
Decentralized Bootstrapping of P2P Systems:
A Practical View

Jochen Dinger and Oliver P. Waldhorst

Institute of Telematics, Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

{dinger,waldhorst}@tm.uni-karlsruhe.de

Abstract. So far, bootstrapping constitutes the only centralized task
in otherwise decentralized peer-to-peer (P2P) systems. As a contribu-
tion to the development of generally applicable decentralized bootstrap
mechanisms, in this paper we analyze two decentralized approaches from
a practical point of view. We consider local host caches and random ad-
dress probing for bootstrapping into the BitTorrent DHT as an example
for a widely deployed P2P system. Based on the results of an extensive
measurement study we show that local host caches allow rejoining the
P2P system quickly after short times of disconnection, but are imprac-
ticable for infrequent or first-time users. Furthermore, random address
probing is feasible using a direct Internet connection with high band-
width, but is subject to practical issues raised by typical NAT routers
and the distribution of ports used by BitTorrent clients. We propose two
mechanisms for increasing the performance of random address probing:
(1) probing multiple ports per host and (2) hash-based filter-resistant
port selection, making distributed bootstrapping feasible even from a
practical point of view.

Keywords: Internet measurement, peer-to-peer, decentralized bootstrap-
ping

1 Introduction

Since the deployment of the first peer-to-peer (P2P) systems at the end of the
1990s, P2P has become a mature technology for building distributed applica-
tions. Many examples for currently widely-deployed P2P systems exist, such as
the file sharing systems KaZaA [1], Gnutella [2], BitTorrent [3], and eMule [4],
the IP-telephony system Skype [5], or the video distribution system Joost [6].
In all these systems, one issue is still solved in a centralized way: the bootstrap
process, i.e., the task of finding an entry point to the P2P system in order to
integrate a new peer. It typically relies on dedicated bootstrap servers that are
reachable under well-known addresses. This aspect is crucial, e.g., if the boot-
strap server has become unavailable due to a system failure.

In this paper, we analyze approaches for decentralized bootstrapping of P2P
systems from a practical point of view. Using a widely-deployed P2P system, the

BitTorrent DHT, as an example, we analyze two mechanisms for decentralized
bootstrapping: First, we consider a local host cache to store addresses of several
recently active BitTorrent hosts as entry points for re-entering the BitTorrent
DHT. Second, we analyze random address probing, i.e., scanning of randomly
generated IP addresses, for discovering active BitTorrent peers as entry points.

We analyze the performance of both mechanisms by performing an extensive
measurement study that has lasted several weeks and discovered several million
of BitTorrent peers. We found that the lifetimes of the peers, i.e., the time
they are connected to the Internet using the same IP address, are sufficient to
make local host caches an effective tool for re-entering the BitTorrent DHT after
short periods of disconnection. However, reconnecting infrequent users may take
several minutes or even fail at all, as it does for first-time users of the P2P system.
Furthermore, we show that finding an active peer by random address probing,
again, takes a few minutes, even in a laboratory setting with a powerful Internet
connection. Furthermore, we show that this time is significantly increased by
practical issues like the performance of typical NAT1 routers as well as by the
number of BitTorrent peers using non-standard ports.

To significantly speed up decentralized bootstrapping, we propose two mech-
anisms for increasing the performance of random address probing: (1) probing
multiple ports per peer, increasing the probability to discover a client by exploit-
ing knowledge on the port distribution, and (2) selecting a port by hashing the
IP address of the client, making it predicable but difficult to filter by an Inter-
net Service Provider (ISP). These mechanisms make successful random address
probing feasible in reasonable time.

The remainder of this paper is organized as follows. Section 2 provides an
overview of P2P bootstrap mechanisms as well as related measurement studies.
In Section 3 we discuss how local host caches and random address probing can
be used for distributed bootstrapping into the BitTorrent DHT. In Sections 4
and 5, respectively, we show by extensive measurements the shortcomings of
both mechanisms. Subsequently, we propose mechanisms for speeding up boot-
strapping in Section 6. Finally, concluding remarks are given.

2 Background and Related Work

2.1 Bootstrapping P2P Systems

Bootstrapping basically describes the process of integrating a new node into a
P2P system. As an anchor point for the new peer at least the address (more
precisely the IP address and port) of one active peer, i.e., a peer that currently
participates at the desired P2P system, has to be discovered [8]. Several ap-
proaches for the discovery of active peers in P2P systems have been proposed
(cp. [9]):

Out-of-band mechanisms. When Gnutella was launched in 2000, the address
of active peers was exchanged through IRC [10]. Moreover, websites became
popular as out-of-band mechanism to discover active peers [11,8].
1 Network address translation (NAT), cp. [7]

Dedicated bootstrap servers. Many recent P2P systems like BitTorrent use
one or more (central) bootstrap server(s) with well-known DNS names or IP
addresses. A node willing to join contacts a bootstrap server, which provides
addresses of active peers. Even if multiple bootstrap servers exist, they may
become subject to Denial-of-Service (DoS) attacks and hence single points of
failure, e.g., as became obvious when the login nodes of Skype [12] have been
overloaded [13]. Additionally, the number of bootstrap servers must be adjusted
to the number of users (and the churn rate) of a P2P system.

Local host cache. To speed up reconnection, e.g., after a typical forced 24h-
disconnection of a DSL-line by the ISP, nodes may maintain a list with addresses
of other peers [14]. This list is denoted as (local) host cache and is used, e.g.,
by Skype [12]. It can be easily maintained while keeping the P2P routing tables
up-to-date. When a node wants to re-join, it can simply try to connect to nodes
from the host cache without contacting a bootstrap server. However, at least
one node in the host cache must be active. Thus, the average lifetime of the
addresses, i.e., the time the peers are connected to the P2P system using the
same IP address and port, is an important factor for the performance of the host
cache (see Section 4).

Random Address Probing. Another mechanism for decentralized bootstrap-
ping is based on randomly probing for the addresses of active peers. This is done
by sending join-request messages to randomly selected IP addresses and default
ports, assuming that with sufficient high probability a peer is located at one of
the IP addresses and will send a reply. This is based on the observation that the
P2P systems that are currently deployed have several millions of users, as shown,
e.g., in [15,16]. This holds in particular for the DHT-extension of BitTorrent (see
Section 3) and KAD, the DHT-extension of eMule [17,18]. However, the time
until the first peer is discovered heavily depends on the number of currently
active peers. [19] shows that the number of eMule-peers in dial-up-networks is
particularly high. Thus, to this end the probability of success can be increased
by restricting the probing processes to IP addresses from such networks (local
random address probing). By extensive measurement studies we determine the
probability of success that can be expected currently in the BitTorrent DHT in
Section 5.1. Furthermore, the time until a success depends on the probing rate,
i.e., the number of join-requests sent per second, which may be limited by the
available bandwidth and by network hardware, as we show in Section 5.2. Such
factors are not considered in [19]. Last, the time depends on the number of peers
using the default port, since probing multiple ports per peer obviously increases
discovery time. We will elaborate on this factor in Section 5.3

Network layer mechanisms and standard protocols. Apart from application
layer approaches mentioned, it might also be possible to use network layer mech-
anisms like multicast, anycast [20] or the service location protocol (SLP) [21].
These protocols could facilitate the bootstrap process. However, the information
stored at the multicast or anycast routers or central SLP directory services raises
scalability and robustness questions. Besides this theoretical issues, there is little
support for these protocols on a global scale.

2.2 Related Measurement Studies

Since we perform an extensive measurement study to analyze the performance
of distributed bootstrapping, we briefly recall related work in this area. Cur-
rent studies of the KAD system have shown that between 3 and 4.3 millions of
peers are connected at the same time and have examined the lifetimes of those
peers [17][18]. However, since these studies do not focus on the bootstrap prob-
lem, lifetime is measured per P2P-specific node identifier assigned to each peer
by KAD. That is, the overall lifetime of a peer is measured, not the lifetime of
the addresses, so that no conclusion on the performance of local host caches can
be drawn.

The lifetime of peers in the P2P systems Gnutella, KAD, and BitTorrent
(in Tracker-mode) is measured in [16]. Though that work does not consider
the DHT-extension of BitTorrent, results confirm some results obtained for the
extension presented in this paper. The BitTorrent client Azureus uses an alterna-
tive to the DHT-extension of mainline BitTorrent client. It is examined by [15],
which argues that the lifetime of peers is several hours, but does not provide
detailed measurements.

In [22] a measurement study is presented that analyzes the lifetime of peers
in Overnet, which is also a Kademlia-based P2P network like BitTorrent. The
analysis is based on IP address and port and shows among other things that 50 %
of peers in Overnet have a lifetime of 4,300 seconds. We measured 4,500 seconds
for BitTorrent peers (cp. Section 4). Furthermore, we observed 2.1 % of the
peers running more than one day under the same address while they measured
a fraction of 2.7 %. Opposed to our work, no conclusion on the performance of
distributed bootstrapping is drawn from the measurement results presented in
[22].

Opposed to most related work mentioned so far we present a detailed study
of connection lifetime based on the IP address and port and use it to draw
conclusions on the performance of local host caches. Furthermore, we explore
practical issues like randomly chosen ports or limits imposed by firewalls that
are relevant for the performance of decentralized bootstrapping.

3 Decentralized Bootstrapping into the BitTorrent DHT

To analyze the performance of distributed bootstrap mechanisms, we use the
DHT-extension of BitTorrent [23], since it is better documented than KAD,
easing the experiments described in Sections 4 and 5. However, we state that
most results of this paper likely hold for other systems such as KAD/eMule.

Bootstrapping into the BitTorrent DHT is based on centralized bootstrap
servers with a well-known DNS name like router.bittorrent.com. We assume
that this centralized mechanism is replaced by a combination of the two dis-
tributed bootstrap mechanisms described in Section 2.1: First, we use local host
caches for fast re-entering the BitTorrent system after short periods of discon-
nection, ranging from, e.g., forced disconnections of DSL lines in the order of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 4 8 12 16 20 24 28

fr
ac

tio
n

of
 p

ee
rs

 (
C

C
D

F
)

min. lifetime [h]

all peers
peers in scanned IP range

Fig. 1. CCDF of the (minimal) life-
time of the peers

 0.001

 0.01

 0.1

 1

 0.25 0.5 1 2 4 8 16 32 64

fr
ac

tio
n

of
 p

ee
rs

 (
C

C
D

F
)

min. lifetime [h]

all peers
peers in scanned IP range

Fig. 2. CCDF of the (minimal) life-
time on log-scale

seconds to shutting down the PC when leaving for work in the order of hours.
Since bootstrapping by local host caches may fail, e.g., after long periods of dis-
connection due to infrequent BitTorrent usage or even for first-time users, we
secondly use random address probing as a fallback.

We analyze both mechanism by performing Internet measurements in the
BitTorrent DHT in Sections 4 and 5. Furthermore, we consider that many typical
peers use dial-up networks with DSL or cable modems. Typically, connections
to dial-up networks use NAT routers and/or firewalls that may significantly
limit the performance of random address probing as we shown in Section 5.2.
Furthermore, many ISPs block the default BitTorrent UDP port 6881, forcing
peers to switch to other ports with significant impact on random address probing
as we show in Section 5.3.

4 Performance of Local Host Caches

To analyze the performance of local host caches we conduct a study of peer life-
times in terms of addresses rather than P2P-identifiers as used in related work.
We have measured peer lifetime by periodically scanning a certain number of IP
addresses for BitTorrent peers using the ping mechanism of Kademlia. There-
fore, we successively send Kademlia-PING packets to each selected IP address
on the default port 6881 and wait for replies by BitTorrent DHT peers. Send-
ing PING packets and listening for potential replies is performed asynchronously.
That is, after sending one packet we continue to send PING packets to the next
address immediately, without explicitly waiting for a reply. To all peers discov-
ered during the periodical scan we send Kademlia-PING packets in intervals of
three minutes. Peers that do not respond are timed out after 5 retries, i.e., 15
minutes conforming to the BitTorrent protocol specification [3]. Note that this
methodology implies that the obtained results constitute lower bounds for the
lifetimes, since peers may have already been connected to the BitTorrent system
when they are discovered by the periodical scan. Thus, we refer to the mea-

sured lifetimes as minimal lifetimes as a lower bound on the performance of
host caches.

Figure 1 plots the complementary cumulative distribution function (CCDF)
of minimal lifetimes, i.e., the probability of a peer being still connected after
a given period, as a function of the time. The figure shows two curves. The
curve labeled “peers in scanned IP range” plots only peers within the IP range
84.128.x.x - 84.144.x.x. This range was scanned periodically with a scan rate of
300 PING packets per second (pkt/s) over a time of 27 days in February 2008. A
scan of the complete IP range took about 58 minutes, i.e., the minimal lifetime
for peers discovered in the second or later scans is under-estimated by at most 58
minutes. Peers that are online for less than 58 minutes may remain undiscovered
by this approach. However, the curve shows that more than 8 % of the discovered
peers have minimal lifetimes longer than 8 hours with a significant drop at about
24 hours. This is due to the fact that most ISP force a disconnection after this
time span. The log-scale plot shown in Figure 2 illustrates this fact more clearly.

The second curve labeled “all peers” additionally considers nodes from out-
side the scanned IP range. Although we did not actively send Kademlia-PING
packets to these nodes, Kademlia nodes exchange information about known
peers, propagating the IP address and port of our measurement peer in the
network. Within the 27 days we discovered 6,449 nodes within the scanned IP
address range, compared to a total number of 238,628 nodes. Note that we likely
underestimate the lifetime of nodes outside the scanned IP address range by
more than 58 minutes. Nevertheless, Figure 1 shows that minimal lifetime for
all peers exceeds minimal lifetime of peers in the scanned IP address range. In
particular, more than 2% of the peers are reachable using the same address for
more than 24 hours, some even for more than 7 days, implying that they are not
located in dial-up networks.

In summary, the experiments show that 1.3 % of the peers in the scanned IP
range had a lifetime of at least 23 hours. 0,1 % of all nodes had a lifetime of at
least 64 h. Assuming a disconnection time of 64 h and a host cache size of 10,000
peers, the probability for successfully bootstrapping is almost 1. Due to the Ge-
ometric Distribution the expected number of peers that have to be probed until
finding the first active peer is 1,000. We conclude that successful bootstrapping
by local host caches is still feasible after a disconnection of several days. Nev-
ertheless, bootstrapping is infeasible for low-frequency or first-time users. Thus,
the next section explores whether local host caches can be complemented by
random address probing.

5 Performance of Random Address Probing

To analyze the feasibility of random access probing approach, we investigate the
expected latency using a direct Internet connection in Section 5.1. The limita-
tions of typical DSL hardware that result in a significantly increased latency are
discussed in Section 5.2. Furthermore, the distribution of the ports used by the
BitTorrent clients further increases latency as shown in Section 5.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14
fin

d
pr

ob
ab

ili
ty

 (
C

D
F

)
time [min] (scan rate 100 pkt/s)

Avg. of the experiment runs with 95% conf. int.

Fig. 3. Latency for finding a BitTorrent DHT peer by local random address
probing

5.1 Latency of Random Address Probing

In a first experiment, we apply local random address probing by scanning a list of
29.014 Class-C dial-up networks (cp. [19]) using the Kademlia-PING mechanism
as described above. We use a direct Internet connection from the network of our
university. In the experiments we have completely scanned all 29.014 Class-C
networks, i.e., more than 7 millions IP addresses. The experiment has been con-
ducted in September 2007. We used the default UDP port 6881 of the BitTorrent
DHT. The addresses have been scanned sequentially and the time elapsed be-
tween receiving two response messages has been logged. The scan rate has been
adjusted to 100 pkt/s.

Recall that it is sufficient to discover a single BitTorrent DHT peer to join the
system. Figure 3 shows the results as cumulative distribution function (CDF),
i.e., it plots the probability of finding at least one peer in a particular time
interval. We conducted 12 experiment runs that led to more than 5,500 values
and plot the mean values together with the 95% confidence intervals. The figure
shows that a peer can be located within 10 minutes with a probability of ≥ 94%.
However, we expect that in the future the results will change to the worse to
some extend, since one of the most popular BitTorrent clients µTorrent does not
use the default UDP port 6881 anymore, but a randomly selected port. Thus,
the success probability of finding a peer at the default port will decrease. The
current port distribution is outlined in Section 5.3.

5.2 Limits imposed by Standard DSL Hardware

The measurements in Section 5.1 have been conducted using a scan rate of
100 pkt/s. With a packet size of 107 Bytes, this requires an upstream bandwidth
of about 86 kbit/s. Thus, a typical DSL-line with an upstream bandwidth of
about 200 kbit/s should be able to handle the scan traffic easily. However, when
we repeated the experiment using DSL-lines, we found that the upstream band-
width is not the limiting factor. In fact, scanning performance is dramatically

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50 60 70 80 90 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

av
g.

 IC
M

P
-p

in
g

R
T

T
 [m

s]

fr
ac

. o
f s

uc
c.

 tr
an

sm
itt

ed
 K

ad
em

lia
-p

in
gs

scan rate [pkt/s]

ICMP-pings - Linksys (run 2)
Kademlia-pings - Linksys (run 2)

Fig. 4. Relation of ICMP ECHO de-
lays and losses of Kademlia-packets

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 15 20 25 30 35 40 45 50 55 60 65 70 75

av
g.

 IC
M

P
-P

in
g

R
T

T
 [m

s]

scan rate [pkt/s]

AVM Fritz!Box - run 1
AVM Fritz!Box - run 2

Linksys WRT45GL - run 1
Linksys WRT45GL - run 2

Fig. 5. Relation of ICMP ECHO de-
lays and scan rate

limited by standard NAT-boxes with integrated firewalls. These boxes discard
packets from hosts that have not previously been contacted from inside the home
network by using connection tables. These tables may overflow even at low scan
rates.

We found that the performance of some NAT boxes is heavily degraded, while
others offer constant performance by overwriting connection table entries and,
thus, discard valid responses from BitTorrent peers (Kademlia-PINGs) that do
not arrive in time. The Netgear TA612V is an example of the second class. Our
experiments have shown that it uses about 4,000 entries in the connection table.
With a rate of 100 pkt/s, an Kademlia-PING reply has to arrive within 40 seconds
to be accepted. Thus, such implementation does not impose a practical limit on
the scan rate.

In contrast, overloading the router due to a connection table overflow does
clearly limit the scan rate up to a complete loss of functionality as we observed for
the AVM FRITZ!Box 7050, which is very popular in Germany, and the Linksys
WRTL45GL, which is popular on a global scale.

To gain insight into this behavior, we traced the Kademlia-PING packets
send on the WAN port of the Linksys NAT box. We found that discarding of
Kademlia-PING packets is strongly correlated to the discarding of ICMP ECHO
packets. Thus, we send ICMP ECHO REQUEST packets in parallel to the
random address probing. Measuring the average ICMP-based round trip time
(RTT) is a much more convenient indicator to detect the overload than tracing
all Kademlia-PING packets, which might even not be possible for all deployment
scenarios. To illustrate this effect, for the experiments shown in Figures 4 and 5,
we scanned with different scan rates for 300 seconds. Subsequently, we stopped
scanning for another 300 seconds to let the NAT box recover its normal func-
tionality, before scanning with the next rate. The available upstream bandwidth
was more than 200 kbit/s. The timeout for ICMP ECHO REPLY messages was
set to 4 seconds. As shown in Figure 4, the fraction of successfully transmitted
Kademlia-PING packets decreases dramatically with increasing scan rate. For a
scan rate of 100 pkt/s only 50 % of the packets are successfully transmitted. At

 0

 1

 2

 3

 4

 5

 0 16384 32768 49152 65535

fr
ac

tio
n

(in
 %

)

UDP port number

BitTorrent DHT

Fig. 6. Fraction of BitTorrent DHT
peers per UDP port

 0

 20

 40

 60

 80

 100

BG CA CN ES GB JP PL SE TW US

fr
ac

tio
n

(in
 %

)

All Ports
Port 6881

Port 16001

Fig. 7. Geographic distribution of Bit-
Torrent DHT peers (top 15)

the same time the average ICMP-based RTT increases significantly. Figure 5
plots the average ICMP-based RTT as a function of the scan rate for both NAT
routers. It shows that packet losses with the AVM FRITZ!Box 7050 occur at
a scan rate of about 35 to 40 pkt/s. With a Linksys WRTL45GL this effect
occurred at about 45 to 50 pkt/s.

The observed behavior of NAT boxes clearly puts a limit on the scan rate,
increasing the time required to successfully detect a BitTorrent DHT peer re-
ported in Section 5.1. Unfortunately, the time will further increase due to the
changing usage of ports as we show in the next section.

5.3 Port Distribution of BitTorrent DHT Peers

The mainline client of BitTorrent used the UDP port 6881 as default port for
the BitTorrent DHT until version 5.2.0. With the shift to version 6.0 the basis
of the mainline client changed to µTorrent and also the default port is not used
anymore. In fact the port is chosen randomly to avoid port filtering by ISPs. To
quantify the impact of the port distribution, we conducted an additional experi-
ment: experiment setup was as follows: First, we bootstrapped in the BitTorrent
DHT with our test client. Second, we sent FIND_NODE packets for randomly cho-
sen keys with an rate of 1 keys/s. Over a period of 8 days in April 2008 we
recorded about 5.2 million addresses (IP address and port) from peers that sent
a response to our FIND_NODE packets.

The analysis of the captured data shows that each of the 65,536 possible ports
is occupied by some peers of the BitTorrent DHT with an average of 78 peers per
port and a standard deviation of 9. Figure 6 shows the distribution as histogram.
Besides the small peaks that are distributed across all port numbers, we see two
major peaks at 6881 and 16001. The first peak corresponds to the former default
port, but the reason for the second peak is not obvious. Our assumption is that
the second peak is caused by a client that uses the port 16001 as default port. We
were not able to identify the client exactly, since it does not transmit the client

type in the exchanged messages. However, we were able to trace its geographical
origin, as Figure 7 shows by the geographic distribution of peers from the top
15 countries for all ports, port 16001 and port 6881 respectively. The figure
shows that 23 % of all peers are located in China and about 10 % in the US.
Moreover, we can conclude that the questionable port 16001 is used by a client
that is popular in Chinese speaking countries, because about 90 % of the peers
are located in China about 4 % in Taiwan, and about 1 % in Hong Kong.

To summarize the findings on the port distribution, we calculate that its
entropy is HQ = 15.17. Due to the 216 possible Ports, the maximum entropy
is HQMax = 16. Assuming there is only one default port, the resulting entropy
would be HQ = 0. Thus, the search space w.r.t. random address probing is
drastically expanded by the port distribution. Hence, we try to find optimizing
strategies and analyze therefore the interrelation between the used ports and IP
addresses in more detail in the next section.

6 Improving Distributed Bootstrapping

In this section, we propose two mechanisms that can improve the performance
of distributed bootstrapping building upon the observations on the distribution.
The first mechanism improves performance of random address probing by ex-
ploiting the fact that peers use more ports than just one “standard port”. This
optimizing mechanism works without changing the port selection mechanism,
i.e., is optimal for the current situation. With the same rational, we proposes
a second mechanism for selecting “quasi”-random ports that can be applied to
future peer implementations.

6.1 Using More than One Port

If the peers use more than one port as observed in 5.3, the strategy for random
address probing can be potentially optimized. To illustrate that, assume the port
distribution is known. Let PA(a) be the probability that a peer is run using a
specified IP address a and PP (i) the probability that a Peer uses Port i. W.l.o.g.
we assume PP (i) ≥ PP (j) for 0 ≤ i < j ≤ 65535.

We assume that the peers will change during the process of random address
probing, because the number of potential IP addresses is huge compared to the
possible scan rate. Thus, the probability for finding a peer using an IP address
a, PA(a), is independent of the history of probed IP addresses. In contrast we
argue that the ports can be checked in a short period of time and therefore∑65535

i=0 PP (i) = 1. Using these assumptions we formulate an optimization prob-
lem that is given in Formula 1. The goal is to maximize the probability to find
a peer after i tries and therefore determining the optimal number of ports m
that have to be probed per IP address. The key idea behind this is to look for
the probability that a peer was not found until the i-th try. The quotient in the
exponent results from the fact that if multiple ports are probed, less IP addresses
can be probed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20
fin

d
pr

ob
ab

ili
ty

 (
C

D
F

)
number of probes

probe 1 port
probe 2 ports
probe 3 ports

probe with filter resistant port selection

Fig. 8. Exemplary probability distribution for probing peers with multiple ports
(see Section 6.1) and the probability distribution that results from applying the
filter resistant port selection via hashing (see Section 6.2)

max

1−

(
1−

(
Pa(a) ·

m∑
i=1

PP (i)

)) 1
m

 (1)

The optimal value for m can be easily determined by iterating over all pos-
sible values. To see that the solution of the optimization problem is not always
trivial, consider the following exemplary probabilities PP (1) = 0.4, PP (2) = 0.4,
PP (3) = 0.2, P (i) = 0 for i ≥ 4. and P (A) = 0.2. Figure 8 illustrates the re-
sulting probability distributions for probing one, two, and three ports per IP
address (For comparison reasons the filter resistant mechanism of Section 6.2 is
also included.). Here, the optimal strategy is to probe two ports, i.e., m = 2.

Assuming that the ports are (exactly) uniformly distributed, we were able
to prove that it is more efficient to probe all ports before using a different IP
address. Due to space limitations the proof is omitted here, it can be found in
[24].

The optimization problem can be used to determine the best strategy in
currently deployed P2P networks with a given port distribution. In future net-
works random address probing can be assisted by an filter resistant port selection
mechanism that is presented in the next section.

6.2 Filter Resistant Port Selection via Hashing

To reduce the entropy of the port distribution we develop a filter resistant port
selection mechanism that is optimized for random address probing and, never-
theless, cannot be trivially filtered by an ISP. The mechanism is based on the
fact that the ternary content addressable memory (TCAM) in routers is used
by the ISPs for establishing access control lists. TCAM is a limited resource
[25]. Thus, the ISPs filter ports on the basis of IP address ranges rather than
individual IP addresses.

Based on this observation, we propose the following mechanism: The IP ad-
dress of a peer and a so called virtual port (portvirt) are used to calculate the
actual port (portreal) that is used by the peer:

portreal := h(ipAddr ⊗ portvirt) mod 216 (2)

h(x) is a consistent hash function like SHA-1. portvirt can be arbitrarily
selected, but has to be fixed for all peers.

The characteristics of this approach are on the one hand that the ISPs can
not filter peers on large scale, because each peer uses a quasi random port that
depends on the IP address. On the other hand w.r.t. to random address probing
the IP address is known in advance and therefore the entropy of the port distri-
bution is HQ = 0 for random address probing. Compared to the optimum that
can be achieved for randomly chosen ports using the Formula 1 from above, the
impact is huge as it is shown in Figure 8.

Furthermore, this mechanism can be seamlessly integrated in existing P2P
networks, because current implementations can already handle arbitrary ports.
Thus, the existing P2P protocol does not have to be changed and new peers
using filter resistant port selection are fully compatible with existing ones.

Conclusion

In this paper, we showed the difficulties of decentralized bootstrapping into peer-
to-peer systems by extensive Internet measurements. We identified two critical
issues, i.e., limitations by NAT routers and the port distribution used by the
clients. Hence, we proposed two mechanisms to increase the performance of de-
centralized bootstrapping.

Gathering real-world data by extensive measurement over several weeks, we
analyze a combination of two mechanisms, local host caches and random address
probing. For local host caches, we found that they enable successful bootstrap-
ping after short periods of disconnection. After longer disconnections, however,
one must resort to other bootstrapping mechanisms. Unfortunately, random ad-
dress probing does not help to this end, since practical problems imposed by
typical NAT hardware and the usage of non-standard ports by the peers limit
its performance. To cope with these problems, we proposed two mechanisms,
probing multiple peers per host and filter resistant port selection.

References

1. Sharman Networks Ltd.: Website of KaZaA (2008) http://www.kazaa.com/.
2. Gnutella Developer Forum: Gnutella: A Protocol for a Revolution. (WWW-

Publication) (2003) http://rfc-gnutella.sourceforge.net.
3. BitTorrent, Inc.: BitTorrent Website (2008) http://www.bittorrent.com/.
4. n.a.: eMule Website (2008) http://www.emule-project.net.

5. Skype, Ltd.: Website of Skype (2008) http://www.skype.com/.
6. Joost N.V.: Website of Joost (2008) http://www.joost.com/.
7. Srisuresh, P., Holdrege, M.: IP Network Address Translator (NAT) Terminology

and Considerations. RFC 2663 (Informational) (1999)
8. Karbhari, P., Ammar, M., Dhamdhere, A., Raj, H., Riley, G., Zegura, E.: Boot-

strapping in gnutella: A measurement study. In: Proc. 5th Int. Workshop on Passive
and Active Network Measurement (PAM 2004). (2004) 22–32

9. Cramer, C., Kutzner, K., Fuhrmann, T.: Bootstrapping locality-aware p2p net-
works. In: Proc. 12th IEEE Int. Conf. on Networks (ICON 2004). (2004) 357–361

10. Kan, G.: Chapter 8: Gnutella. In: Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology. O’Reilly (2001)

11. Dämpfling, H.: Website of the Gnutella Web Caching System (GWebCache) (2008)
http://www.gnucleus.com/gwebcache/.

12. Baset, S.A., Schulzrinne, H.G.: An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol. In: Proc. IEEE INFOCOM 2006. (2006) 2695–2706

13. Arak, V.: What happened on August 16. (WWW-Publication) (2007) http:

//heartbeat.skype.com/2007/08/what_happened_on_august_16.html.
14. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making

gnutella-like P2P systems scalable. In: Proc. ACM SIGCOMM 2003. (2003) 407–
418

15. Falkner, J., Piatek, M., John, J., Krishnamurthy, A., Anderson, T.: Profiling a mil-
lion user DHT. In: Proc. 7th ACM SIGCOMM Internet Measurement Conference
(IMC 2007). (2007) 129–134

16. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In:
Proc. 6th ACM SIGCOMM Internet Measurement Conference (IMC 2006). (2006)
189–202

17. Stutzbach, D., Rejaie, R.: Improving Lookup Performance Over a Widely-Deployed
DHT. In: Proc. IEEE INFOCOM 2006, IEEE (2006) 2884–2895

18. Steiner, M., En-Najjary, T., Biersack, E.: A global view of kad. In: Proc. 7th ACM
SIGCOMM Internet Measurement Conf. (IMC 2007). (2007) 117–122

19. Conrad, M., Hof, H.J.: A Generic, Self-Organizing, and Distributed Bootstrap
Service for Peer-to-Peer Networks. In: Proc. 2nd Int. Workshop on Self-Organizing
Systems (IWSOS 2007). (2007) 59–72

20. Hinden, R., Deering, S.: IP Version 6 Addressing Architecture. RFC 4291 (Draft
Standard) (2006)

21. Guttman, E.: Service location protocol: Automatic discovery of ip network services.
IEEE Internet Computing 3(4) (1999) 71–80

22. Qiao, Y., Bustamante, F.: Structured and unstructured overlays under the micro-
scope: a measurement-based view of two p2p systems that people use. In: Proc.
USENIX Annual Technical Conference (ATEC ’06). (2006)

23. Loewenstern, A.: BitTorrent Protocol Specification: BitTorrent Enhancement Pro-
posal DHT Protocol. (WWW-Publication) (2008) http://www.bittorrent.org/

beps/bep_0005.html.
24. Dinger, J.: Das Potential von Peer-to-Peer-Netzen und -Systemen: Architekturen,

Robustheit und rechtliche Verortung. PhD thesis, Universität Karlsruhe (TH)
(2009) ISBN: 978-3-86644-327-3.

25. Lakshminarayanan, K., Rangarajan, A., Venkatachary, S.: Algorithms for advanced
packet classification with ternary cams. In: Proc. ACM SIGCOMM 2005, ACM
(2005) 193–204

