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Abstract. This paper introduces the CPP/M/c model with working va-
cations to describe queueing phenomena that arise in an advanced com-
puting environment of virtualized servers operated by the infrastructure
owners. In the proposed queue the inter-arrival times of jobs request-
ing servers follow a Generalized Exponential distribution. To model a
maintenance activity, we assume that a certain number of servers simul-
taneously goes to a maintenance state for a random period when they
complete the service of requests and find no further jobs in the waiting
line. We derive an expression for the steady-state probabilities and prove
a conditional stochastic decomposition property. By a relatively simple
model we are able to prove a property which has a significant impact
on the organization of maintenance activities of virtualized servers. It
means that instead of migrating virtual servers to expensive physical
backup servers during software maintenance, a wise and simple strategy
based on the vacation approach can be used. Moreover, it is theoretically
proved that the system is not overloaded if we organize the maintenance
according to the vacation model. We believe that our model can be use-
ful for administrators to choose an appropriate parameter set for the
maintenance activities.

Keywords: Virtualized services, performance management, CPP/M/c
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1 Introduction

At present, virtualization constitutes a main trend in information systems and
advanced business engineering. Recent studies have shown that a proportion of
39% among 808 of the largest companies worldwide apply server virtualization



to achieve new business goals and to provide more efficient services to their
customers. Disaster recovery, avoidance of service outage and dynamic load bal-
ancing represent some of the most important areas for the application of the
rapidly evolving virtualization concepts. Compared to existing service technolo-
gies 25% of the cost or even more can be saved by these means.
In this context, virtualization means either to let a federation of servers appear
as multiple computing entities or to let many computing entities appear as a
single computer. The latter is commonly called server aggregation or grid com-
puting. It is identified by an IDC research report (http://www.idc.com) that
virtualization of system resources in severs with an x86 compatible instruction
set is one disruptive technology. In the near future it may initiate a paradigm
shift in IT industry providing new powerful services like enhanced server host-
ing.
As indicated by various studies it is the rationale behind this trend that vir-
tualization can reduce the infrastructure and IT management cost. The reason
is that it substantially improves the utilization of the physical infrastructure,
i.e. servers, storage systems and network components, while it can provide the
same safety and performance compared to a solution where each ASP obtains
a separate physical machine/server from the owner of the infrastructure. It is
another advantage that the infrastructure can provide in a flexible manner dif-
ferent service packages concerning specific operating systems running on top of
the same hardware.
From a practical perspective, it is observed that virtualization is a well founded
area. However, there are no theoretical investigations which consider contention
problems arising in the virtualized environment of a server farm. To model the
interaction between application service providers and an infrastructure provider
this paper studies the CPP/M/c queue with a compound Poissonian arrival pro-
cess (CPP) and working vacations.
Such vacation queues have been an intensively studied research topic of queueing
theory, cf. [3, 5, 7–9]. However, most of those studies assume a Poissonian arrival
model [3, 5, 7, 9] or a model of single arrivals [8]. Regarding the performance
evaluation of practical systems, this assumption limits the application of vaca-
tion queues.
Recently, queues with working vacations have obtained a big attention, see, e.g.,
the work of Servi et al. [7] and Liu et al. [5]. It is motivated by the performance
evaluation of Wavelength Division Multiplexing (WDM) in optical systems. In
this respect, the multi-server queue introduced here is indeed a generalization
of the M/M/c system with synchronous vacations [9] regarding two different as-
pects, namely, the Poissonian batch arrivals and working vacations.
The rest of the paper is organized as follows. In Section 2, we first provide a
description of the CPP/M/c model with working vacations (WV), develop then
a matrix-analytic solution approach and prove some interesting property of this
CPP/M/c WV-queue. Then some illustrative numerical results are presented in
Section 3. Finally, we summarize our findings in the conclusions.



2 Analyzing the Maintenance Performance by a Versatile
Queueing System

2.1 Description of the Maintenance Model

In a virtualization environment three different roles can be identified (see Fig-
ure 1):

– users/applications,
– application service providers and
– owners of the hardware infrastructure.

Applications and related services, e.g. Web servers with Web, information re-
trieval and business services, are provided by application service providers that
require virtual machines from an infrastructure owner to run their virtualized
application servers.
In this environment two interrelated categories of Service Level Agreement (SLA)
can be defined:

– an SLA between users and application service providers specifying the service
requirements, e.g. the response time and availability of a service, etc,

– an SLA between application service providers and an infrastructure owner.

The SLA between users and application service providers are complicated and
they also depend on the nature of the hosted applications.
To operate the infrastructure efficiently, it is recognized that advanced manage-
ment tools are needed. In this respect, system management activities should

Fig. 1. Utility Computing Environment Based On Virtual Machines



also include the tasks of managing both virtual servers and physical resources
efficiently.
In this paper, we consider the interaction between application service providers
and an infrastructure owner. We suppose that there are c virtual servers avail-
able in the server pool of the infrastructure owner. To realize a pay-as-you-go
approach, application service providers can initiate requests for servers to the
provider of the infrastructure and server releases after task completion.
We assume that server requests arrive in batches following the Compound
Poisson Process (CPP) (cf. [4]). This means that the inter-arrival times follow
a Generalized Exponential (GE) distribution. The arrival process is motivated
by the fact that GE is the only distribution of least bias [4] if only the mean
and variance of inter-arrival times can be reliably computed by the available
measurement data. This situation typically arises in virtualized computing
environments exploiting the capabilities of monitoring systems. It has been
shown by recent studies [1, 2] that the CPP is sufficiently accurate to model
Internet traffic in a Web server environment (i.e. the relevant CPP parameters
have been estimated by the captured Internet traffic) and that it can be applied
to the performance evaluation of wireless telecommunication systems.
To create a reliable computing system with these c servers, the provider of the
infrastructure can initiate specific maintenance actions, e.g. software updates, a
virtual server live migration etc., when any d servers become idle after a service
completion instant. This kind of maintenance activities are modeled in such a
way that d servers take a simultaneous vacation. During such a vacation period,
the residual c− d servers do not take a vacation even if they are idle. To ensure
the mathematical tractability of the model, we assume that the durations
of the vacation periods are independent, identical exponentially distributed
random variables with parameter θ. The service rate of each server which is not
in a vacation state is given by an independent exponential distribution with
parameter µ. A server on vacation can serve customers following an independent
exponential distribution with rate µv. Note that an application service provider
who receives the allocation of a server which is on vacation may pay less as a
form of compensation.

2.2 Analysis of an Advanced Multi-Server Model with Working
Vacations

Here, we consider the CPP/M/c multi-server queue with working vacations,
infinite waiting room and First In First Out (FIFO) service principle that we
have derived as performance model to analyze maintenance tasks in a virtualized
server environment.
The arrival process of customer requests is determined by a Compound Poisson
Process (CPP) with parameters (λ, ω). It means that the probability distribution
function of the inter-arrival times τ is defined by P{τ = 0} = ω ∈ (0, 1) and
P{0 < τ < t} = (1 − ω)(1 − e−λt). Therefore, the arrival process can be seen
as a batch Poisson process whose batches of the random size S arriving at some



epoch follow a geometric distribution P{S = s} = (1−ω)ωs−1, s ≥ 1, with mean
E(S) = 1/(1− ω) and variance Var(S) = ω/(1− ω)2.
The requests are served by c servers following a specific working-vacations policy
with independent, identical, exponentially distributed service and vacation times
with rates µ, µv, θ, respectively. Let us suppose that there are no servers on
vacation due to maintenance activities. Then a simultaneous vacation period of
d servers starts if there are d idle servers after a service completion. At the end of
a simultaneous vacation period of these d servers, three alternatives are possible:

– if there are no waiting customers, the d servers stay idle and are ready to
serve any arriving new customers;

– if there are c−d < j < c, customers in the system, j−c+d returning servers
immediately start serving these customers and the other c − j returning
servers become idle;

– if there are j ≥ c customers in the system, the d returning servers all start
serving these customers immediately.

At any time t the state of the system Y (t) = (I(t), J(t)) can be completely
specified by two integer-valued random variables:

– I(t) =
{

0 if d servers are on vacation at time t
1 if there are no servers on vacation at time t

– J(t) represents the number of customers in the system at time t including
any in service or the waiting room.

The system is now modeled by a continuous-time discrete state Markov process
Y = {I(t), J(t)} on a rectangular lattice strip S = {0, 1} × N0 due to our
Markovian assumptions. We denote its corresponding steady-state probabilities
by π = {πi,j}(i,j)∈S , where πi,j = limt→∞ P{I(t) = i, J(t) = j}, and let vj =
(π0,j , π1,j) be the partitioned vector of state probabilities.
The one-step transitions of the Markov chain Y have a specific tridiagonal block
structure since the possible transitions are driven by following events:

(a) changing the status of I(t), i.e. from the vacation to non-vacation of servers.
Then Aj(i, k) denotes the corresponding transition rate from state (i, j) to
state (k, j), i, k ∈ {0, 1}, j ≥ 0. Let

A = Aj =
[

0 θ
0 0

]
, ∀j ≥ 0; and A∗ =

[
−θ θ
0 0

]
.

(b) the arrivals of customers. Then Bi,j,s is the rate of the s−step upward tran-
sition from state (i, j) to state (i, j + s), i ∈ {0, 1}, j ≥ 0, caused by a batch
arrival of size s and

Bi,j,s = (1− ω)ωs−1λ, j ≥ 0, i ∈ {0, 1}, s ≥ 1.

(c) the departures of customers. Cj(i, k) is the transition rate from state (i, j)
to state (k, j − 1); i, k ∈ {0, 1}, j ≥ 0. Then we get:



Cj =



[
jµ 0
0 jµ

]
, 1 ≤ j ≤ c− d[

(c− d)µ+ µv 0
(c− d+ 1)µ 0

]
, j = c− d+ 1[

(c− d)µ+ (j − c+ d)µv 0
0 jµ

]
, c− d+ 1 < j ≤ c[

(c− d)µ+ dµv 0
0 cµ

]
= C, j > c.

Note that by a transition from (1, c−d+1) to (0, c−d) after a service completion
with rate (c− d+ 1)µ we get a simultaneous vacation of d servers.
Let Diag(x) denote the diagonal matrix defined by a row vector x and E ∈ R2×2

be the identity matrix. We introduce the following notations

Λ = Diag[λ, λ] = λE; Ω = Diag[ω, ω] = ωE;
Bs = Bj,s = Diag[(1− ω)ωs−1λ, (1− ω)ωs−1λ], j ≥ 0,

and obtain

Bs = Ωs−1(E −Ω)Λ = ωs−1(1− ω)λE, j ≥ 1,

Λ =
∞∑
s=1

Bs = λE.

Lemma 1. The necessary and sufficient condition for the existence of the
steady-state probabilities of the process Y = (I, J) is determined by

λ

cµ
+ ω < 1 ⇔ ρ =

λ

(1− ω) · cµ
< 1 (1)

Remark 1. The standard condition (1) states that the traffic intensity ρ must be
less than one to achieve the ergodicity of Y . Neither the rate θ of the vacations
period nor the number d of simultaneous servers on vacations have an impact on
the stability of the system. In other words, the system will not be overloaded due
to a maintenance activity. Indeed, this is good news for a system administrator
who shall organize the maintenance tasks of idle virtual machines.

Proof. The steady-state balance equation of the M/G/1-like upper Hessenberg
system can be written as follows:

j∑
s=1

vj−sBs + vj
[
A∗ − Λ−DCj

]
+ vj+1Cj+1 = 0, ∀j ≥ 1. (2)

Here DCj are diagonal matrices whose diagonal elements are the sum of the
elements in the rows of Cj . Note that by construction DCj = Cj holds for all



j 6= c− d+ 1.
For j ≥ c+ 1 we can write

j∑
s=1

vj−sBs + vj [A∗ − Λ− C] + vj+1C = 0. (3)

Substituting Bs = Ωs−1(E −Ω)Λ into this equation (3), we get

j∑
s=1

vj−sΩs−1(E −Ω)Λ+ vj [A∗ − Λ− C] + vj+1C = 0 ∀j ≥ c+ 1, (4)

and
j−1∑
s=1

vj−1−sΩ
s−1(E −Ω)Λ+ vj−1 [A∗ − Λ− C] + vjC = 0 ∀j ≥ c+ 2. (5)

If we multiply equation (5) by Ω and then subtract the result from equation (4),
we obtain the three-term recurrence equations

vj−1[Λ−A∗Ω + CΩ] + vj [A∗ − Λ− C − CΩ] + vj+1C = 0 , j ≥ c+ 2,

vj−1Q0 + vjQ1 + vj+1Q2 = 0 , j ≥ c+ 2, (6)

where Q0 = Λ−A∗Ω + CΩ, Q1 = A∗ − Λ− C − CΩ, Q2 = C.
Q(x) = Q0 + Q1x + Q2x

2 is defined as the characteristic matrix polynomial
associated with the equations (6). It is proved in [6] that the solution of these
matrix equations (6) is closely related to the eigenvalues and left-eigenvectors of
the polynomial Q(x). If (x,ψ) is an eigenvalue-eigenvector pair of Q(x), then it
holds

ψQ(x) = 0, det[Q(x)] = 0.

Consequently, we obtain:

det[Q(x)] = det
[
q00(x) θx− θω

0 q11(x)

]
= q00(x)q11(x)

q00(x) = λ+ ((c− d)µ+ dµv)ω + ωθ −
(λ+ (c− d)µ+ dµv + ((c− d)µ+ dµv)ω + θ)x+ ((c− d)µ+ dµv)x2

q11(x) = λ+ cµω − (λ+ cµ+ cµω)x+ cµx2 = (1− x)(λ+ cµω − cµx)

Therefore, Q(x) has four eigenvalues

x1 =
1

2G
{H +G−

√
(H +G)2 − 4G(λ+ ((c− d)µ+ dµv)ω + ωθ)}

x2 =
1

2G
{(H +G+

√
(H +G)2 − 4G(λ+ ((c− d)µ+ dµv)ω + ωθ)}

x3 = λ/(cµ) + ω, x4 = 1,



where

G = (c− d)µ+ dµv

H = λ+ ((c− d)µ+ dµv)ω + θ

holds.
Note that ψ1 = (1, (θω − θx1)/q11(x1)) is the left-hand-side (LHS) eigenvector
of Q(x) for the eigenvalue x1, and ψ3 = ψ4 = (0, 1) are the LHS eigenvectors of
Q(x) for the eigenvalues x3 and x4, respectively.
Since ω < 1 holds, we have

(λ+ ((c− d)µ+ dµv)ω + ωθ) < H,

4G(λ+ ((c− d)µ+ dµv)ω + ωθ) < 4GH,
(H +G)2 − 4G(λ+ ((c− d)µ+ dµv)ω + ωθ) > (H +G)2 − 4GH,

0 < x1 <
1

2G
(H +G− |H −G|) ≤ 1,

x2 >
1

2G
(H +G+ |H −G|) ≥ 1.

Applying results from [6], it is a necessary and sufficient condition for the ergod-
icity of the Markov chain Y that the number of eigenvalues of Q(x) inside the
unit disk is given by 2. Therefore, x3 < 1 is required which yields condition (1).
ut

The steady-state balance equations of J(t) ∈ {0, . . . , c+ 1} can be written in
the following form:

v0 [A∗ − Λ] + v1C1 = 0
j∑
s=1

vj−sBs + vj
[
A∗ − Λ−DCj

]
+ vj+1Cj+1 = 0 , 1 ≤ j ≤ c+ 1,

For j ≥ c+ 1 the steady-state probabilities can be expressed as follows (cf. [6]):

vj = αψ1x
j
1 + βψ3x

j
3

π0,j = αxj1

π1,j = α
θω − θx1

q11(x1)
xj1 + βxj3 (7)

where α and β are coefficients that have to be determined by the boundary
conditions.
Furthermore, we have to satisfy the normalization equation:

∞∑
j=0

1∑
i=0

πi,j = 1. (8)



Consequently, we have to determine the vectors vj , 0 ≤ j ≤ c, α and β. The
total number of these unknowns is given by 2(c + 1) + 2 = 2(c + 2). To deter-
mine these unknowns, we have the steady-state balance equations of the levels
j = 0, . . . , c+1 and the normalization equation. Thus, 2(c+2)+1 is the number
of boundary equations, among those only 2(c+ 2) equations are independent.
It can be observed from the steady-state balance equations of J(t) ∈ {0, . . . , c}
that vj , 1 ≤ j ≤ c and j 6= c − d + 1, can be expressed as a function
of v0, i.e π0,0 and π1,0, and vc−d+1. Therefore, we have only six unknowns
(π0,0, π1,0, π0,c−d+1, π1,c−d+1, α, β), which can be solved efficiently using the
steady-state balance equations of the states J(t) = c, J(t) = c− d, J(t) = c+ 1
and the normalization equation.

2.3 Conditional stochastic decomposition

In the following, we prove a conditional stochastic decomposition property for
the CPP/M/c queue with working vacations.

Lemma 2. If the ergodicity condition for the CPP/M/c queue with working va-
cations holds, then the conditional steady-state queue length Jb = limt→∞{J(t)−
c− 1|J(t) > c, I(t) = 1} provided that the server system is not on a working va-
cation can be decomposed into the sum of two independent random variables

Jb = J0 + Jc.

Here J0 is the conditional steady-state queue length of the CPP/M/c queue with-
out vacations and Jc is the additional steady-state queue length due to vacations.

Proof. The probability that the server is busy and the number of jobs is larger
than c is determined by:

Pb = P{J(t) > c, I(t) = 1} =
∞∑

j=c+1

π1,j =
∞∑

j=c+1

(
α
θω − θx1

q11(x1)
xj1 + βxj3

)

= α
θω − θx1

q11(x1)
xc+1

1

1− x1
+ β

xc+1
3

1− x3

The probability generating function of Jb can be expressed as follows:

GJb
(z) =

∞∑
j=0

P{Jb = j}zj =
∞∑
j=0

π1,j+c+1

Pb
zj

=
1
Pb

∞∑
j=0

(
α
θω − θx1

q11(x1)
xj+c+1

1 + bxj+c+1
3

)
zj

=
1
Pb

(
α
θω − θx1

q11(x1)
xc+1

1 /(1− x1z) + βxc+1
3 /(1− x3z)

)



The steady-state probabilities of the CPP/M/c queue without vacations can be
obtained by setting θ = 0, d = 0 and µv = µ. The probability that the number
of customers in the CPP/M/c queue without vacations is given by πj = β∗xj3 for

j ≥ c + 1, where β∗ is an appropriate coefficient. Therefore, GJ0(z) = β∗
xc+1
3

1−x3z
follows for the probability generating function of J0. These relations yield the
stated result. ut

3 Illustrative Numerical Results

In this section we present some numerical results to illustrate the impact of
the model parameters on the formulation of an effective maintenance policy, i.e.
how many servers should be simultaneously on vacations. For demonstration
purposes, we investigate the average number of customer requests waiting for
free servers

E(LQ) =
∞∑

j=c+1

(j − c) · (π0,j + π1,j) =
∞∑

j=c+1

(j − c) ·
(
α[1 +

θω − θx1

q11(x1)
]xj1 + βxj3

)

=
α[1 + θω−θx1

q11(x1)
]x(c+1)

1

(1− x1)2
+

βx
(c+1)
3

(1− x3)2

as major performance metrics and select some illustrative parameter set. Other
characteristics like the mean number of requests in the system

E(L) =
∞∑
j=1

j · (π0,j + π1,j) ,

or the mean number of active servers E(NV ) =
∑∞
j=1 min(j, c) · (π0,j + π1,j) and

the throughput η =
∑∞
j=1 vj · Cj ·

(
1
1

)
=
∑∞
j=1

∑1
i=0 πi,j · (Cj(i, 0) + Cj(i, 1))

can be computed in a similar manner.
In Figure 2(a) we plot the average number of waiting requests E(LQ) versus d
for the following parameter set of a high load regime: c = 100 servers, ω = 0.2,
θ = 1.0, µ = 5.0, µv = 2.5, ρ = λ/[(1 − ω)cµ] ∈ [0.7, 0.9]. It generates batch
arrivals of mean size E(S) = 1.25 and variance Var(S) = 0.3125 for a high traf-
fic intensity 0.7 ≤ ρ ≤ 0.9 and assumes that the average service time 1/µ of
requests needs only 20 % of the mean maintenance time 1/θ while during these
maintenance periods the latter service time is extended by 100 % compared to
the normal operation mode.
Considering the average number E(LQ) of requests waiting in the system, it is
observed that increasing the load ρ from 0.7 to 0.8 or from 0.8 to 0.9 generates an
increment of one order of magnitude. To show the impact of the size S of arriving
batches and the influence of ω = 1 − 1/E(S) and E(S) ∈ {1.25, 1.67, 2, 5, 10},
respectively, we use the set of the same parameters but fix the load at ρ = 0.8.
Figure 2(b) illustrates the average number of waiting requests E(LQ) versus d



(a) (b)

Fig. 2. Average number E(LQ) of waiting requests versus d for different traffic load
ρ (left) and different control parameter ω = 1 − 1/E(S) of the mean batch size E(S)
(right)

Fig. 3. Average number E(LQ) of waiting requests versus d and µv

and ω. In Figure 3 E(LQ) is plotted against d and µv for the load ρ = 0.9 and a
mean batch size of E(S) = 1/(1− ω) = 1.25.
It is observed that batch arrivals have the strongest impact on the average num-
ber of waiting customers. The impact of the offered load ρ and the service rate
µv during maintenance can be handled by choosing an appropriate number d of
servers under maintenance.

4 Conclusions

To model the queueing and congestion phenomena arising from maintenance
tasks of a virtualized server environment, we have presented in this study a
CPP/M/c multi-server system with Poissonian batch arrivals and working va-



cations.
In the proposed queueing system the inter-arrival times of jobs requesting service
by a virtualized server follow a Generalized Exponential distribution. To model
the maintenance activities, we have assumed that a certain number of servers
goes simultaneously to a maintenance state for a random period when they have
completed the service of jobs and find no further requests in the waiting line.
Analyzing the arising Markovian model by matrix-analytic methods, we have
derived a new expression for the steady-state probabilities and proved a con-
ditional stochastic decomposition property. The validation of the approach in
a testbed and the estimation of the parameters by gathered data is a topic of
future research.
In conclusion, we believe that the proposed Markovian multi-server system with
working vacations can serve as a useful tool to define efficient maintenance poli-
cies in the virtualized environment of current server farms.
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