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Abstract. Internet Coordinates Systems (ICS) are used to predict In-
ternet distances with limited measurements. However the precision of an
ICS is degraded by the presence of Triangle Inequality Violations (TIVs).
Simple methods have been proposed to detect TIVs, based e.g. on the
empirical observation that a TIV is more likely when the distance is
underestimated by the coordinates. In this paper, we apply supervised
machine learning techniques to try and derive more powerful criteria to
detect TIVs. We first show that (ensembles of) Decision Trees (DTs)
learnt on our datasets are very good models for this problem. More-
over, our approach brings out a discriminative variable (called OREE),
which combines the classical estimation error with the variance of the es-
timated distance. This variable alone is as good as an ensemble of DTs,
and provides a much simpler criterion. If every node of the ICS sorts its
neighbours according to OREE, we show that cutting these lists after a
given number of neighbours, or when OREE crosses a given threshold
value, achieves very good performance to detect TIVs.

Keywords: Internet Coordinate System, Triangle Inequality Violation,
Supervised Learning, Decision Trees

1 Introduction

Internet Coordinate Systems (ICS) have been widely used in large-scale network
applications such as peer-to-peer file sharing [1], dynamic server selection [2]
and overlay multicast [3]. The success roots in the embedding of Internet nodes
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into a metric space or a coordinate system. When the coordinates of the nodes
are computed, the prediction of the distances (delays) between two nodes is a
straightforward application of a distance function where no explicit communica-
tion between them is required. This significantly reduces the overhead of active
probing and largely improves the efficiency of the network.

Most ICS algorithms collect, at each node, a small number of distance mea-
surements and optimize the differences between the distances computed from
the estimated coordinates of the nodes and the measured distances [4–6]. As
a result, all nodes fall into a metric space where the triangle inequality holds.
However, in reality, the triangle inequality is often violated due to the Internet’s
structure and routing policies. In [7–10], it has been shown that the violations
of triangle inequality (TIVs) in the Internet delay space are not rare and that
their impacts on ICS are not negligible. Indeed, a TIV indicates the existence of
a shorter path from the source node to the destination node via an intermediate
node than a direct path.

The importance of building TIV-aware systems has been addressed in e.g. [9–
11]. In [11], by observing that TIV edges are often underestimated to some
degree, a TIV alert mechanism was incorporated into ICS’s neighbor selection
procedure, which improved the precision of distance prediction. In our previous
works [9, 10], we confirmed the significance of the impact of TIVs on ICS and
proposed a different mechanism based on the observation that the variance of
TIV edges is often smaller than that of non-TIV edges. A comparative study
showed that the two mechanisms performed inconsistently on different networks:
sometimes ours is better, sometimes the mechanism in [11] is better. This makes
us wonder if there exists more discriminative and more consistent variables for
TIV detection.

This paper introduces a systematic approach to detecting TIVs in ICS. Unlike
previous heuristics-based work, we look for discriminative variables by using
supervised learning methods, the use of which has become a trend in the field
of networking [12, 13]. In particular, we collect training data from popular ICS
algorithms such as Vivaldi [5] and extract as many variables of different kinds as
possible. A classical supervised learning method, namely decision tree, is then
applied. A discriminative variable (called OREE) is found that outperforms
other competing variables consistently. The learned OREE has a clear physical
meaning that explains its discriminativeness. Due to the diverse characteristics
of the TIV distributions, the decision trees learned on different networks have
large variations. We then design a simple distributed algorithm for TIV detection
based on OREE. Our detection algorithm is tested on different networks and
convincing results are achieved.

The rest of the paper is structured as follows. Section 2 analyzes the char-
acteristics of TIVs in Internet delay space. Section 3 introduces the supervised
learning of OREE, the discriminative variable, for TIV detection, including the
collection of training data, the building of decision trees and some experiments
and observations. Section 4 presents a distributed detection algorithm based on
OREE. Section 5 concludes our approach and discusses future work.



2 TIVs in Delay Space

Let A, B and C be three nodes that form a triangle. Denote d(X, Y ) the distance
or delay between X and Y . Without loss of generality, d(A, B) is the largest
edge in the triangle. Then, we claim that the triangle inequality is violated if
d(A, B) > d(B, C) + d(A, C), in short, TIV. In case of TIV, the largest edge
d(A, B) is referred to as the TIV base. Two criteria are defined to model the
severity of TIVs:

absolute severity: Ga = d(A, B) − (d(A, C) + d(C, B)),

relative severity: Gr =
d(A, B) − (d(A, C) + d(C, B))

d(A, B)
.

These criteria also reflect the possible gains one could achieve by detecting
TIVs. For instance, Ga = 10ms suggests that, instead of the direct path from
A to B, taking a path via C could possibly be 10ms faster. Therefore, larger
(positive) Ga and Gr mean not only more severe violation but also more possible
gains and hence, are more interesting. In this paper, we focus on TIVs that satisfy
both Ga > 10ms and Gr > 0.1 and consider the others as non-TIV.

It is expected that the distribution of TIV characteristics vary in different
networks. We verify it by analyzing two network data sets, P2psim of 1740
nodes [14] and Meridian of 2500 nodes [15]. To this end, the whole range of the
delay space is divided into equal bins of 5ms and the TIV bases that fall into
each bin are counted and normalized. Figure 1 shows the resulting histograms of
delays both for TIVs and non-TIVs in P2psim and Meridian respectively. The
distributions are quite different. In Meridian, it is sharply peaked while it is
much more spread in P2psim. This large difference could potentially mean that
it would be difficult to learn a general model for TIV detection that works well
over different networks. Our experiments in the next section will try to answer
that question.
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Fig. 1. TIV and non-TIV distributions in P2psim and Meridian. 42% of the edges in
P2psim and 83% in Meridian are TIV bases.



3 Finding Discriminative Variables for TIV Detection

Our objective is to find variables that are consistently discriminative for TIV
detections regardless of the networks. Supervised learning methods are promising
techniques that allow us to achieve this goal.

Generally speaking, supervised learning methods take N input/output pairs,
< x1, y1 >, < x2, y2 >, ..., < xN , yN >, where xi is the vector of the input vari-
ables and yi is its output value or label, and try to reveal the relationships be-
tween the inputs and the outputs. In other words, the goal of supervised learning
is to learn a function f(x) from a set of training data that predicts, at best, the
output y for any new unseen input x.

This section details the use of a particular supervised learning method,
namely decision tree, in finding discriminative variables for TIV detection.

3.1 Collection of Training Data

In this paper, we focus on a classical ICS algorithm, Vivaldi [5], which approx-
imates a network by a system of springs and seeks to minimize its energy. The
minimization is fully distributed and iteratively done at each node. Following [5],
each node communicates with 32 neighbors, among which 16 are the nearest
neighbors and the other 16 are randomly selected. In each iteration, each node
updates its own coordinates by minimizing the embedding error with respect
to its neighbors. After some iterations depending on the complexity of the net-
work, the coordinates of the nodes become stable, i.e., the embedding error of
the whole network is smaller than a threshold, with a small amount of jitter.

To collect training data, we ran Vivaldi on P2psim and Meridian respectively
and recorded the coordinates of the nodes, after they become stable, at K differ-
ent times or ticks. Unless otherwise stated, K will be fixed to 100 in all our exper-
iments. Its effect will be discussed in Section 3.3. From the coordinates obtained,
we computed the time-varying distances between each pair of neighboring nodes.
We denote the measured distance by d and the estimated distance by d̂. Thus,
for each edge, we have {d, d̂1, d̂2, . . . , d̂K}. For the K estimated distances, we

further calculated some statistics including d̂max = max{d̂1, . . . , d̂K}, d̂min =

min{d̂1, . . . , d̂K}, d̂mean = mean{d̂1, . . . , d̂K}, d̂median = median{d̂1, . . . , d̂K}

and d̂std = standard deviation{d̂1, . . . , d̂K}.
The input variables to the machine learning algorithm consist of various

combinations of these statistical variables and the measured distances. Note
that the input variables are normalized in different ways in order to get rid of
the influence of particular network conditions. Currently, 64 input variables for
each edge are used. A few examples are

d̂max − d̂min

d
,

d̂mean − d̂median

d
,

d̂mean − d

d̂max

,
d̂mean

d̂std

,
d̂K

d
,

d̂std

d
.

Note that the last two variables, d̂K

d
and d̂std

d
, are equivalent to those used in [11]

and [10] respectively. The former, d̂K

d
, is a measure of relative estimation error,



denoted by REE, while the latter, d̂std

d
, is the standard deviation of the relative

estimation error, denoted by std REE.
For supervised learning, the outputs or labels of the edges are needed. Here,

the outputs are simply TIV or non-TIV, which can be easily obtained from
the measured distances. To assess the effect of the random neighbor selection
procedure in Vivaldi, we ran the simulation on each network for 10 times. In
each simulation, we collected 1740× 32 = 55680 edges from P2psim and 2500×
32 = 80000 from Meridian, among which average 23% and 42% are TIV bases
respectively. Note that the numbers of TIV bases vary only slightly in different
simulations.

3.2 Decision Tree

Decision Tree (DT) is one of the most popular supervised learning algorithms.
Each decision tree is a classifier in the form of a tree structure, where each in-
terior node specifies a binary test carried on a single input variable and each
terminal node is labeled with the value of the output. In the learning phase,
a decision-tree builder recursively splits the training samples with binary tests,
trying to reduce as much as possible the uncertainty about the output classifi-
cation in the resulting subsets of the samples. The splitting of a node is stopped
when the output in it is homogeneous or some other stopping criterion is met.
During learning, a byproduct is the ranking of the input variables according
to their importance, which is often used to find discriminative variables. In the
classification phase, we start from the root of the tree and move through it until
a terminal node, where the classification result is provided. See [16] for more
details about decision trees.

In many applications, single decision trees are greatly improved by ensemble
methods like boosting or random forests that combine the predictions of several
trees (see e.g. [13]). However, in our experiments, we did not notice any signifi-
cant improvement with these methods. We thus restrict our discussion below to
standard (single) decision trees.

3.3 Experiments and Observations

In this paper, we learned our decision trees using a data mining software called
PEPITO [16] which integrates most popular machine learning algorithms. The
training data collected in Section 3.1 was randomly divided into disjoint learning
and test sets of roughly equal sizes. In other words, we used half of the data to
build the trees and the other half to evaluate the trees. Two different trees were
separately built for P2psim and Meridian, shown in Figure 24. There are a few
interesting observations to be noticed.

4 Note that the decision trees learned are essentially invariant from one simulation to
another. The invariance can be extended to other results in this paper. Thus, unless
otherwise stated, the results of all the experiments in the paper are derived from one
simulation.



(a) P2psim (b) Meridian

Fig. 2. Top three levels of the decision trees built on P2psim and Meridian data set. The
colour in the rectangular boxes reflects the proportions of TIV and Non-TIV classes.

The most discriminative variable. By examining the root nodes of both

trees in Figure 2, it can be seen that the first test is on the same variable, d̂std−d

d̂mean

,

which appears to be the most discriminative. For the reason that will be clear in
the next section, we name this variable OREE. On both trees, when the value
of OREE is smaller than the cut point, the edge is more likely to be a TIV base,
and vice versa. Figure 3(a) and 3(c) show the ROC 5 curves of OREE, REE and
std REE. Note that the ROC curve of OREE is consistently the highest while
the other two variables perform inconsistently: REE is more discriminative on
P2psim but less on Meridian than std REE. Figure 3(b) and 3(d) show the mean
ROC curve of OREE and the covariances at some selected thresholds obtained
over the 10 simulations. These figures clearly highlight that the results are very
stable from one simulation to another.

The analysis of the most discriminative variable. The most discrimina-

tive variable d̂std−d

d̂mean

consists of 2 parts, d̂std

d̂mean

and d

d̂mean

. The former can be

considered as a relative oscillation measure and the latter is a relative error
measure. Thus, this variable is named by OREE representing Oscillation and
Relative Estimation Error. Intuitively, the oscillation of the estimated distances
and the embedding error are all the information one can extract and exploit
for TIV detection. In fact, the ROC curves of OREE are almost identical to
those of the decision trees in both networks, shown in Figure 3(a) and 3(c).
This suggests that the other variables provide little extra information so that
their corresponding nodes in the trees can be safely pruned with no performance
degradation. Figure 4 shows the TIV and non-TIV distributions of P2psim and
Meridian with respect to OREE. It can be seen that the overlap of the two

5 A ROC (Receiver Operating Characteristic) curve is a graphical plot of the true
positive rates (TPR) versus the false positive rates (FPR) for a binary classifier as
its discrimination threshold is varied [17].



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

Decision Tree
REE
Std REE
OREE

(a) P2psim

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

(b) 10 simulations on P2psim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

Decision Tree
REE
Std REE
OREE

(c) Meridian

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

(d) 10 simulations on Meridian

Fig. 3. ROC curves of the decision trees, obtained by varying the threshold of the
probability of TIV, and of three variables including OREE, REE and std REE, ob-
tained by thresholding the values of the corresponding variables. The right figures show
the mean ROC curves of OREE and the covariances at some selected thresholds (the
covariance ellipses are scaled by 3 times for the sake of visibility).
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Fig. 4. TIV and non-TIV distributions in P2psim and Meridian with respect to OREE.
It can be seen that detecting TIVs in Meridian is much easier than in P2psim and that
there is a shift between the optimal cut points for the two networks.
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Fig. 5. ROC curves of using different numbers of ticks to compute OREE.

distributions in P2psim is much larger than in Meridian, which is the reason
why the ROC curves in Meridian are much higher than those in P2psim.

How many ticks to be used. The parameter K, i.e. the number of ticks that
are used to compute OREE, might affect the accuracy of our model. Figure 5
shows ROC curves obtained with different values of K. It can be seen that a
noticeable improvement can be achieved even when K = 2. With a larger K,
the statistical variables, mean and standard deviation, become more stable and
the performance of the detection is improved. However, no or minor differences
are obtained when K goes from 50 to 100, showing that the optimal value of K

should probably be smaller than 100. We nevertheless set K = 100 in all our
experiments since it doesn’t cause any side effect.

The variations of the decision trees. The two decision trees in Figure 2
have non-negligible variations. Even for the two root nodes that correspond to
the same variable, a shift is found between the optimal cut points in them, which
introduces errors when the tree learned on one network is applied to another.
Table 1 shows the error rates when learning and evaluating on the same data set
and on different data sets. Note that the first row specifies the data sets on which
learning is carried while the first column gives the data sets on which evaluation
is applied. We see that the variability of the trees indeed leads to high error rates
in cross-testing. The tree learned from combining data of both networks gives
better average results but is still inferior to the trees learned on each particular
network. In practice, even if we can collect data and learn a specific classifier for
each network, the TIV distribution in the network often evolves in time due to
e.g. changes in routing or network upgrade. The next section introduces a simple
but effective method for distributed TIV detection based only on OREE.



Table 1. Error rates of applying decision trees on P2psim and Meridian data sets

`
`

`
`

`
`

`
`

`
`

`

Test Set
Learning Set

P2psim Meridian P2psim+Meridian

P2psim 15.6% 43.7% 20.5%

Meridian 28.5% 8.4% 9.4%

4 Distributed TIV Detection based on OREE

We aim to embed the TIV detection algorithm into the ICS algorithm, Vivaldi in
our case, so that the detection can be done at each node, i.e., each node classifies
the edges with its 32 neighbors into TIV bases and non-TIV based on OREE
variable.

4.1 Detection Algorithm

Recall that when the value of OREE is smaller than a cut point, the edge will
be detected as TIV, and vice versa. This makes us guess that the probability of
an edge being a TIV increases when the value of OREE decreases. To verify it,
we sort the 32 edges connected to each node by the value of OREE in ascending
order and count the number of TIV bases appearing at each position from 1 to
32. These numbers are normalized by the total number of nodes so that we have
the proportion of TIVs at each position. Ideally, we would like the proportions
of TIVs at one side to be close to 1 and at the other side to 0. Figure 6 shows
the proportion of TIVs at each position sorted by OREE, REE and std REE

respectively.
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Fig. 6. Proportions of TIVs at each ordering position sorted respectively by OREE,
REE and std REE on P2psim and Meridian data sets. It can be seen that the TIV
proportions of OREE are larger on the left side and smaller on the right side, which
further justifies the efficiency of OREE for TIV detection.



(a) P2psim (b) Meridian

Fig. 7. Roc curves of thresholding OREE and threshold n on P2psim and Meridian.
The circles, in the upper left corner, represent the upper bounds of the detection rates
by choosing an optimal, different threshold for each node.

It is clear that the proportion of TIV decreases monotonously with the order-
ing position. For OREE, the probability drops below 0.5 at the 6th position for
P2psim and at the 14th position for Meridian. This suggests a simple detection
method that, at each node, after the 32 edges are sorted in ascending order, fixes
a cut point at the nth position, where the probability of TIV at the nth position
is larger than a pre-defined threshold that should be at least above 0.5.

4.2 Experiments

We first compared our detection algorithm that thresholds n with an alterna-
tive method that directly thresholds the value of OREE. A ROC curve can be
obtained for either method by varying its threshold, shown in Figure 7. It can
be seen that both methods work identically well as their ROC curves coincide,
which is not surprising as the difference between them is subtle. In a distribu-
tive manner, a common fixed threshold on the value of OREE is equivalent to
a different threshold on n chosen at each node. On the other hand, a common
fixed threshold on n for all nodes is equivalent to a different threshold on the
value of OREE at each node. In a sense, these are dual methods.

The two methods share a common problem. For decentralized detection, the
optimal fixed cut point either for the value of OREE or for n can’t be found
out easily. Nevertheless, the advantages of tuning n are twofold. First, n has a
fixed range of [1, 32] while the value of OREE is theoretically unbounded. Then,
from the ROC curves in Figure 7, it can be observed that the detection rates are
influenced by n more evenly than by the value of OREE. Figure 8 shows the
plot of recall versus precision by varying n. It can be seen that tuning n affects
recall and precision in the opposite directions. A large n improves the recall but
decreases the precision, and vice versa. In practice, the optimal n should be set
to trade the precision for the recall in order to meet the specific requirements
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Fig. 8. Precision versus recall of our detection algorithm by thresholding n. Precision
is the ratio between the true positive and the total positive detected by the classifier,
and recall is another name of true positive rate.

of different applications. For instance, when the cost that a non-TIV edge is
erroneously detected as a TIV edge is large, a conservative, small n should be
used, and vice versa.

Since we know whether an edge is TIV or non-TIV in the experiments, it is
possible to calculate the optimal cut point at each node. To test this idea, we
tried out, for each node, all possible n from 1 to 32 and recorded the particular
n that maximizes the information gain [18]. Although these optimal cut points
can’t be computed in practice, they give the upper bound of the detection rates
by using OREE, plotted as a circle in Figure 7, and show how much room we
have to further improve our detection algorithm.

5 Conclusions and future work

This paper presents a novel approach to detecting triangle inequality violations
in Internet Coordinate Systems. The strength of our approach lies in the use of
supervised learning methods, particularly decision trees, that successfully find
a discriminative variable for TIV detection. A simple but effective method is
developed that detects TIVs at each node based on the learned variable. This
allows the detection algorithm to be embedded in the ICS algorithms.

One shortcoming of the detection algorithm is that a fixed cut point needs
to be set for all nodes. Clearly, the performance of detection can be further
improved by choosing an optimal cut point for each node autonomously. Another
limitation is that the TIV detection is treated as a classification problem that
classifies edges between nodes as TIV or non-TIV. In practice, it would be more
useful to reason on the severity of the violations, which is a continuous value
instead of a discrete level. This requires to solve a regression problem, which is
expected to be more difficult than the classification problem addressed in this
paper.
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