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Abstract. The Kad network is a structured P2P network used for file sharing. 
Research has proved that Sybil and Eclipse attacks have been possible in it until 
recently. However, the past attacks are prohibited by newly implemented 
security measures in the client applications. We present a new attack concept 
which overcomes the countermeasures and prove its practicability. 
Furthermore, we analyze the efficiency of our concept and identify the 
minimally required resources. 
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1 Introduction and related work 

P2P networks form an overlay on top of the internet infrastructure. Nodes in a P2P 
network interact directly with each other, i.e., no central entity is required (at least in 
case of structured P2P networks). P2P networks have become increasingly popular 
mainly because file sharing networks use P2P technology. 

Several studies have shown that P2P traffic is responsible for a large share of the 
total internet traffic [1, 2]. While file sharing probably accounts for the largest part of 
the P2P traffic share, also other P2P applications exist which are widely used, e.g., 
Skype [3] for VoIP or Joost [4] for IPTV. The P2P paradigm is becoming more and 
more accepted also for professional and commercial applications (e.g., Microsoft 
Groove [5]), and therefore, P2P technology is one of the key components of the next 
generation internet. 

P2P networks can be categorized into two main types, the unstructured and the 
structured ones. The structured networks have gained popularity recently in science 
and are becoming increasingly popular also in practice. One of the most popular 
structured P2P networks is the file sharing network Kad which is used, e.g., by eMule 
[9] and aMule [10]. 

Structured networks introduce identifiers for both content and nodes and a notion 
of closeness between those identifiers (see below). Thereby, they define which nodes 
are responsible for a certain content item, e.g., a file provided for sharing in the 
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network. The logical closeness metric is completely independent from physical 
closeness. 

The structured approach offers more precise and comprehensive lookup compared 
to unstructured networks as it ensures that all content that exists will actually be 
found. The well-defined responsibility of nodes for specific content, however, also 
introduces specific weaknesses. Users can create multiple identifiers [13] and select 
them such that they control all nodes that are responsible for a certain content item. If 
they succeed, they can control access to it and can also limit its availability, which is 
called Eclipse attack. 

In [7], Steiner et al. state that an Eclipse attack is easily possible in the Kad 
network, as the nodes can freely choose their node identifiers, and present results of 
successfully performed Eclipse attacks. However, since the publication of [7], new 
versions of eMule and aMule have been released which include security measures 
against these kinds of attacks. Steiner himself states on [14] that the changes affect the 
practicability of his attacks. 

Motivated by Steiner’s work, we analyzed the security measures built into the 
state-of-the-art Kad clients and developed a way of circumventing them in an efficient 
way. In this paper, we describe the basic approach for the improved attack as well as 
ways to make it highly efficient. The experiments described provide a proof of 
concept and also give an indication of the effort required for the attack in a realistic 
scenario. 

2 How the Kad network works 

Kad is based on the Kademlia algorithm which was presented by Maymounkov and 
Mazières [8]. It is only defined by its implementations in several file sharing 
applications such as eMule [9], aMule [10] and MLDonkey [11] – no formalized 
protocol specification exists. Details of the aMule Kad implementation can be found 
in [12]. This paper concentrates on eMule, as it is the most widespread application. 

Every file that is available in the Kad network has a file ID that is derived by 
calculating an MD4 hash value of the contents (not the name) of the file. Every Kad 
node has a node ID that is – normally – randomly generated the first time the node 
enters the Kad network and retained afterwards. Both IDs are 128 bits long. The 
logical distance between two identifiers is calculated using the XOR operation. 
Hence, the more bits match at the beginning of the IDs, the smaller is the distance 
between them. 

The nodes with the smallest distance from a certain file ID are responsible for that 
file. The set of responsible nodes is not statically defined, but varies as nodes join and 
leave the network. Therefore, the set of responsible nodes needs to be determined 
again during every lookup process. 

Nodes that offer a file store their contact information (IP address, port numbers, 
node ID) on the responsible nodes. Nodes that look for a file ask the responsible 
nodes for source nodes for that file. This concept is called indirect storage, as the 
responsible nodes do not store the file itself, but only pointers to nodes that store it. 
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To download a file from the network, its ID must be known. The default approach 
to retrieve the ID of the desired file is to use the keyword search mechanism of Kad, 
the other way is to use specific websites which list file IDs of popular files, thus 
bypassing the keyword search function of Kad. 

When a node offers a new file, it stores a pointer to itself (source information) at 
the nodes responsible for the file ID, which allows other nodes to retrieve the file. 
Additionally, it generates keywords by dividing the filename into parts (e.g., single 
words). It calculates hash values for every keyword (keyword IDs) and stores pointers 
at the nodes that are responsible for each keyword ID which contain the whole 
filename and the ID of that file. Each process of storing information for a file or 
keyword ID is called publication process. 

If another user performs a keyword search, the client software calculates the 
keyword ID of the first keyword provided by the user and looks for the nodes that are 
responsible for that ID. In the subsequent request to those nodes, it includes the other 
keywords in clear text. The polled nodes use the provided keywords to filter their 
pointer lists and answer with matching files including their respective file IDs. The 
user can select the file(s) he wants to download from that list. 

After the file ID of the desired file has been determined, the node performs a 
source search by asking the nodes that are responsible for the file ID for source nodes 
for that file and starts to download the file (parts) directly from those nodes. 

Attacking the source search mechanism is our main target, as it is possible to 
eclipse files from the network this way regardless of how the user determined the file 
ID. During our analyses, we decided to attack the publication process as well, because 
only this way it can be ensured that only our nodes know about the content (see 
below). The attack against the publication process can be directed against both 
keyword and file IDs. The keyword search mechanism behaves the same way the 
source search process does, so no specific attack is necessary. 

2.1 Kad message types 

Two versions of Kad messages exist; we only use version 1 message types. All 
current versions of the client applications understand both versions of the messages. 
By using the older version, we circumvent the necessity to implement the obfuscation 
and advanced handshake features of newer versions in our tools. The usage of 
version 1 messages only has no impact on our tests. 

Kad messages are transmitted via UDP. Every Kad message begins with a one-byte 
identifier indicating that the message is a Kad message, which is followed by a one-
byte opcode. Message parameters are appended, if applicable. 

Information about other peers is transmitted in a peer information data structure 
which can be found in many message types. This data structure contains contact 
information about the node, such as its ID, its IP address and the UDP port used for 
Kad communication, and various other pieces of information. 

Hello Requests are used to check the availability of other nodes. We use the fact 
that Hello Request messages can also be used to insert a node into another node’s 
routing table for our attack. The queried node is supposed to reply with a Hello 
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Response message. Both messages only contain the peer information data structure of 
the respective sending peer.  

Request messages are used to retrieve information about other nodes during a 
lookup process – explained in detail in section 2.2. They contain a Type field 
identifying the type of lookup (e.g., source search, keyword search, publication, etc.), 
the target ID and the ID of the queried node. A Response message contains the 
queried target ID and a peer information data structure for each matching node the 
queried node knows. 

Publish Requests are used during a publication process to store information about 
offered files or keyword information on the responsible nodes. They contain the target 
ID and information about the published objects such as the filename or the bit rate of 
audio files. A node acknowledges a successful publication with a Publish Response. 

During a source or keyword search, Search Requests are used to ask other nodes 
for sources or files matching a keyword. This message type contains the target ID and 
a field indicating whether the ID is a file or a keyword ID. In case of a keyword 
search with a search term consisting of more than one part, the second to last part of it 
are appended in clear text to the message. The queried node replies with a Search 
Response message containing the target ID and a result list. 

2.2 The lookup process 

A node performs a lookup process every time it requires (more) sources for a file, 
when it publishes a file or when the user performs a keyword search in order to find 
the currently responsible nodes for that file or keyword ID. When these nodes are 
identified, the specific action is performed, e.g., a query for sources. 

As several lookup processes may run concurrently, eMule uses independent search 
processes for each lookup which are controlled by the so-called SearchManager. 
SearchManager invokes search processes and terminates them when their maximum 
run time is exceeded (default: 45 seconds) or their maximum number of results has 
been achieved (default: 300 sources during a source search, 10 nodes during a 
publication). 

Each search process is split into two phases: In phase 1, the responsible nodes are 
identified. Up to three nodes are queried in parallel in order to accelerate the lookup 
process and to cope with non-responding nodes. The number n of required nodes 
depends on the action: During a publication process, a node contacts ten nodes to 
store the source information on them. A source search queries as many nodes as 
necessary until either the maximum number of sources or a timeout is reached. 
During phase 2, the specific action is performed on the identified nodes.  

Phase 1: Locating the responsible nodes. A search process manages four lists: 
POSSIBLE, BEST, TRIED and RESPONDED. All lists are sorted by distance to the target 
with the closest node at the top. 

At the beginning of a lookup, POSSIBLE will be filled with the 50 currently known 
nodes that are closest to the target ID. BEST stores the three closest nodes that have 
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been found so far, TRIED stores the nodes that have already been queried, and 
RESPONDED stores all nodes that have responded to queries. 

After initializing, the three BEST nodes are queried for closer nodes and copied to 
TRIED. The nodes answer with a list of nodes that are closer to the target. Those nodes 
are inserted into POSSIBLE and also into BEST, if applicable. Nodes in BEST are queried 
immediately for closer nodes. 

Eventually, this process starves, as no closer nodes will be found. BEST then 
contains the three currently closest nodes to the target. Fig. 1 illustrates this process. 

A search process cannot transition to phase 2 on its own. SearchManager 
periodically evaluates the status and transitions the search process to phase 2 if no 
response has been received for more than three seconds. 
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Fig. 1. Phase 1 of the lookup process. The initialization procedures are displayed as “0.x”. All 

lists are sorted by distance to the target. 

Phase 2: Performing the specific action. In phase 2, the search process evaluates the 
nodes contained in POSSIBLE, starting with the first node. If the node is also contained 
in TRIED and RESPONDED, the specific action is performed and the node is removed 
from POSSIBLE; if it is not in TRIED and RESPONDED, the search process falls back into 
phase 1 and queries this node for closer nodes. 

2.3 Security issues: Sybil and Eclipse attacks and countermeasures 

Kad is susceptible to both the Sybil and the Eclipse attacks. A Kad node selects its 
own ID autonomously. Therefore, a malicious user can select specific IDs instead of 
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randomly generated ones. Additionally, he can use multiple IDs concurrently, which 
is called a Sybil attack [13]. If an attacker thereby provides or controls the n closest 
nodes to the victim ID, all queries for this ID will converge on his nodes, as the nodes 
whose IDs are closest to a queried ID are responsible for managing content identified 
by it. This way, the attacker performs an Eclipse attack, as he is able to control the 
victim ID and can decide whether and how to respond to incoming requests. 

As a consequence, the eMule developer community has designed security 
measures against this attack that have been implemented in eMule 0.49a [9]. Prior 
versions do not include any countermeasures. The new countermeasures constrain the 
routing table as follows: 

• One IP address must not have more than one node ID assigned. 
• A Routing Bin1

• The whole routing table must not contain more than ten nodes from the same /24 
IP subnet. 

 must not contain more than two nodes from the same /24 IP 
subnet. 

These constraints only apply to the routing table, so they are only checked when 
nodes are added to it. They are not applied during lookup processes, so lookups are as 
susceptible to Sybil and Eclipse attacks as before. 

Without these restrictions, an attacker could easily create an arbitrary number of 
Sybil nodes using one IP address and therefore perform an Eclipse attack using only a 
single machine. The new restrictions force the attacker to use several machines 
located in different subnets, so the attack effort rises significantly. 

Modifications (“mods”) of eMule are developed besides the official eMule 
application. SafeKad (included in the modification MorphXT [15], e.g.) implements a 
similar countermeasure that is also applied during the lookup process: It only allows 
one node per /20 IP subnet in a single response message. This mechanism leads to a 
more secure lookup process, as an attacker now needs nodes that reside in different 
/20 IP subnets. However, we will show a way to also circumvent this security 
measure. SafeKad is not developed further, though, as its developers regard the 
security measures of the official client as superior [15]. 

3 An improved Eclipse attack on the Kad network 

Based on the attack described in [7], we developed an improved attack procedure that 
circumvents the new security measures of eMule 0.49a and SafeKad. To demonstrate 
its feasibility, we developed a tool suite consisting of specialized Kad clients 
conducting the attacks. We attack both the publication process and the source search 
process, as they differ in the amount of queried nodes (ten vs. as many as necessary to 

                                                           
1 The routing table of a Kad node is divided into Routing Bins which contain up to 10 nodes 

and represent up to 6.25% of the Kad address space, depending on their position in the 
node’s routing table. For details refer to [12]. 
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obtain the maximum amount of sources or until the timeout is reached). Both 
processes perform a lookup process to determine the nodes they need to query. 

3.1 Basic attack concept 

We define the Target ID as the Kad ID which we want to eclipse. For the source 
search process, this ID represents a file. The publication process attack can either be 
directed against a keyword ID or a file ID, depending on what the attacker desires to 
eclipse (e.g., keyword “ubuntu” vs. file “ubuntu-8.04.2-desktop-i386.iso”). 

The Target ID resides in what we call a CrawlArea – the part of the Kad ID space 
surrounding the Target ID that we analyze for nodes that need to be manipulated. The 
size of the CrawlArea is defined by the length of the common prefix of the CrawlArea 
nodes and the Target ID; e.g., a “/20 CrawlArea” means that the first 20 bits of the 
CrawlArea nodes’ IDs are the same as the first 20 bits of the Target ID. 

In order to perform the attack, we use a chain of Sybil nodes (Sybil 0 to Sybil n). 
The Sybil nodes have different, specifically chosen Kad IDs where Sybil 0 has the 
largest distance to the Target ID and Sybil n the smallest. We call this order of nodes 
“decreasing order”. The chosen node IDs and the Target ID have the first 125 bits in 
common, so it can be assumed that our nodes have smaller distances to the Target ID 
than any other node in the network. As a result, our nodes – and only our nodes – are 
responsible for the Target ID.  

S0S1S2 VF

XOR distance to Target ID
0 2128-1

Q… ……

Request and Response messages of lookup process
Response message from A contains pointer to BA B

T: Target ID     Sn: Sybil Node n    F: Fake Node V: Valid Node Q: Querying Node

1234

T …

 
Fig. 2. Illustration of how a querying node is lured into the Sybil node chain. The Sybil nodes 

are arranged in decreasing order. All IDs are arranged according to their distance to the 
Target ID. 

The new security measures of the official eMule client and the SafeKad 
modification require new attack techniques: To circumvent eMule 0.49a’s restriction 
that one Routing Bin may only contain up to two nodes from the same /24 IP subnet, 
only Sybil 0 is actively inserted into other nodes’ routing tables. As this check is not 
applied during lookup processes, we use Sybil 0 to successfully direct the querying 
node to our other Sybil nodes in the same /24 subnet. 

SafeKad’s security measures prevent the usage of a single Response message 
containing all Sybil nodes, because they would discard all except one of them as they 
reside in the same /20 IP subnet. Hence, we include only one Sybil node and another 
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randomly generated faked node in a Response message2

When a node performs a lookup process, it will eventually be directed to Sybil 0 by 
other valid nodes that have been manipulated. Sybil 0 will respond with a Response 
message containing Sybil 1 and a faked node, which is illustrated in 

. The random node’s ID is 
chosen to be farther away from the Target ID than the Sybil’s one. 

Fig. 2. When 
receiving this message, the node will immediately put Sybil 1 into its POSSIBLE and 
BEST lists, as it is closer than all previously found nodes, and query it for closer nodes. 
The Sybil node in turn answers with the next Sybil node and a faked node. This 
process is repeated. 

Attacking a publication process requires ten Sybil nodes to eclipse a file or a 
keyword by deceiving the publishing nodes. This number is fixed, as a node stores the 
information always on ten nodes. 

During a source search, more Sybil nodes can be required: When a Kad node tries 
to find sources for a file, it queries as many nodes as possible until it has found the 
maximum amount of sources or reaches a timeout. Using the first condition, in theory, 
only one Sybil node is required: The search terminates when 300 sources have been 
found (default value). If the first queried node replies with 300 randomly generated, 
non-existent sources, no further Sybil nodes are required. The drawback of this 
approach is that it is visible to the user, as the client application will first report 300 
sources which will then drop to 0 after all result nodes have been queried. We chose a 
more stealthy approach using the second termination criterion, the timeout. We try to 
keep the querying node busy long enough so that the search is terminated due to a 
timeout. To perform this attack, we introduced a delay after the reception of a Request 
message before sending the Response message. The number of required Sybil nodes 
is variable and depends on the delay interval (see 4.1). 

Summarizing, our attack bases on a chain of Sybil nodes of which only the first 
node (Sybil 0) is actively proclaimed. Sybil 0 points querying nodes to the next node 
in the chain which then points to the next Sybil node and so forth. The Sybil nodes 
answer after a configurable delay with only the next Sybil node and an arbitrarily 
chosen fake node. 

3.2 Optimizations 

During our test phases, we discovered optimizations for the attacks on the publication 
and the source search processes. 

Accelerating the publication attack. To have a node enter phase 2 of the lookup 
process more quickly when we attack the publication process, we have Sybil 9 send 
Sybil 0’s contact information instead of Sybil 10’s ones. This way, the node notices 
that there are no new closer nodes and that it has found the ten currently closest nodes 
to the Target ID – which are our Sybil nodes 0 to 9 – and will start to send the Publish 
Requests to them immediately. Additionally, we chose the node ID of the fake, non-

                                                           
2 The faked node is required because Kad expects a Response message to contain at least two 

nodes. 
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existent node included in Sybil 9’s response message to be only a little farther away 
than our Sybil nodes to place it between the last Sybil and the first valid node in the 
list, in case one of the Sybils’ answers does not arrive in time. If this happened, the 
attacked node would send a Publish Request to the first valid node on its list. This 
way, the request is sent to the non-existent node. The sending node does not receive 
an acknowledgement, so it tries the closest non-queried node on its POSSIBLE list, 
which should contain all ten Sybil nodes by then. Fig. 3 shows the status of the BEST 
and POSSIBLE lists before and after each message exchange when a node is lured into 
our Sybil node chain. 

Sybil-0X

Req(Target ID)

Res(Sybil-1, random)

YX

Req(Target ID)

Res(Sybil-0, Z)

Sybil-8X

Req(Target ID)

Res(Sybil-9, random)

Sybil-9X

Req(Target ID)

Res(Sybil-0, random)

1. Y (valid node)
2. R (valid node)
3. T (valid node)

1. Sybil-0
2. Z (valid node)
3. Y (valid node)

1. Sybil-0
2. Z (valid node)
3. Y (valid node)
4. R (valid node)
5. T (valid node)
…

1. Sybil-0
2. Z (valid node)
3. Y (valid node)

1. Sybil-1
2. Sybil-0
3. Z (valid node)

1. Sybil-1
2. Sybil-0
3. Z (valid node)
4. Y (valid node)
5. R (valid node)
…

1. Sybil-8
2. Sybil-7
3. Sybil-6

1. Sybil-9
2. Sybil-8
3. Sybil-7

1.  Sybil-9
2.  Sybil-8
…
10. Sybil-0
11. Z (valid node)
…

1. Sybil-9
2. Sybil-8
3. Sybil-7

1. Sybil-9
2. Sybil-8
3. Sybil-7

1.  Sybil-9
…
10. Sybil-0
11. random
12. Z (valid node)
…

BEST (before Req) BEST (after Res) POSSIBLE

…… … …

 
Fig. 3. The BEST and POSSIBLE lists before and after each message of the Sybil node chain. 

Minimizing the number  of required Sybil nodes for  the source search attack. 
During our test runs, we discovered that the number of required Sybil nodes for the 
attack on the source search can be minimized by reversing the order of the Sybil 
nodes so that Sybil 0 is the closest node to the target and Sybil n is the farthest one 
(“increasing order”) – Fig. 4 illustrates this order of Sybil nodes. This change causes a 
node to repeatedly transition between phases 1 and 2 during the lookup process: The 
node tries to find closer nodes by only querying the currently known closest nodes. As 
Sybil 0 is the closest node, the process starves when Sybil 0 is queried and returns 
Sybil 1 which is farther away. The starvation causes a transition to phase 2 for the 
first time. The node queries Sybil 0 for sources, does not obtain any and discovers that 
it has not found the maximum amount of sources yet. Therefore, it continues its 
lookup by also querying the next node in POSSIBLE – which is Sybil 1 – for closer 
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nodes and thereby transitions back to phase 1. This process repeats until the timeout is 
reached. 

S2S1S0 VF

XOR distance to Target ID
0

Q… ……

Request and Response messages of lookup process
Response message from A contains pointer to BA B

T: Target ID     Sn: Sybil Node n    F: Fake Node V: Valid Node Q: Querying Node

1432

T …

2128-1

 
Fig. 4. Illustration of the increasing order of the Sybil nodes. 

3.3 Tool suite 

To perform our analyses, we developed a tool suite consisting of three parts: 
KadCrawler, Capo and SybilNode. KadCrawler is responsible for finding all nodes in 
the CrawlArea and storing them in a database. The area of the address space 
containing the nodes that are poisoned is a subset of the CrawlArea which we call 
PoisonArea. 
The routing tables of the nodes in the PoisonArea are then poisoned by the second 
tool, Capo: It selects the PoisonArea nodes from the database and sends a Hello 
Request message to them containing peer information about itself, so Capo takes the 
role of Sybil 0. Using the Hello Requests, Capo tries to insert itself into the routing 
table of the receiving node. Unfortunately, the reception of a Hello Response message 
cannot be interpreted as a successful insertion into the routing table, as a node replies 
before checking if the node should be inserted, so there is no way of determining 
whether the insertion was successful. 

Capo performs the poisoning process every ten minutes to ensure that the currently 
closest nodes are manipulated. It also responds to incoming Request messages 
querying for closer nodes for a given ID. If the queried ID is the Target ID, Capo 
responds by sending information about Sybil 1 and a faked node to lure the querying 
node into our chain of Sybil nodes. Hello and Publish Requests for arbitrary IDs are 
answered positively and logged; Search Requests are logged, but not answered. 

The third tool, SybilNode, is a functionally reduced Capo as it does not actively 
poison any nodes. It only reacts to incoming messages the same way Capo does. The 
Sybil nodes 1 to n are instances of this tool. 
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4 Results 

Using our tool suite, we performed two test series. First, we performed short tests 
using one file with random content and name and ten test runs for each test scenario. 
The scenarios vary by the order of the Sybil nodes (decreasing vs. increasing) and the 
answering delay. 

For the second test, we created 12 such files and tested for 90 hours to conduct the 
efficiency analysis. We refrained from eclipsing file or keyword IDs of content 
offered by third parties due to legal reasons. 

4.1 Proof of concept 

For the test with one file, we selected a 12-bit PoisonArea. The test runs were 
performed using eMule 0.48a with SafeKad and eMule 0.49b as client applications. 
After each run, all configuration files were reset to defaults. 

All attacks against the publication process were successful, as all ten Publish 
Requests of each test run were sent to our Sybil nodes. Both eMule 0.48a with 
SafeKad and eMule 0.49b were susceptible to our attacks. 

The attacks against the source search process were conducted in both decreasing 
and increasing order of the Sybil nodes. We varied the answering delay of the Sybil 
nodes using values of 0.0, 0.5, 1.0, 1.5 and 2.0 seconds. Longer delays are not 
reasonable, as a lookup process is transitioned to phase 2 after a timeout of 3 seconds. 
If this would happen before the node’s lookup timeout had been reached, the node 
would query valid nodes as well which would avert the attack. Table 1 presents the 
average number of Sybil nodes required for the attack and shows that our 
optimization of the order of the Sybil nodes remarkably reduces the amount of 
necessary Sybil nodes. For delays < 1.0s and an decreasing order of Sybil nodes, 
more than 30 Sybil nodes are required for the attack to be successful. The number of 
required Sybil nodes decreases with increasing delay. The optimal configuration is to 
arrange the Sybil nodes in increasing order and to use a delay of 2.0 seconds. 

Table 1. The average number of required Sybil nodes to let the source search process reach the 
timeout. 

 Answering Delay [s] 
0.0 0.5 1.0 1.5 2.0 

Decreasing 
Order 

eMule 0.48a (SafeKad) >> 30 > 30 24.7 16.9 13.0 
eMule 0.49b >> 30 > 30 24.8 14.9 11.0 

Increasing 
Order 

eMule 0.48a (SafeKad) 8.0 7.0 5.5 5.5 5.1 
eMule 0.49b 7.2 6.5 5.8 5.1 4.6 

4.2 Efficiency analysis 

After proving that our tools work, we analyzed the required amount of nodes that 
need to be poisoned in order for the publication attack to be successful. We chose to 
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attack the publication process although it requires more Sybil nodes and messages and 
therefore resources, because only by attacking the publication, an attacker can ensure 
that he controls all nodes that store information about the content item. If only the 
search process would be attacked, there would exist valid nodes that store the 
information and which could be found by chance, e.g., due to network failures or 
misbehaving client applications. 

Each of the 12 test files was published every 20 minutes. We only used an 
unmodified eMule 0.49b as a client application as we had proved before that also 
eMule 0.48a with SafeKad does not avert our attack. 

We used 13- to 24-bit masks as PoisonArea sizes. The results can be divided into 
three groups: Attacks using 13- to 20-bit masks were immediately successful. The 
ones with 21- and 22-bit masks were successful after 60 and 5 hours respectively. The 
attacks using 23 and 24 matching bits failed. 

Immediately successful attacks. The attacks using 13- to 19-bit masks were 
immediately successful. Every publication process performed by one of our eMule 
clients succeeded. By contrast, 2 out of 270 attacks using 20-bit masks failed. The 
reason was that the lookup process of the publishing eMule client starved before it 
had found a poisoned node and therefore transitioned to phase 2 before our Sybil 
nodes had been found. This led to our Sybil nodes receiving only 8 of 10 Publish 
Requests. 

Delayedly successful attacks. As we limited the amount of nodes chosen to be 
poisoned by demanding that the first 21 resp. 22 bits of the Target ID and the node ID 
match, the attacks on these two identifiers were not successful at first, because no 
matching nodes were found. This is not surprising, as [7] assumes that the Kad 
network contains up to 4 million nodes: If the node IDs were uniformly distributed, 
0.95 to 1.91 nodes should match our criterion on an average (e.g., 4•106 / 222 = 0.95). 

After 57 hours, the poisoning process for the 21-bit mask area was successful for 
the first time; the last success occurred after 67 hours. In total, only six different Kad 
nodes were poisoned during 15 out of 490 poisoning processes. However, after the 
first node was poisoned, all subsequent publication processes of our eMule clients 
until the end of the measurement were successfully directed to our Sybil nodes, 
although no nodes were poisoned during the last 23 hours. This proves that the 
information of Capo’s presence was spread in the target area by the poisoned nodes. 
This information persists in the routing tables as long as Capo responds to Hello 
Requests. So the attack is effective without requiring a re-poisoning as long as the 
poisoned nodes are available. 

The poisoning process using the 22-bit mask was successful after 5 hours of 
measurement. For the same reason the 20-bit mask attack failed two times, 3 of 256 
attacks failed. 

Unsuccessful attacks. The attacks on the 23- and 24-bit mask areas never succeeded. 
For the 24-bit mask area, no matching node was found. Information about a single 
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node having the first 23 bits in common with the Target ID was indeed found, but the 
node did not respond to Capo’s Hello Request. 

4.3 Scalability 

Due to legal reasons, we only attacked self-generated content that was demanded only 
by our clients. However, by chance, one of our generated IDs lay close to the ID of a 
keyword that was accessed by other nodes. We received information about 75,000 
content items in more than 125,000 Publish Requests during the 90 hour 
measurement. Only 14,714 Search Requests were sent to our Sybil nodes (and left 
unanswered), so the keyword was published more frequently than demanded. 

The queries caused by the keyword did not have any impact on our tools or our 
other attacks. We therefore suppose that the only factor limiting the success of the 
attack is bandwidth: If requests of publishing nodes are not answered due to packet 
loss or timeouts, the nodes will publish on other nodes and the attack fails. Assuming 
an average Kad packet size of 100 bytes, 20 messages per direction and a duration of 
5 seconds per publication process results in a network load of 3.2 kbit/s on average. 
Adding 50% of overhead for the poisoning and Hello and Search Request messages 
results in a load of 4.8 kbit/s. Using a symmetrical 2 MBit/s connection, more than 
400 publications per second would be necessary for the attack to fail. The attack 
would fail then because the querying nodes would ask other than the Sybil nodes, as 
their query packets to the Sybil nodes would be (partially) lost due to congestion. As 
eMule’s default re-publish interval is 5 hours, this would require 7.5 million users to 
publish the same file or keyword, which is 87.5% more users than the number of 4 
million found by [7]. 

5 Conclusion and outlook 

We demonstrated that the Kad network is still susceptible to eclipse attacks despite 
the inclusion of security measures into the current official eMule client. The tool suite 
we presented is able to eclipse arbitrary popular content items using little resources. 
We showed that it suffices to poison one single – namely the currently closest – valid 
Kad node to be able to perform the attack. 

In order to protect against our attack, we recommend to further harden the lookup 
process by having the IP subnet checks ignore nodes even though they are closer. 
However, if the attacker controls nodes in different IP subnets, these checks would 
not help. Hence, we will continue our research by implementing and evaluating the 
concept of disjoint routing paths. Research in this direction might also help to identify 
means of disabling “botnets” such as the Storm Worm network, as they also employ 
P2P technology for communication and receiving orders [6]. 
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