designed mostly for wired networks and lack a rate control
mechanism that handles wireless losses efficiently.

7 Conclusion and Future Work

In this paper we have proposed a new rate control mechanism for the adaptive
real-time video streaming protocol VTP. This new protocol measures the end-
to-end Achieved Rate (AR) and adjusts the sending rate accordingly when con-
gestion is detected by the Loss Discrimination Algorithm (LDA). Rate decreases
and increases are carefully designed so as to mimic the TCP behavior and main-
tain intra-protocol fairness and opportunistic friendliness to legacy TCP. We
have shown via Ns-2 experiments that under all tested error rates (up to 5%),
VTP is able to utilize the bandwidth efficiently, while at the same time keeping
excellent properties of fairness and friendliness.

To our knowledge, VTP is one of the few truly end-to-end schemes that
perform well in the wireless environment without requiring the support from
lower layer feedback and AQM mechanisms. In the future we plan to compare
VTP to the recently proposed TFRC extensions for the wireless scenario. We
are currently in the process of developing a Linux-based implementation of VTP
and will carry out testbed/Internet measurements in the near future.
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