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Abstract. This paper analyses a multiple class single server M/M/1/K queue 

with finite capacity under weighted fair queuing (WFQ) discipline. The Poisson 

process has been used to model the multiple classes of arrival streams. The 

service times have exponential distribution. We assume each class is assigned a 

virtual queue and incoming jobs enter the virtual queue related to their class and 

served in FIFO order.We model our system as a two dimensional Markov chain 

and use the matrix-geometric method to solve its stationary probabilities. This 

paper presents a matrix geometric solution to the M/M/1/K queue with finite 

buffer under (WFQ) service. In addition, the paper shows the state transition 

diagram of the Markov chain and presents the state balance equations, from 

which the stationary queue length distribution and other measures of interest 

can be obtained. Numerical experiments corroborating the theoretical results are 

also offered.  

Keywords: Weighted Fair Queuing (WFQ), First Inter First Out (FIFO), 

Markov chain.  

1   Introduction 

Queue based on weighted fair queuing is a service policy in multiclass system. 

Consider a weighted service link that provides service for customers belonging to 

different classes. In WFQ, traffic classes are served on the fixed weight assigned to 

the related queue. The weight is determined according to the QoS parameters, such as 

service rate or delay. The WFQ [1] is a scheduling discipline usually applied to QoS 

enabled routers.  

   In this work, a two class single server M/M/1/K queue with a finite capacity 

under WFQ scheduling discipline is analyzed. The Poisson process is used to model 

two classes of arrival streams. The service times have exponential distribution. We 

assume each class is assigned a virtual queue and incoming jobs enter the virtual 

queue related to their class and served in FIFO order. The queue i is served at rate 

iw for some 0iw  when queue i1 is not empty and at rate unity when that queue 



is empty. We model our system as a two dimensional Markov chain and use matrix 

geometric method to solve for its stationary probabilities.   

  There were many solutions proposed to offer the solution for the WFQ system with 

two classes of customers on infinite buffer in [4] [5] and [6]. However, the class based 

with finite buffer is applied in a lot of computer and communication system and more 

realistic. The main aim of our work is to provide a solution to the WFQ system with a 

finite buffer. To the best of our knowledge to analytical and numerical solutions for 

such a system have not been in the literature.  

   The rest of this paper is organized as follows: An overview of related work is shown 

in Section 2. The queueing model of M/M/1/K queue with WFQ is described in 

Section 3.  Section 4, offers a matrix geometric solution for M/M/1/K queue under 

WFQ discipline, while section 5 presents and explains the numerical results of the 

model, followed by the conclusions and future work in Section 6.  

2   Related Work 

The WFQ scheduling discipline is an important method for providing bounded 

delay, bounded throughput and fairness among traffic flows [2], [3]. The subject of 

WFQ has been investigated by many authors. Models similar to our WFQ system 

with two classes of customers have been analyzed for Poisson arrivals and 

exponential service times but with infinite buffers [4] and [5]. In [4], a two class 

system with two queues is considered; however the WFQ system is approximated 

with a two server, two queue systems and a numerical solution is provided. In [5], the 

same problem in [4] is considered; however an analytical solution for the system is 

given. 

  In [6], the authors provide an analytical solution for a WFQ system with a long 

range dependent traffic input with an infinite buffer and prove that analytical results 

provide an accurate estimation of queue length distribution and can be helpful in 

choices of WFQ weights. The work described in [7], defines an analytical solution of 

a WFQ system with two classes of customers with exponential service times in an 

unsteady state with an infinite buffer. The authors introduce an analytical model for 

the system and derive the exact expression of the tail of the probability distribution of 

the numbers of customers.  

In [8], an analytical solution for the WFQ system with more than two queues and 

time connected variable service rates with an infinite buffer is provided. In addition a 

different design proposal for a dynamic WFQ scheduler is analyzed to provide quality 

of service guarantees.  

   This paper, we analyses the WFQ system with two classes of customers with a 

finite buffer in steady state and  studies  the effect of weights on the system mean a 

queue length, throughput and mean response time. To the best of our knowledge, the 

analysis of a WFQ system with finite buffer has not been proposed in the literature.   

 

 3   The WFQ System Model   
 



Throughout this paper, we consider the same model in [4]; however instead of an 

infinite buffer, we use a finite buffer with size K. The maximum number of customers 

who can be in the system at any time is K and any additional arriving customers will 

be refused entry to the system and will depart immediately without service.  

  For our WFQ system, we assume two classes of jobs; Jobs of class 1 and class 2 

arrive according to a Poisson process with rate i 1,0, i and require exponential 

service times with mean 1/µi 1,0, i . Each class is assigned a virtual queue and 

arriving jobs enter the virtual queue related to their class and are served in FIFO 

order.  

  The queue i is served at rate iw for some 0iw  when queue i1 is not empty 

and at rate unity when that queue is empty. The coefficients  iw  are such 

that 110 ww . The server is work conserving, i.e., it serves jobs only if at least one 

queue is not empty.  Fig. 1 depicts the WFQ system. 

 
Fig. 2, illustrates the state-transition-rate diagram of the WFQ system where each 

state denotes the number of customers in the system. A generalized Markov model 

can be described by a two dimensional Markov chain with state ),,( ji where i and 

j are the number of customers in class 1 and class 2 at each state, respectively. When 

the process is in state ),( ji , it can transfer to the state ),,1( ji  ),1,( ji ),1( ji  if 

,0i  )1,( ji . The transition rate from state ),( ji  to ),1( ji  where )10(  Ki  

is the arrival rate of class 1, i.e. 0 , of the Poisson process.  A transition out of 

state ),( ji to )1,( ji  where (0 1)j K   is the arrival rate of class 2, i.e. 1 , of 

the Poisson process. When no customers of class 1 are in the system, the transition 

rate from ),0( j to )1,0( j is the service rate of class 2, i.e. 1 . The change from state 

)0,(i to )0,1( i is the service rate of class 1, i.e. 0 . However, the transition rate from 

state ),( ji  to ),1( ji  is the service rate of class 1 multiplied by the weight of class 1, 

i.e. 00w . A transition from   ),( ji to )1,( ji is the service rate of class 2 multiplied 

by the weight of class 2, i.e. 11w . 

The infinitesimal generator of this process is given by:  

 

Fig.  1. The Weighted Fair Queuing System 
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 The generator matrix Q of the Markov chain is given by  
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In addition 



                                                                     10                                        (4) 

and   

                                                                   1100  www                      (5) 

 

  The block entries nBBB ,,, 10  are square matrices, while the block entries 

nAAA ,,, 21  and nCCC ,,, 21  are rectangular matrices. The Markov chain with 

generator matrix Q is irreducible; the matrices along the diagonal are non-singular. 

Below is  the state equilibrium equations for all of the states of the Markov model of 

Fig.  2.  

 

 

The online version  

4   Matrix Geometric Solution:  

4.1   State Equilibrium Equations  

The stationary probability vector   for Q  is generally partitioned as 

],,,[ 210 N  . Solving 0Q along with normalizing equation 

,1e yields the following set of equations in matrix form: 

 

                             00100  CB                                                                    (6) 

                             0121110  CBA                                                         (7) 

                            11,011   NnCBA nnnnnn                        (8) 

Fig.  2.  The state transition diagram for an M/M/1/K queue under WFQ 

scheduling discipline. 

 



                                011112   NNNNNN CBA                               (9) 

                                01  NNNN BA                                                        (10)   

                              

Considering the above state equilibrium equations, it can be assumed that between 

any two states there is „„flow in, flow out‟‟ equilibrium without any effect on the 

other remaining neighboring states. 

4.2   Matrix Geometric Method 

Suppose there exists a matrix R as 

                                                                    .11   nRnn                 (11) 

then, we get by successive substitutions into the state equilibrium equations that  

                                                                    .00  nRn

n                 (12) 

A solution of the (12) is called a matrix geometric solution [9]. The explanation for 

solving a matrix geometric system is to state the matrix R , the rate matrix, which is 

discussed below. 

4.3   Computation of the Rate Matrices 

By a simple algebraic stage management of the state equilibrium equations 

'nR s is formed as follows:  

From Equation (6) and we know that 0B is non-singular and we obtain,  

                            
1

0 0 1 0 0 1 0 0 0 1 0B C C B R                     (13) 

Equation (10) leads to the following expression for N and NR where NB is 

required to be non-singular, 

                            
1
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Equation (9) leads to the following expression of 1N  and 1NR   
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Finally from equation (8) we get a general relation between 1,n n  and nR , 
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nR  can be calculated from Algorithm 1.    

 

Algorithm 1 Calculate  nR  

1: 
1 NNN BAR  

2: if 1n  then  

3:     for 11 Nj do  

4:            
1

1 )( 

 jjjjj CRBAR  

5:      end for  

6:       return  
1

1 )( 

 nnnnn CRBAR  

7: end if  

8: if 0n  then  

9:       return 
1

000

 BCR  

10: end if  

 

4.4   Stationary Probabilities 

Theorem 1.  For any QBD process with a finite state space, having an infinitesimal 

generator matrix given by Equation Q  , the stationary probabilities are given in 

matrix-geometric form by  
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and jR is computed using Algorithm 1. 

Proof.   The system of linear equations is solved for 1 , and from equation (14), 

n is obtained as: 
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Solving Equation (6) and (7) for 1 and use 212 R   leads to,  

 

                              0)( 121101  CRBAR                                 (19) 



Thus, after an exchange and mathematical manipulation, Equation (18) follows 

from normalizing condition 

0

1
N

n

n
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 and equation (6).  
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 It is worth noting that Theorem1 giving the structure of the vector   and that of 

the vector 1  still needs to be determined. The vector 1  could be computed from 

either one of the equations 
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and          
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Algorithm 2 Calculate   

1: for nj  2 do  

2:   



n

j

jj R
2

1  

3:  end for  

Algorithm 2 is used to compute the stationary probabilities . 

 

5   Performance Analyses 

 
In this section, we present the results of the numerical calculations for an M/M/1/K 

queue under WFQ using (15) with different values for 0,10 ,   and 1 .  The 

maximum buffer size for the system is 50; hence this model has 1326 states. The 

following is the numerical evaluation of the analytical model results for some 

performance measurements based on and derived from the Markov chain described in 

the previous section. 

5.1   Mean Queue Length 

The mean queue length L  is calculated from the model as follows: 
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The following equations are derived from (22) to find the mean queue length for 

class 1, 0L  and class 2, 
1L , respectively:  
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where ),( ji is the steady state probability at state ),( ji .  

 

Fig. 3 depicts the mean queue length for class1 and class2 for different arrival rates 

and with 5.010  ww . We choose 110   to only examine the effect of the 

queue weights.  Using these parameters, the WFQ system reduces to two M/M/1/K 

systems. It can be seen from Fig. 3 that the mean queue length for both classes 

increases with the increase of the arriving traffic until λ=1 then 5.2410  LL .  The 

total of 
0L and 

1L  equals the buffer size: K=50. 
0L  and 

1L  have identical values for 

all arrival rates. 

In Fig. 4, we choose 6.00 w and 4.01 w for different values of 

 when 1,2 10   . It indicates that the mean queue length for class1 is lower than 

the mean queue length for class2, as expected. Class1 is served faster than class2 at 

rate 2.100 w . We find the same results for
1L , when 4.00 w , 6.01 w  and   

2,1 10  
.   

    

 
 

Fig.  3.   Mean queue length, 5.010  ww and
 

110   , 10   . 



 

 

 
 

Fig.  4.  Mean queue length, 4.0,6.0 10  ww and 1,2 10   , 0,0 10   . 

 

Fig. 5 depicts the mean queue length for different values of class1 with an arrival rate 

00  and fixed arrival rate 2.01  with  4.0,6.0 10  ww  . We make a note of 

that as 0  increases, and then 
0L  increases until the mean queue length approaches to 

50 and then it is stable. However, the mean queue length of class 2 increases and then 

decreases to zero. The  
1L  is lower in this case compared to 

0L .The reason why 
0L is 

higher than 
1L  is the fact that class1 is getting a  higher service rate, 2.100 w and 

its increasing arriving traffic causes class2 to be refused entry to the system. This can 

be observed in Fig. 5. 

 

5.2   System Throughput 

 

The following equation is used to find the system throughput ( T ) for the M/M/1/K 

queue from the analytical model: 

                                                                          
))0(1(  T                                (25) 

 

   is the output rate, when the server is busy . 

  (server is busy) = (1- (server is idle) = ))0(1(  .  

 when the server is idle, the output rate equals zero. 

Equation (25) is used to derive the throughput ( T ) for class1, 0T  , and class2, 1T  , 

respectively:  

 

                                                                 
))0(1(000  wT                               (26) 

                     
))0(1(111  wT

 
                                 (27) 

 



 
 

Fig.  5.  Mean queue length, 4.0,6.0 10  ww and 1,2 10   , 2.0,0 10   . 

 

Fig.  6 shows 
0T  with 6.00 w and 

1T  with 4.01 w  
for different arrival rates of 

class1 and class 2,  0,0 10    .  It indicates that 
0T  depends on the weight of 

class1 and that it means 
000 wT   and 

111 wT  .  The system throughput will not 

exceed the services rate (in this example: 6.11100   ww ).   

 

 
 

Fig.  6. Throughput, 4.0,6.0 10  ww and 1,2 10    

, 0,0 10   . 

In Fig. 7, we obtain something like the results for 0T with 6.00 w and 
1T  

with 4.01 w  
for different arrival rates of class1 and class 2,  0,0 10    .  

However, the graph will be stable with arrival rate 3.210  for both classes.  



 
 

Fig.  7.  Throughput, 4.0,6.0 10  ww and 1,2 10   , 2.0,0 10   . 

 

2.3   The Mean Response Time 

 

Using Little‟s law [10]: 

                                                    STL                                                        (28) 

We can derive the mean response time for class 1, 0S ,  and class 2, 1S ,  from (28) 

respectively as: 

                                                     
000 /TLS                                                   (29)                                           

                                                       
111 /TLS                                                    (30) 

where 0T   and  1T     are measured system throughput when packet loss is 

considered ( EffectiveT ).  

Fig.  7 shows the mean response time of class 1 and class 2 when  1,2 10    

and 4.0,6.0 10  ww . We can observe that 1S  is higher than 0S and class 2 stays 

longer in the system. The reason why the mean response time has turned out to be 

higher for class 2 is the fact that it has a low weight.   

 

 

Fig.  8.  Mean response time, 4.0,6.0 10  ww and 1,2 10   , 

0,0 10   . 



Fig. 8 depicts the mean response time for different values of class1 with the arrival 

rate 00  and the fixed arrival rate 2.01  with  4.0,6.0 10  ww  . We can 

calculate that as 0 increases, 0S increases until the mean response time 

approximately equals 40 and then it is stable. However, the mean response time of 

class2 increases until 2.4 and then decreases to zero. The reason why 0S is a higher 

than 1S is the fact class1 is receiving different arrival rates and a higher service rate, 

.2.100 w   

       

 

Fig.  9.  Mean response time, 4.0,6.0 10  ww and 1,2 10   , 

2.0,0 10   . 

 

For all obtained performance measurements, the WFQ system behaved as expected.  

These numerical results confirm the validity of the analytical model. 

6   Conclusions & Future Work 

In this paper, we provide an analysis of the two class single server M/M/1/K queue 

with a finite capacity under a weighted fair queuing scheduling discipline. The 

Poisson process has been used to model the multiple classes of arrival streams. The 

service times have exponential distribution. An analytical expression for the flow 

balanced equations has been derived using a Markov chain. Queue length distribution 

has been derived by solving these expressions. We derived a general expression for 

the steady state probabilities for any finite buffer with size K.  In addition, we found 

the steady state probabilities 
,i j  for M/M/1/50 queue with WFQ as an example and 

we presented the numerical results.  Future work will focus on deriving general 

equations for the performance measure for an M/M/1/K queue with a finite capacity 

under a weighted fair queuing (WFQ) with more than two classes. We will also 

extend it with more realistic traffic models.  
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