A Unified Framework for Sub-stream Scheduling
in P2P Hybrid Streaming Systems and How to
Do Better?*

Zhenjiang Li', Yao Yu?, and Xiaojun Hei® and Danny H.K. Tsang!

! Department of Electronic and Computer Engineering
Hong Kong University of Science and Technology
2 Department of Electronics Science and Engineering
Nanjing University
3 Department of Electronics and Information Engineering
Huazhong University of Science and Technology
lzjiangQ@ust.hk,allanyu@ese.nju.edu.cn,heixj@hust.edu.cn,eetsang@ece.ust.hk

Abstract. The pull-push hybrid P2P streaming, as an emerging and
promising approach, has achieved some success in delivering live video
traffic. The sub-stream scheduling problem is a key design issue in a
hybrid system. In this paper, we propose a max-flow model for unify-
ing this sub-stream scheduling problem. We find that the sub-stream
scheduling problem in GridMedia, CoolStreaming+ and LStreaming can
be formulated into a special case of the proposed max-flow model. We
further propose a min-cost flow model to combat peer heterogeneity in
scheduling sub-streams. This min-cost flow model is implemented in a
prototype system, LStreaming+. The accuracy of the max-flow model
and the outstanding performance of LStreaming+ are demonstrated by
extensive simulations. We also show that LStreaming+ achieves excellent
performance in prototype experiments.

Keywords: P2P streaming, pull-push, hybrid, max-flow, min-cost flow

1 Introduction

P2P streaming architectures have advanced in two major approaches: pull-based
(mesh-pull) approach versus push-based (tree-push) approach. The pull-based
systems apply a simple design principle and combat peer churn and peer hetero-
geneity in dynamic P2P environment. However, these pull-based systems often
suffer from high traffic overhead and long start-up delay [1]. In contrast, push-
based systems may achieve high throughput, low overhead and small delay if the
tree structure does not break down due to peer churn. Recently, researchers are
exploring a new class of pull-push hybrid architectures. Some hybrid systems,
including GridMedia [2], CoolStreaming+ [3] and LStreaming [4, 5], have already
achieved performance improvement compared with pull-based systems in terms
of throughput, signaling overhead and video viewing quality.

* This work is supported by RGC Earmarked Research Grant 620306.



The general idea of pull-push streaming works as follows. The original video
is divided into data chunks and each chunk is assigned with a unique chunk
number (e.g. 0, 1,2, ...). Chunks are further organized into sub-streams logically.
Suppose there are total S sub-streams, sub-stream 1 contains chunks 1, 145, 1+
25, .... Video chunks may be delivered using the chunk-pulling module and the
sub-stream pushing module. Each peer starts up with pulling chunks. After the
initial time, the sub-stream pushing module starts to work. Then peers need to
decide which sub-stream should be obtained from which neighbors. This decision
process is known as sub-stream scheduling. After the sub-stream pushing
module is enabled, the chunk-pulling module is still working to serve as backup
to download those missing chunks when their playback deadline is approaching.
In a hybrid system, the sub-stream pushing module sets up a local tree structure
between peers based on the topology formed by the chunk-pulling module. In
sub-stream scheduling, peers actively select one neighbor among all candidate
neighbors to obtain a sub-stream. However, there exists no explicit “scheduling”
module in conventional tree-based systems. The neighbor-relationship is formed
passively after peers successfully join single or multiple trees in conventional
tree-based systems. The previously proposed sub-stream scheduling schemes [2—
5] are mainly designed experimentally. We find that these heuristic designs have
inherent limitations. Liu et al., proposed to allocate sub-streams via bipartite
graphs in [6]. The protocol in [6] is tailored against free-riders without an in-
depth study on the sub-stream scheduling problem.

In this paper, we first highlight the importance of the sub-stream scheduling
in hybrid systems on reducing overhead, improving throughput and maximiz-
ing video viewing quality. To the best of our knowledge, this is the first work
thoroughly studying the sub-stream scheduling problem in P2P hybrid systems.
Then we propose a maz-flow model for unifying the sub-stream scheduling prob-
lem in the existing hybrid systems including GridMedia, CoolStreaming+ and
LStreaming. We demonstrate that the sub-stream scheduling module in these
three hybrid systems actually solves one special case of the proposed max-flow
model, respectively. Our proposed max-flow model is solvable in polynomial time
and provides useful insights for a better sub-stream scheduling design, in which
we propose a min-cost flow model to better utilize heterogenous peers. We im-
plement the proposed min-cost flow model in a prototype system, LStreaming—+.
We show that this min-cost flow scheduling scheme outperforms the existing
sub-stream scheduling schemes. Compared with GridMedia and LStreaming, the
total overhead reduction of LStreaming+ reaches as high as 43.9% and 20.0%,
respectively. In addition, LStreaming+ achieves the highest throughput and the
smoothest video playback.

The rest of this paper is organized as follows. In Section 2, we present the
max-flow model and the corresponding special cases for three existing systems,
GridMedia, CoolStreaming+ and LStreaming. Then we propose the min-cost
flow model in Section 3 and evaluate the performance using simulations and
prototype experiments in Section 4. Finally, conclusions are made in Section 5.



2 Problem Statement and Formulation

The general scheduling pattern of peers in a hybrid system is shown in Fig. 1.
During the initial 7y time, only the chunk-pulling module is enabled so as to start
up the streaming process as quickly as possible. After 7y, the sub-stream pushing
module starts to work concurrently with the chunk-pulling module. Peers will
conduct sub-stream scheduling for the sub-stream pushing module after 7 time.
Whether the duration of each 7z (¢ = 1,2,...) is set to be constant depends
on a particular system design. If sub-stream scheduling is triggered periodically
(e.g. the time-driven type), each time interval is identical; otherwise, the time
intervals can vary (e.g. the event-driven type).

7, PN PN 7, o T, PRN

[ [ Lo [P A
time

L
\ \ \ \T,
t 3% 3% 3% 37
Sub-stream Sub-stream Sub-stream Sub-stream
Scheduling Scheduling Scheduling Scheduling

Fig. 1. The general scheduling pattern of peers in hybrid systems

2.1 Sub-stream scheduling Problem

In pull-push hybrid systems, the sub-stream scheduling decisions are generally
controlled by the peer qualification rule and the token number. Based on the peer
qualification rule, peers need to determine qualified neighbors in terms of the sub-
stream availability to obtain sub-streams; then, each sub-stream is scheduled to
be obtained from only one qualified neighbor. These selected qualified neighbors,
called push-neighbors, push chunks of sub-streams to the requested peer. The
peer qualification rule may be set differently in different systems. After selecting
qualified neighbors, on each sub-stream scheduling event, every peer (e.g. peer
i in Fig. 2) needs to calculate the maximum number of sub-streams that can
be obtained from each neighbor. In existing systems, this number is usually
computed based on the end-to-end bandwidth between two peers. In this paper,
we call this number token number, denoted as T;j. It represents neighbor h can
be scheduled to upload at most T;; sub-streams to peer 4.

We now examine peer ¢ in Fig. 2 for instance to explain the design issues in the
sub-stream scheduling. Peer ¢ has four neighbors and five sub-streams needed to
be scheduled. For sub-stream 0, peer ¢ schedules it to be obtained from neighbor
1 which is the only peer qualified for this sub-stream. On scheduling sub-streams
1 and 2, if random selection or sequential selection is used, both sub-streams 1
and 2 can be downloaded from neighbor 2. Although neighbor 3 has 2 tokens
left, peer ¢ cannot download any sub-streams from peer 3. Therefore, the chunks
in sub-streams 3 and 4 can only be downloaded by the chunk-pulling module



O :Tts ncighbor is qualified Sub-stream 0 @ O : Tts neighbor is qualified Sub-stream 0 @
for the corresponding Token lefi: 0 for the corresponding Token Ieft: 0
sub-stream. However, it S (after scheduling) sub-stream. However, it (after scheduling)

isnot selected as the

isnot selected as the S o r——— [Sub-stream
push-ncighbor for this N Sub-stream 4O push-ncighbor for this |Sub-stream 4@
sub-stream by peer i. Sub-stream 3 O sub-stream by peer i. Sub-stream 3 @
Neighbor 1 S [Sub-stream 2 @ Neighbor 1 aTpTE————
<

Sub-stream 0 Sub-stream 2 @ Sub-stream 0 Sub-stream 20
Sub-stream 2 Sub-stream 1 @ Sub-stream 4. Sub-stream 10

Sub-stream 1 Neighbor2  Token left 0 Sub-stream 3 Neighbor2 ~ Tokenlef:0
(after scheduling) (after scheduling)

Peer i Q) Sub-stream 20 Peer i

Sub-stream 10 Sub-stream 1 @
> “Token lef: 2
Neighbor3  ger scheduling) @ :lts ncighbor s
g selocted as the push
N Sub-stream 10 neighbor for the

Sub-stream 2
Sub-stream 1

@ : Itsncighboris
selected as the push-
neighbor for the
comesponding sub-
stream by peer &

\%_ Token left: 0
@ Neighbor 3 (afier scheduling)
. Sub-stream 10
corresponding sub-

Token left: 2 stream by peer 7. Token left 2
Neighbor 4 (after scheduling) Neighbor 4 (afterseheduling

Fig. 2. Inefficient scheduling Fig. 3. Efficient scheduling

later. As a result, more signaling overhead will incur. Furthermore, note that the
portion of the buffer, in which the missing chunks are requested by the chunk-
pulling module, is usually close to the playback pointer. If too many sub-streams
are not successfully scheduled (without finding a qualified push-neighbor), then
a large amount of chunks can only be downloaded by the chunk-pulling module;
therefore, the chance that chunks miss their playback deadlines increases and the
viewing quality deteriorates accordingly. If we change to the strategy in Fig. 3, all
sub-streams can be successfully scheduled. Most of the chunks will be delivered
through multiple trees and only a few of them may be left to the chunk-pulling
module. Hence, the viewing quality is improved with reduced signaling overhead.
Although scheduling in Fig. 3 is more efficient than that in Fig. 2, a problem still
remains. In Fig. 3, sub-stream 1 can be scheduled to either qualified neighbor 3
or 4, it is not clear which peer is more appropriate. This issue will be discussed
in Section 3.

We have presented the importance of sub-stream scheduling on reducing sig-
naling overhead and improving viewing quality. Since the total traffic overhead
is due to signaling messages and redundant video chunks, we now briefly discuss
the impact of sub-stream scheduling on video redundancy overhead. Note that
a push-neighbor continues to push chunks if it does not receive any canceling
messages. If the sub-stream scheduling is not conducted appropriately, peers in
the system will suffer from frequent switching of push-neighbors (we call this
phenomena push-neighbor switching). Redundant video download occurs as
follows. Chunks have been pushed out from previous push-neighbors before push-
neighbor switching. Due to the propagation delay and the network buffering
effect, these chunks may be still in transmit. The same chunks may be dissemi-
nated via new push-neighbors later, then redundant download occurs. Frequent
push-neighbor switching can incur significant video redundancy overhead, which
will be further examined in Section 4. In summary, the sub-stream scheduling
highly impacts viewing quality, signaling and video redundancy overhead. In the
next subsection, we propose a unified model on sub-stream scheduling based on
our study of existing hybrid systems.



2.2 Modeling

To facilitate the discussions, we tabulate the notations in Table 1. The default

values are used in our simulation and prototype unless specified explicitly.

Table 1. Notations

[
eh]—

Decision variable to indicate whether peer ¢ obtains sub-stream j
from neighbor A

[
I},

Decision variable to indicate whether neighbor h is qualified for
sub-stream j according to the peer qualification rule of peer 4

Set of all sub-streams for peer ¢ to schedule

Set of neighbor peers of peer 4

Playback rate of the streaming (e.g. 300kbps)

Period of sub-stream scheduling for LStreaming+ (e.g. 10s)

A large integer (e.g. 10%)

;|End-to-end bandwidth from neighbor h of peer i to peer ¢ (kbps)

|Largest chunk number already available for sub-stream j at neigh-

bor h of peer i

i|Starting chunk number needed by peer ¢ for sub-stream j

Token number for neighbor h of peer ¢ in sub-stream scheduling

Number of chunks in 1 second video (e.g. 30)

Total number of sub-streams in the system (e.g. 15)

For each sub-stream scheduling, peer ¢ needs to schedule | ;| sub-streams in
total, where I'; represents the set of all sub-streams for peer i to schedule. For any
sub-stream j in I, the set {h|],ilj = 1,Vh € £2;} includes all the qualified neigh-
bors, from which peer i can obtain sub-stream j. {2; is the set of all neighbors of
peer i. If multiple neighbors are qualified for one sub-stream, peers in existing
systems will randomly select one neighbor to obtain this sub-stream. Thus, we
assume there is no difference among all these qualified neighbors in scheduling.
When peer ¢ conducts sub-stream scheduling, it basically aims to maximize the
number of sub-streams to be scheduled successfully; hence, we propose the fol-
lowing max-flow model for peer ¢ to unify the sub-stream scheduling operations
in existing hybrid systems:

1 1
Max Zhe(h ZjGFi Thj€his
s.t. Zheﬁ Iieh; < 1,5 €Ty
T 0
en; €{0,1},he 2;,j € I.



Constraint (2) ensures that each sub-stream can be scheduled to one neighbor
at most. In constraint (3), the token number for neighbor h of peer i, T, is

calculated by T;, = [%—‘ (we choose rounding up instead of rounding down

so that peers’ upload capacities can be fully utilized). The maximum number
of sub-streams can be scheduled to neighbor A is limited by their end-to-end
bandwidth. Constraint (4) ensures that this optimization problem is a binary
integer programming problem. We will show that this model can be transformed
into an equivalent maz-flow problem, which is solvable in polynomial time [7].

Proposition 1. Implementations of sub-stream scheduling in GridMedia, Cool-
Streaming+ and LStreaming are special cases of the proposed mazx-flow model.

Proof. Due to the page limitation, we only demonstrate the proof for GridMedia.
Other two systems can be similarly proved. Note that both constraints (2) and
(4) are satisfied in all these systems obviously; therefore, the proof only focuses
on constraint (3) and the objective function of the max-flow model. Without
loss of generality, we focus on peer i in the proof. GridMedia does not consider
token limit on sub-stream scheduling (i.e. Vh € £2;, T;, = x). This indicates that
constraint (3) can be satisfied all the time. Peers in GridMedia group a fixed
number of consecutive packets as a packet group. Moreover, peers cluster every
g consecutive packet groups into a packet party with group number from 0 to
g — 1. In GridMedia, whenever missing chunks in packet group 0 are requested
by the chunk-pulling module, sub-stream scheduling is actually conducted at
this moment. There can be multiple missing chunks in packet group 0 and each
missing chunk belongs to one particular sub-stream. Suppose a packet-group-0
chunk in sub-stream j is missing, if neighbor h has this particular chunk (known
from the buffer map), then I} ; = 1. This indicates that peer h is qualified for
sub-stream j. Since there is no bandwidth limitation, peer ¢ can always schedule
sub-streams successfully. In other words, the number of sub-streams successfully
scheduled is always maximized. Thus the objective function of the max-flow
model holds for GridMedia. Therefore, the sub-stream scheduling scheme in
GridMeida is a special case of the max-flow model.

2.3 Problem Transformation

In this subsection, we show that the proposed sub-stream scheduling model can
be transformed into an equivalent classical maz-flow problem, which can be
solved in polynomial time. We briefly outline the max-flow problem here. Let
a network G = (V, E) be a directed graph in which each arc (m,n) € E has
a nonnegative capacity u(m,n) > 0. V contains two special elements s and ¢,
which represent source and sink, respectively. The decision variable, f(m,n),
denotes the amount of flow along (m,n). If (m,n) ¢ E, both u(m,n) = 0 and



f(m,n) = 0. The max-flow problem can be written as follows:

Max Znevf(s, n), (5)

s.t. Zn:(myn)eEf(m,n) - Zn:(nym)eEf(n,m) =0,Ym eV —{s,t}, (6)
0 < f(m,n) < u(m,n),¥(m, ) € E. )

The time complexity of solving the max-flow problem is bounded by O(V E?)
by adopting the Edmonds-Karp algorithm [7]. Due to the page limitation, the
detail of the transformation algorithm is omitted here; nevertheless, we provide
an illustration of the transformation shown in Fig. 4 for the example in Fig. 3. In
Fig. 4, Vh, N;j, indicates that peer h is a neighbor of peer i and Vj, S;; denotes
that sub-stream j needs to be scheduled by peer i. The arc between each pair of
N;p, and S;; ensures that neighbor h is qualified for sub-stream j based on the
peer qualification rule. If Iij =1, an arc exists from N;;, to S;;. Nodes s and ¢ in
Fig. 4 are artificially introduced in order to set up the max-flow graph. The arc
from s to each N;;, with capacity T;;, satisfies the token number limitation in our
model (constrain (3)), and the arc from each S;; to ¢ with capacity 1 guarantees
that each sub-stream can be scheduled to one neighbor at most.

Tit
//' -,
O
ST

N

Ti4\

Fig. 4. Transformation to the max- Fig. 5. Transformation to the min-
flow problem at peer 4 cost flow problem at peer @

Theorem 1. The unified sub-stream scheduling model at peer i is equivalent to
a max-flow problem.

Proof. Applying the flow balance equations to all internal nodes Ny, Vh € (2;,
and S;;, Vj € I, in Fig. 4, we have

f(s, Nin) = Z f(Nin, Sij),Vh € £2;, (8)

JEL;

f(Sij,t) = Zheﬂif(Nih’Sij)’v‘j e I3;. (9)



Because each sub-stream can be scheduled to at most one neighbor, we have
J(Nin, Sij) = I}, je},;,Yh € 2;,Vj € I;. (10)

Plugging Eq. (10) into Eq. (8) and Eq. (9) and applying capacity constraint on
each arc, we have

f(s, Nip) = Zjenf(Nih, Sij) = Zjeril;:lje;:-bj <Tin,Vh e 2,  (11)

f(Sij,t) = ZheQ-f(Nih’Sij) = Zhegvl}i‘jezj <1,Vjel; (12)

Egs. (11) and (12) are the first two constraints of our sub-stream scheduling

model. Since the capacities in Fig. 4 are all binary integers, the optimal flow on

each arc is either 0 or 1 based on the Integer Theorem [7]. Therefore f(N;p, Sij) =

{0 or 1}, which implies the constraint (4) of our original model is always satisfied.
The equivalence of the two objective functions is shown as follows:

Max) |, f(s:Nin) =Maxy >0 F(Nins Siy) (13)
= MaXZhGQiZjepi I;LJGZJ (14)

The left-hand side of Eq. (13) is the objective function of the max-flow problem.
Eq. (13) holds due to Eq. (8). If we apply Eq. (10) into the right-hand side of
Eq. (13), we obtain Eq. (14), which is the objective function of our model. Thus,
these two objective functions are equivalent. Based on proposition 1 and
theorem 1, the sub-stream scheduling in existing systems basically
solves one particular max-flow problem.

3 Min-cost flow scheduling

As shown in the proof of Proposition 1, there is no token limit imposed on
GridMedia and CoolStreaming+. Without any consideration of load balancing,
push-neighbor switching may incur as a direct consequence, which leads to in-
creased redundant video download. The corresponding max-flow problems of all
three existing systems usually have multiple optimal solutions. Since qualified
neighbors are not differentiated in all three systems, they randomly select any
optimal solution to schedule sub-streams. In practice, these qualified neighbors
do not have the same network condition. In this section, we propose the min-cost
flow scheduling scheme with the consideration of peer heterogeneity.

The tree-based streaming can achieve high throughput and low overhead
when the system is stable. However, it is not able to cope well with a dynamic
network. Since the throughput and overhead of the hybrid system highly depends
on the sub-streaming scheduling component, a good hybrid system should adapt
to peer churn quickly. LStreaming+ achieves this adaptability via the min-cost
flow scheduling module. This module works periodically and has the ability to
respond to network dynamics and schedule sub-streams to combat the network



fluctuation. Since sub-stream scheduling is triggered periodically in LStream-
ing4, each 7, ¢ = 1,2,..., in Fig. 1 is set to be a constant 7. We assign a
weight for each neighbor on sub-stream scheduling in LStreaming+. The weight
is determined as follows:

— Each LStreaming+ peer examines the download performance from push-
neighbors every 7 time and adjusts the previous scheduling based on neigh-
bors’ download performance in the previous 7 time. For example, let S = 15,
B =30 and 7 = 10. Ideally, 7 x B/S = 10 x 30/15 = 20 chunks should be
downloaded for one sub-stream over 7 time. We define a threshold to be half
of this ideal value. If the number of the downloaded chunks in sub-stream
j from neighbor h in the previous 7 time is larger than this threshold, peer
i sets the weight for this neighbor to be W,fbj = x. This implies that peer
i allows neighbor h continuing to push chunks in sub-stream j during the
next 7 time.

— For some sub-streams, if the chunk download threshold is not exceeded,
they need to be scheduled to another neighbor in the next 7 time. In the
max-flow model, if one sub-stream of peer i can be downloaded from multiple
neighbors, we do not differentiate among the qualified neighbors. However, in
LStreaming+, if neighbor A has more fresh chunks in sub-stream j compared
with another qualified neighbor, peer ¢ assigns a larger weight for neighbor
h. We denote the largest chunk number already available for sub-stream j
at peer h (known from the exchanged information) as Pj ; and the starting
chunk number needed by peer i for sub-stream j as @;;, respectively. Since
Pf;j represents the chunk availability of sub-stream j from neighbor h, we
set the weight as W ;= P} ; — Qi; to differentiate the qualified neighbors.
A larger P} ; — Qij value shows that more available chunks for sub-stream j
can be obtained from neighbor h.

— In summary, the weight (W,ij, Vh € §2; and Vj € I;) for each neighbor of
peer 7 is determined as follows:

Wi — { X if the chunk download threshold is exceeded, (15)
hi | P — Qij, otherwise.

We aim to maximize the total weights on sub-stream scheduling with the
objective function Max Y, ;e Wi T} i€},

In practice, it is difficult to obtain the exact value of Ly; between two peers h
and 4, where Ly; is the end-to-end bandwidth from peer h to peer i. In LStream-
ing+, each peer estimates the token number for each neighbor and then conducts
the sub-stream scheduling. Suppose peer i has |2;]| neighbors. Their achievable
uploading bandwidth in the previous 7 time (by counting the number of re-
ceived chunks) to peer i are denoted as vy,...,v|q,|. Since the total number of
sub-streams to be scheduled is |I5], in LStreaming+ the token number for each
neighbor is proportionally assigned based on its individual performance in the
previous 7 time. Let T;, denote the estimated token number for neighbor h by



peer i, and it is calculated as follows:

T = {gihl x |I;-|W Vh € 1. (16)
f=1"
Then the sub-stream scheduling problem in LStreaming+ is formulated as fol-

lows:

Max Zhenizjenw,gjfgje;j, (17)
s.t. Zheﬂil}i]’jezj S 1).7 S Fia (18)
Zjenlleje;lj < Tin, h € £, (19)
ep; €{0,1}, h e 2;,j € I. (20)

This model has similar constraints as the max-flow model in Section 2. Nev-
ertheless, the sub-stream scheduling in LStreaming+ needs to be transformed
into an equivalent min-cost flow problem, which can be solved in polynomial
time. Let a flow network G = (V, E) be a directed graph in which each arc
(m,n) € E is associated with a cost ¢(m,n). The lower bound [(m,n) and the
upper bound u(m,n) of each arc capacity denote the minimum and maximum
amount of flows that can pass through the arc. The min-cost flow problem can
be written as follows:

Min Zv(m’n)evc(m, n)f(m,n), (21)
s.t. Zn:(m,n)eEf(m,n) - Zn:(mm)eEf(n,m) =b(m),Ym eV, (22)

Z'V‘ b(k) =0, (23)

k=1
I(m,n) < f(m,n) <u(m,n),¥(m,n) € E. (24)

In our problem, we set b(m) = 0, Ym € V, and I(m,n) = 0, V(m,n) € E. The
time complexity for solving this classic min-cost flow problem is bounded by
O(|V]|E|(log(log U)) log(|]V|C)) [8], where U and C are the largest values of the
arc capacity and the arc cost, respectively.

Theorem 2. The scheduling in LStreaming+ is equivalent to a min-cost flow
problem.

Due to page limitation, the proof and the transformation algorithm are omit-
ted here. We use Fig. 5 to illustrate this transformation for the example in Fig. 3
intuitively. Each arc in Fig. 5 is characterized by two parameters: arc capacity
and cost. We generate internal nodes N;;, and S;;, arcs and arc capacities similar
to the max-flow model. The major difference between this min-cost flow problem
and the max-flow problem is on the arc cost along each arc. In the problem trans-
formation, only the arc between NN;; and S;; may have nonzero cost, because
only these arcs are related to each decision variable e, ;in the objective function
Eq. (17). Minimizing the total negative costs is equivalent to maximizing the
total positive weights.



4 Performance Evaluation

In this section, we evaluate the accuracy of the proposed max-flow model and
the streaming performance of LStreaming+ in comparison to GridMedia (GM),
LStreaming (LS) and the generic random mesh-pull scheme (MP) using sim-
ulations. We developed a discrete-event simulator coded in C++ to simulate
the system behavior at the chunk level. The simulator implements the maz-flow
scheduling module and LStreaming+. In LStreaming+, we utilize the “CS2”
library [9] to solve min-cost flow problems. To evaluate the accuracy of our
max-flow model for characterizing the sub-stream scheduling of existing sys-
tems, we replace the original sub-stream scheduling modules of GridMedia and
LStreaming by using the max-flow scheduling module instead, and compare the
performance of each modified system with its original system, respectively.

To achieve a realistic latency setup, the end-to-end latency between peers is
randomly selected from the real-world node-to-node latency matrix (2500x2500)
[10]. The playback rate of the stream is 300kbps and the default neighbor number
is 15. All peers are DSL users with three types of upload capacities of 1Mbps,
512kbps and 128kbps, and with the corresponding download capacities of 3Mbps,
1.5Mbps and 768kbps. The fractions of these three types of peers are 10%, 50%
and 40%, respectively. The upload capacity of the server is 900kbps. We simulate
a 15-minute streaming session. There are 10000 peers joining the channel in total.
During 5 time intervals of [0, 50]sec, [200, 250]sec, [400, 450]sec, [600, 650]sec and
[800, 850]sec, 20% of total 10000 peers join the channel, respectively. The joining
time of peers is uniformly distributed within each time interval. Among all peers,
5% of them do not leave after joining. The viewing durations for the remaining
95% peers are uniformly distributed from 190 seconds to 210 seconds. With the
setting above, we want to simulate a dynamic network in which peer churn occurs
during the entire simulation time.

4.1 Simulation results

I votal download ratio
1151 The optimal value of [ Effective download ratio
, | effective download ratio

N
a

N
o

.
ol

"
S

@

Average Number of
Push-neighbor Switching (per peer)

o

0 100 200 300 400 500 600 700 800 900
Duration (sec)

Fig. 6. Push-neighbor switching Fig. 7. Download performance



Push-neighbor switching We characterize push-neighbor switching using the
average number of switching push-neighbors when peers conduct sub-stream
scheduling. In our previous analysis, duplicate chunks are downloaded mainly
due to push-neighbor switching. With the same simulation settings including
networking topology, link latency and peer churn, we observe that the modi-
fied system with the max-flow scheduling module (GM-MF or LS-MF) performs
almost the same as its original system (GM or LS). This shows that the maz-
flow model captures the behavior of sub-stream scheduling schemes in existing
systems very well. In addition, Fig. 6 shows that LStreaming+ has the least
push-neighbor switching, which implies that LStreaming+ incurs the smallest
amount of video redundancy overhead among all systems.

Download performance We define two traffic ratios to characterize the down-
load performance. The total download ratio is the ratio between the total down-
load rate and the video playback rate. The effective download ratio is the ratio
between non-duplicate video download rate and the video playback rate. The ef-
fective download ratio characterizes the useful video download of the system. In
Fig. 7, we observe that the modified streaming systems and the original systems
experience almost the same total download ratio and effective download ratio.
In Fig. 7, the effective download ratios of all hybrid systems are higher than that
of a generic random pull-based system (denoted as mesh-pull (MP) in Fig. 7).
In addition, the effective download ratio of LStreaming+ is closer to the optimal
value 1 compared with GridMedia and LStreaming. LStreaming+ outperforms
all other schemes in terms of the quality ratio.

012
I Total overhead ratio 1.05
[ signaling overhead ratio
01 [ Video redundancy ratio
1k
© 008
g £
= S 0.95
& o.06 =
£ <
5} ]
> & o9
O o.04
002k 0.85
0 0.8
100 200 300 400 500 600 700 800 900
Duration (sec)
. . . .
Fig. 8. Overhead breakdown Fig. 9. Streaming quality

Overhead breakdown The total overhead traffic consists of signaling mes-
sages and redundant video chunks. In pull-push systems, the redundant video
download is a potential problem. Video chunks usually have much larger size
than signaling packets. If the number of duplicate video chunks is large, redun-
dant video traffic becomes the major contributor in the total overhead traffic. In



Fig. 8, each pair of the modified system and its original system suffers from al-
most the same amount of video redundancy ratio, which provides another good
indication that the max-flow model for the existing systems is very accurate.
From Fig. 8, we observe that the total overhead ratios of mesh-pull, GridMe-
dia and LStreaming reach 9.7%, 11.4% and 8.0%, respectively. Nevertheless, the
total overhead of LStreaming+ is only 6.4%. Compared with mesh-pull, Grid-
Media and LStreaming, the overhead reduction of LStreaming+ is 34.0%, 43.9%
and 20.0%, respectively. Through Fig. 8, it is clear that the video redundancy is
the major contributor to the total traffic overhead in hybrid systems. GridMedia
and LStreaming suffer from video redundancy as high as 8.9% out of the 11.4%
total overhead and 5.4% out of the 8.0% total overhead, respectively. In contrast,
LStreaming+ achieves a much smaller video redundancy ratio, only 3.8% out of
the 6.4% total overhead.

Quality ratio We define the quality ratio as the ratio between the number of
chunks, which has been played back, and the number of chunks which should be
played back up to the current time. Fig. 9 shows the quality ratio of LStreaming+
outperforms the other two hybrid systems on average during the whole watching
session. In particular, when peer churn occurs, LStreaming+ suffers the least
and recovers the most quickly, compared with the other two systems.

— % — HKUST Avg. value (0.9957) of 0.0¢| I Total overhead ratio
O - 3 UNIVERSITIES Quallit ratio iI‘l HKUST casel [ signaling overhead ratio
y 0.07| ] Video redundancy ratio

o sy
L
<] A?g
i
0.9F " 1 0.02
* Avg. value (0.9650) of Quality 001
ratio in 3 UNIVERISTIES case

0.85; 0

500 1000 1500 2000 3 UNIVERSITIES
Duration (sec)

Quality ratio
o
&

Overhead ratio
o o
8 8

Fig. 10. Quality of the prototype Fig.11. Overhead of the prototype

4.2 Prototype experiments

Our experiments are first conducted on the HKUST campus network. Then, the
experiments are conducted among three universities in Hong Kong, including
HKUST, HKU and CUHK. In each experiment, 100 peers join a video channel
with a 300kbps playback rate. At the application level, we manually limit the
upload capacity of each peer with the same upload capacity distribution used
in the simulation. As shown in Fig. 10, the quality ratio almost maintains at
the optimal value 1 during the whole watching session on the campus network.



The quality ratio fluctuates in the inter-university experiments especially at the
initial time. However, throughout the period of the experiments, there is only
slight visual impact for a small number of peers. We also classify the traffic
overhead in the prototype experiments in Fig. 11. Note that the total overhead of
the campus experiments is as small as 3.35%. Even if in large-scale networks, the
overhead ratio is merely 6.71%. Fig. 11 shows LStreaming+ effectively reduces
the overhead and at the same time achieves a very good streaming performance.

5 Conclusion

In this paper, we propose a max-flow model for unifying the sub-stream schedul-
ing problem in pull-push hybrid P2P streaming systems. We show that the
sub-stream scheduling scheme in existing hybrid streaming systems including
GridMedia, CoolStreaming+ and LStreaming, can be formulated into a special
case of our proposed max-flow model. This max-flow model leads to useful in-
sights for developing a min-cost flow model for scheduling sub-streams to better
utilize heterogenous peers. We implement this min-cost flow model in a proto-
type system, LStreaming+. The accuracy of the max-flow model and the system
performance of LStreaming+ are evaluated using extensive simulations. The
prototype experiments also demonstrate that LStreaming+ achieves excellent
streaming performance with significantly reduced traffic overhead.

References

1. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A measurement study of a large-
scale P2P IPTV system. IEEE Trans. on Multimedia 9(8) (Dec. 2007) 1672-1687

2. Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the power of pull-based
streaming protocol: Can we do better? IEEE JSAC 25(10) (Dec. 2007) 1640-1654

3. Li, B., Xie, S., Keung, G., Liu, J., Stoica, 1., Zhang, H., Zhang, X.: An empirical
study of the Coolstreaming+ system. IEEE JSAC 25(10) (Dec. 2007) 1627-1639

4. Li, Z., Yu, Y., Hei, X., Tsang, D.H.K.: Towards low-redundancy push-pull P2P
live streaming. In: Proc. ICST QShine, Hong Kong (July 2008)

5. Li, Z., Yu, Y., Hei, X., Tsang, D.H.K.: Towards low-redundancy push-pull P2P
live streaming. In: Proc. ACM SIGCOMM Demo, Seattle, USA (Aug. 2008)

6. Liu, Z., Shen, Y., Ross, K.W., Panwar, S.S., Wang, Y.: Substream trading: Towards
an open P2P live streaming system. In: Proc. IEEE ICNP, Orlando, USA (Oct.
2008)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithm.
2nd edn. The MIT Press (2001)

8. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill
(1995)

9. Goldberg, A.: Network optimization library http://www.avglab.com/andrew/
soft.html.

10. Wong, B., Slivkins, A., Sirer, E.G.: Meridian: a lightweight network location service
without virtual coordinates. In: Proc. ACM SIGCOMM. (Aug. 2005) 85-96



