
Congestion and Flow Control in the Context of
the Message-oriented Protocol SCTP

Irene Rüngeler1, Michael Tüxen1, and Erwin P. Rathgeb2

1 Münster University of Applied Sciences
Department of Electrical Engineering and Computer Science

Bismarckstrasse 11
D-48565 Steinfurt, Germany

{i.ruengeler,tuexen}@fh-muenster.de
2 University of Duisburg-Essen

Ellernstrasse 29
D-45326 Essen, Germany

erwin.rathgeb@iem.uni-due.de

Abstract. Congestion and flow control are key mechanisms used to reg-
ulate the load in modern packet networks. The new IETF Stream Con-
trol Transmission Protocol (SCTP) inherited these algorithms from the
Transmission Control Protocol (TCP). Although the principles used are
the same, some issues arise from the fact that SCTP operates message-
oriented whereas TCP operates byte-stream oriented. SCTP also sup-
ports bundling of multiple small user messages into one SCTP packet.
As a consequence, the overall overhead of an SCTP packet depends on
the user message size and the number of user messages that are bun-
dled into the packet. RFC 4960 defining SCTP does not specify whether
the message specific headers have to be considered when updating the
parameters for congestion control. We will show that neglecting the addi-
tional headers when calculating outstanding bytes can lead to unfairness
towards TCP connections. We will also show that incorrect handling of
the additional memory needed to process each message in the flow control
calculations will lead to an exhaustion of the receiver window resulting
in a huge amount of unnecessary retransmissions. Based on experiments
with the flow control of the SCTP implementations available in several
operating systems, we will identify the issues and analyze them by us-
ing simulations. As a result, we will present solutions that will lead to
fairness towards TCP and reduce the number of retransmissions sub-
stantially. Although we will focus on SCTP, the results are also true for
other message-oriented protocols using bundling.

Keywords: Congestion Control, Flow Control, Message Orientation,
SCTP

1 Introduction

Although the Transmission Control Protocol (TCP) is still the main trans-
port protocol for IP-based networks, the Stream Control Transmission Proto-
col (SCTP) [1] gains more and more importance being integrated in the major



operating systems. In contrast to TCP, SCTP is not byte-stream oriented but
message-oriented. It also supports bundling of multiple small user messages into
one SCTP packet to increase transport efficiency.

In order to prevent congestion, SCTP adopted the window based algorithms
for flow control and congestion control from TCP. Although the mechanisms
seem to be the same for both protocols, the message orientation of SCTP and
thus the data processing on a per message basis requires specific consideration.

In TCP, the header size is relatively small and almost constant (between 20
and 60 bytes depending on the TCP options used). Therefore, it is not consid-
ered for the flow and congestion control computations. In SCTP, however, every
packet requires a common header and an additional header of 16 bytes for each
user message. When bundling several small messages into one SCTP packet, this
additional overhead is variable and can have a significant impact on the flow and
congestion control calculations.

RFC 4960 defining SCTP gives no clear recommendation how to handle the
message overhead, and it is up to the implementer of the protocol, if it is included
in the calculations or not. As a consequence, implementations like Solaris include
the additional headers whereas in FreeBSD they are excluded.

The choice on handling the message overhead in the calculation of the amount
of outstanding (not yet acknowledged) data for congestion control can lead to un-
fairness towards competing TCP connections, if small messages are sent. There-
fore, after a short introduction of the relevant SCTP features in Section 2, we
will investigate this issue in detail in Section 3 by using simulations. We will
show that only including the message headers allows to achieve the mandatory
TCP-friendliness.

Inappropriate handling of the overhead, when calculating the amount of data
a (slow) receiver is still able to accept, can lead to memory exhaustion at the
receiver before the sender is prevented from sending. This leads to packet loss
and consequently to unnecessary retransmissions. Based on experiments with
the implementations of the Linux 2.6.25 kernel, FreeBSD release 7.0 and Solaris
10, we will highlight the flow control issues in Section 4 and propose a way
to implement SCTP flow control such that no unnecessary retransmissions are
triggered. This includes a correct announcement of the receiver window as well
as applying the silly window syndrome (SWS) avoidance and enabling the Nagle
algorithm. The proposal will be validated by simulations.

The simulations in this paper have been performed with the OMNeT++
simulation environment [2] and an extended version of the SCTP simulation
model [3] we contributed to the INET framework [4].

2 SCTP, a Message-oriented Protocol

With the emergence of IP-based networks as universal platform for communica-
tion services the need arose to send telephony signaling data across the internet.
Signaling data feature relatively small single messages that have to be sent reli-
ably and some of them also in the correct sequence. To fulfill this task, the new



protocol SCTP was designed as a reliable message-oriented protocol and finally
adopted by the IETF as official standard in RFC 2960 in 2000. After some
modifications, RFC 4960 [1] adopted in September 2007, is the current SCTP
specification.

An SCTP packet consists of a 12 byte common header and a number of so
called chunks. Each chunk has a chunk header that varies with the chunk type.
The DATA-chunk header is 16 bytes long. Its payload has to be 32 bit aligned.
Each chunk is identified by a transmission sequence number (TSN).

As SCTP is a reliable transport protocol, the arrival of user data has to be
acknowledged. This is handled by SACK-chunks. Here the cumulative TSN ack
parameter indicates the highest TSN received in sequence. The acceptance of
additional chunks is reflected in gap ack blocks. Another important parameter
of the SACK-chunk is the advertised receiver window (arwnd), that announces
the amount of bytes the receiving endpoint can still accept.

More information about other distinctive features of SCTP like multi-homing
or multi-streaming is provided in RFC 3286 [5].

3 SCTP Congestion Control

Congestion control is a mechanism to control the traffic of a network. The goal
is to prevent senders from blocking links by reducing the rate of sending pack-
ets. Although in the next subsections we will focus on the congestion control
mechanism integrated in the examined implementations, the considerations are
also true for other congestion control algorithms and other message-orientated
protocols using bundling.

3.1 The Congestion Window

The congestion window limits the number of bytes the sender is allowed to
transmit before waiting for a new acknowledgement. That means, that not more
than cwnd bytes may be outstanding.

The congestion control mechanism is divided into two phases. The first one
is called slow start. It operates for cwnd values less than or equal to the slow
start threshold, which is set to an arbitrary value (mostly the advertised receiver
window of the peer during association setup) at the beginning of an association.
Slow start is characterized by an exponential increase of the congestion window.
Every time an incoming SACK-chunk announces that the cumulative TSN ack
parameter has advanced and the cwnd is fully utilized, i.e. the number of out-
standing bytes is greater than cwnd, the minimum of the path MTU and the
acknowledged bytes is added to cwnd.

When cwnd exceeds the slow start threshold, congestion avoidance makes
for a linear increase of cwnd. As the growth of cwnd can lead to an excessive
injection of data into the network, packet loss is the consequence. While fast
retransmissions result in halving the congestion window, a timer based retrans-
mission leaves cwnd at the size of the path MTU and in slow start again. Thus
cwnd follows usually a zigzag curve in the lifetime of a connection.



3.2 Counting Outstanding Bytes

As pointed out, cwnd has an influence on the network load and thus on the
throughput. Therefore, the way the outstanding bytes, that limit cwnd, are
counted, is important and should be examined.

Looking at an SCTP packet containing several data chunks, the amount
of user data can vary significantly with the size of the individual chunks (i.e.
messages) assuming the same packet length.

IP
Header

SCTP
Common
Header

Data
Chunk
Header

12 16

User Data

143620

(a) One chunk with 1436 bytes of user data

IP
Header

SCTP
Common
Header

Data
Chunk
Header

12 16

User
Data

Data
Chunk
Header

28 16

User
Data

Data
Chunk
Header

User
Data

28 281620

(b) 33 chunks, each containing 28 bytes of user data

length
[bytes]

length
[bytes]

Fig. 1. SCTP packet format

In Figure 1(b) the packet contains 33 DATA-chunks with 28 bytes of user data
each, adding up to 924 bytes of user data compared to 1436 bytes in the packet
in Figure 1(a). Both packets have a size of 1484 bytes. Whereas the overhead is
just 1 % in (a) the headers add up to 36 % in (b) and can be more than 60 %
for even smaller user message sizes.

Therefore, we have to distinguish between the amount of data that is injected
into the network and the user data that arrive at the application layer. Whereas
the first has a direct impact on the network load, the second results in the
goodput. Both depend on the number of packets (1), that are allowed by the
cwnd.

NoOfPackets =
⌈

cwnd
SizeP

⌉
(1)

Calculating the size of a packet (SizeP ), the headers for IP (HIP ) and SCTP
(HSCTP ) have to be considered as well as the size of the DATA-chunks (SizeChunk ).

SizeP = HIP + HSCTP + CPP · SizeChunk (2)

The number of the chunks per packet (CPP) is calculated as

CPP =
⌊

MTU −HIP −HSCTP

UMS + PUMS + HChunk

⌋
(3)



The average user message size (UMS ) per packet and the corresponding padding
bytes (PUMS ) feature the variable parts of the packets.

SizeP is a variable used for calculating the bytes allowed by the cwnd, and is
not necessarily equivalent to the real size of a packet. If talking about Size+

P , the
bundled chunks are calculated with header Size+

Chunk = UMS + PUMS + HChunk

and for Size−P is Size−Chunk = UMS without header. To compute the number of
bytes that are induced into the network and which arrive at the receiver, four
different cases are possible:

– Network load taking the header into account

Bytes+
SCTP =

⌈
cwnd
Size+

P

⌉
· Size+

P (4)

– Bytes at the application layer if the header had been taken into account

Bytes+
App =

⌈
cwnd
Size+

P

⌉
· CPP · Size−Chunk (5)

– Network load without taking the header into account

Bytes−SCTP =
⌈

cwnd
Size−P

⌉
· Size+

P (6)

– Bytes at the application layer if the header had not been taken into account

Bytes−App =
⌈

cwnd
Size−P

⌉
· CPP · Size−Chunk (7)

After the initialization of a connection, the initial window is specified in [6] to
be

min(4 ∗ MSS, max(2 ∗ MSS, 4380 bytes)) (8)

Assuming a path MTU of 1500 bytes, the maximum segment size (MSS) equals
1460 bytes, which is 1500 bytes minus 20 bytes for the IP header and 20 bytes
for the TCP header. Thus the initial cwnd is 4380 bytes.

As one property of fairness is the evenly distribution of the link bandwidth,
we will look at the behavior of associations (terminology for SCTP connections)
with and without header inclusion in more detail.

3.3 TCP-friendliness

When SCTP was designed, one of the major goals was to guarantee TCP-
friendliness. In RFC 2309 [7] a TCP-friendly or TCP-compatible flow is defined
as follows: ”A TCP-compatible flow is responsive to congestion notification, and
in steady state it uses no more bandwidth than a conforming TCP running under
comparable conditions.”

Since TCP is a byte-stream oriented protocol and typically the Nagle algo-
rithm is not disabled, all packets are filled with enough user data to result in



full sized link layer frames, if sufficient data are provided in the send queue. The
overhead consists of the IP-header and the TCP-header, which is independent
from the user message sizes.

Although SCTP and TCP implementations, which we inspected for the dif-
ferences in the handling of header bytes, are readily available, we will base our
solutions on simulation results. Since we found that some implementations have
bugs substantially influencing the measurement results we decided to use a sim-
ulation for the measurements instead of waiting for the bugfixes to be included
in the implementations.

3.4 The Simulation Scenario

We have used the INET framework [4] as a simulation tool. Although TCP is
integrated in the framework, not all optional TCP features that are common
nowadays, like Appropriate Byte Counting (ABC) [8] or delayed acknowledge-
ments [9], are implemented. However, some of these features are mandatory for
SCTP and are, therefore, implemented in the INET SCTP model, contributed
by us [3]. Hence, a meaningful comparison between SCTP and TCP is not pos-
sible with INET. Nevertheless, we wanted to examine TCP-friendliness for flows
with and without counting the header. Therefore we used an SCTP association
transporting user data messages of 1452 bytes length to mimic the behavior of a
state-of-the-art TCP connection. From a congestion control perspective, such an
SCTP association behaves identical to a TCP connection. When talking about
including or excluding the header, we always refer to the DATA-chunk header of
16 bytes.

The scenario for the simulation consists of an SCTPClient, connected to
an SCTPServer, and an TCP-like client, connected to a TCP-like server. The
connections have to share a bottleneck link between two routers with a data
rate of 1 Mbps. The SCTP client sends data with configurable user message
sizes from 12 to 204 bytes to the SCTP server. The TCP-like client only sends
full packets with a payload of 1452 bytes, the headers are not included. Including
them does not change the result, since the difference is neglectable for large user
messages.

To test the behavior with and without counting the header bytes, the SCTP
simulation has been extended by two parameters, osbWithHeader and padding.
They are boolean variables that can be set to true, if the header and the padding
bytes should be taken into account for the congestion control calculations.Tests
showed that the influence of the padding bytes is not significant. Therefore, all
described simulations were run with either both variables true or false.

3.5 Fairness on the Transport Layer

The SCTP association and the ”TCP-like” association have to share the band-
width equally. This means that all bytes that have been sent over the network
have to be counted, including the retransmitted bytes. To assure that the same
time interval is chosen and the associations have reached a steady state, a start



and stop time can be configured for counting the bytes that have arrived at the
server. The timers were set for the measurement to start after 50 secs and con-
tinue for 400 secs. As the ratio of additional header bytes to the user message size
is only significant for small payload sizes, we chose user messages from 10 to 200
bytes length in 10 byte intervals. Each simulation run was repeated 100 times
with different seeds for the random numbers to ensure validity. Figure 2 shows

0 50 100 150 200
40000

50000

60000

70000

80000

User Message Size @BytesD

T
h
r
o
u
g
h
p
u
t

@B
y
t
e
s

�s
e
c

D

Theory: Bandwidth�2
Long without header, short with header: TCP-like

Long without header, short with header: SCTP

Both without header: TCP-like

Both without header: SCTP

SCTP vs TCP-like

Fig. 2. Throughput on the transport layer

the throughput on the transport layer. The vertical bars represent the 95 %
confidence intervals. It is obvious that the associations that calculate the out-
standing bytes with header share the link, symbolized by the straight black line,
equally, whereas the behavior is not fair for small message sizes, if the header is
not taken into account. The SCTP client utilizes the link much more intensively
than the TCP-like client, thus taking bandwidth from the other connection.

3.6 Fairness on the Application Layer

The behavior on the transport layer has an influence on the throughput on
the application layer (goodput). Therefore, we chose the same setup as in the
last section and counted the bytes that arrived at the user level of the servers
during a predefined time period and calculated the throughput. Figure 3 shows
the graphs when the header is not taken into account. Although the TCP-like
client achieves a higher throughput than the SCTP client using the different
message sizes, the throughput is much lower than it should be. As Figure 2
indicated, the SCTP client takes over so much bandwidth that the TCP goodput



0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

SCTP User Message Size @BytesD

G
o
o
d
p
u
t

@B
y
t
e
s

�s
e
c

D

Theory: 2 TCP connections

Theory: SCTP, Fairness on the transport level

TCP-like without header

SCTP without header

SCTP Hwithout headerL vs TCP-like

Fig. 3. Goodput, without considering the header

is considerably reduced. The two theoretical graphs show the ideal case, where
the SCTP client (lowest graph) and the TCP-like client (top graph) share the
link equally. The zigzagging of the lowest graph results from padding, i.e. the
necessity to add 1 to 3 bytes to the payload to get it 32 bit aligned. The graphs
in Figure 4 illustrate the results, if the header is taken into account. Now the
curves show the desired behavior and fit the theoretical graphs.

As a result it can be postulated, that all implementations of message-oriented
protocols with bundling should take the headers into account, when calculating
the outstanding bytes, in order to be TCP-compliant.

4 Flow Control

4.1 The concept of SCTP flow control

Flow control like congestion control is a mechanism to influence the amount
of data injected into the network. Whereas the congestion control protects the
network from a fast sender, the flow control should prevent the overload of the
receiver.

To achieve this, the advertised receiver window parameter (arwnd) is used
to announce the amount of data that the receiver is willing to accept. During
the setup of the association the hosts exchange their initial arwnd in the INIT
and INIT ACK-chunk. Upon arrival of a DATA-chunk, arwnd is decremented by
the message size. When the data is delivered to the upper layer, arwnd can
be incremented again. When the receiver sends a SACK-chunk to acknowledge



0 50 100 150 200
0

10000

20000

30000

40000

50000

60000

User Message Size @BytesD

G
o
o
d
p
u
t

@B
y
t
e
s

�s
e
c

D

Theory: 2 TCP connections

Theory: SCTP, fairness on the transport level

TCP-like without header

SCTP with header

SCTP Hwith headerL vs TCP-like

Fig. 4. Goodput, if the header is taken into account

data, it includes the actual value of the arwnd. The sender tries to keep track
of the size of its peer’s arwnd by trying to predict the window size. It takes the
value of the announced arwnd as basis, reduces it by the number of outstanding
bytes, i.e. the data that are assumed to be in flight. If the peer’s arwnd reaches
zero, only one DATA-chunk may be sent to probe the window, which is similar
to the Zero Window Probing mechanism in TCP (see [10]). But before zero is
reached the silly window syndrome (SWS) avoidance algorithm (see [11]) has
to be applied. FreeBSD achieves this by announcing a window of 1, if its size
has dropped below two MTUs. During that time data is still accepted, but the
sender is warned to reduce the amount of data.

4.2 SCTP Flow Control in Implementations

As flow control is a major feature of SCTP, it is supported in all available
implementations. The advertised receiver window corresponds to the important
resource receiver window, but the sizes are not necessarily the same. Upon arrival
of a packet, the kernel has to provide memory for the storage of each chunk.
Besides the actual user message, information has to be stored, like the stream
sequence number, the TSN and so on. The amount of memory needed depends
on the operating system.

We examined the change of the advertised receiver window for the Linux
Kernel 2.6.25, OpenSolaris 10 and FreeBSD version 7.0. We distinguished two
scenarios to see whether the implementations behaved in a different way, when
gaps were reported or not. First, the application at the receiver was prevented
from reading. Second, the first Transmission Sequence Number (TSN) was left



out. Thus a gap was created preventing SCTP from pushing data to the upper
layer.

The experiment was performed by using an SCTP testtool [12], to generate
SCTP packets. Test scripts were programmed with the Guile scheme implemen-
tation [13] to create the desired message flow on the sending side.

FreeBSD behaved differently in the two scenarios. In the first one, the arwnd
was reduced by the payload size plus an overhead of 256 bytes, which is equal to
the memory that the kernel allocates for a chunk. In the second case the arwnd
was only decremented by the payload size. For small message sizes a limit of the
maximum number of chunks that were accepted was observed. When this limit
of 3200 chunks was reached, the arwnd was not reduced any more, and newly
arrived packets were dropped. This limit is a means for the kernel to protect
resources. It can be configured by the network administrator, if necessary. Hence,
the number of chunks accepted can be computed by

n = max(3200 ,

⌈
arwnd

256 + UMS

⌉
) (9)

Linux showed the same behavior in both scenarios. The arwnd is always
reduced by the user message size (UMS). For messages smaller than 176 bytes,
only

n =
⌈

arwnd ∗ 2
176 + UMS

⌉
(10)

chunks are accepted. Then the arwnd is not reduced any more.
OpenSolaris decrements the arwnd by the UMS until the next message does

not fit any more. Thus the window is reduced to a value smaller than UMS and
the number of accepted messages equals

n =
⌊
arwnd
UMS

⌋
(11)

Neither in the Linux nor in the OpenSolaris SCTP kernel the silly window
syndrome avoidance principle is implemented.

4.3 Simulation Results

Keeping in mind that all implementations need extra memory to store the re-
ceived user data, and that the arwnd is coupled with the receiver window, we
wanted to examine the effects of the different implementation dependent algo-
rithms and their impact on interoperability. Therefore, we extended the simu-
lation by a parameter for the additional memory needed per chunk. As seen in
Linux and partly in FreeBSD, the receiver reduces its receiver window by the
UMS plus the additional memory, but announces an arwnd, that is only decre-
mented by the UMS. The sender, not knowing that the arwnd does not report
the true value, tries to keep track of its peer’s window and adjusts the value
every time a SACK-chunk arrives.



0 200 400 600 800 1000 1200 1400

1.0

1.5

2.0

2.5

3.0

User Message Size @BytesD

R
a
t
i
o
o
f
t
r
a
n
s
m
i
t
t
e
d

b
y
t
e
s
t
o
d
e
l
i
v
e
r
e
d

b
y
t
e
s

50 B 100 B 150 B 200 B 250 B

Memory needed for incoming message

SWS limit=3000 for client and server

Reading speed = 5000B�s

Fig. 5. Ratio of transmitted to delivered bytes for a varying amount of additional
memory

To simulate this behavior and examine its impact on the network load, we
configured a slow receiver by distributing the reading intervals exponentially
with a mean of 5000bytes

UMS secs. After each interval, one message was read, so that
approximately 5000 bytes were read per second independent from the UMS.
Figure 5 shows the results for 50 to 250 bytes overhead. Here and in the next
simulations, each run was repeated 10 times. The black dots represent the 95%
confidence intervals. As a rate of the network load we calculated the ratio of
the transmitted bytes, meaning the data sent over the network including all
retransmissions, to the data that reached the upper layer. For an overhead of
250 bytes, which is even less than the memory needed by FreeBSD, almost twice
the necessary data is transmitted. The other graphs show that the number of
retransmissions is less for larger message sizes. Nevertheless, the ideal ratio of 1
is never reached. Noteworthy is also the slight inclination of the lowest graph for
larger message sizes. This can be explained as follows. When an arwnd of 0 is
announced, the sender is allowed to send zero window probes in the absence of
outstanding data. Zero window probes consist of one DATA-chunk. The method
that was chosen to simulate a slow receiver implies that the reading intervals are
much smaller for small message sizes than for bigger ones. Thus the probability
that data has been pushed and a new chunk can be accepted is higher for smaller
messages. As a consequence the larger messages are more likely to be dropped.

Another difference between the operating systems is the implementation of
the silly window syndrome avoidance algorithm. Of the three operating systems



only FreeBSD has integrated this feature. In the following, we will examine the
impact of its availability.

0 200 400 600 800 1000 1200 1400

1.0

1.5

2.0

2.5

User Message Size @BytesD

R
a
t
i
o
o
f
t
r
a
n
s
m
i
t
t
e
d

b
y
t
e
s
t
o
d
e
l
i
v
e
r
e
d

b
y
t
e
s

SWS limit: client=0, server=3000

SWS limit: client=3000, server=0

SWS limit: client=0, server=0

SWS limit: client=3000, server=3000

Memory needed for incoming message: 50 B

Reading speed = 5000B�s, Nagle enabled

Fig. 6. Ratio of transmitted to delivered bytes in the absence or presence of the SWS
avoidance algorithm

We varied the presence of SWS avoidance for sender and receiver and plotted
again the ratio of transmitted to delivered bytes. We chose an additional memory
of 50 bytes, because the measurements with the more realistic memory size
of 250 bytes revealed a worse ratio, that made a graphical judgment almost
impossible. Figure 6 shows the results for this scenario. As the measurements of
Figure 5 were taken with SWS enabled for sender and receiver, the lowest graph
of Figure 6 is equal to the 50 bytes graph of Figure 5. It is well to be seen, that
the absence of the SWS avoidance algorithm on the sending side has a negative
impact on the network load, whereas the implementation on the receiving side is
not as important. The network load can be reduced by up to 20% , if the sender
follows the principals of SWS avoidance.

For smaller chunks bundling results in a better payload to header ratio. The
Nagle algorithm (see [14]) is a feature, first introduced in TCP, to prevent the
sending of small packets, if there are still data in flight. For SCTP this means,
that chunks have to be bundled, until the next chunk does not fit in the packet
any more, unless there are no bytes outstanding. Applying this algorithm leads
to delaying the sending of data. To examine the impact of the Nagle algorithm
on the network load, we carried out the same runs as in Figure 6 and disabled
the execution of the Nagle algorithm. The results showed that the number of



retransmissions stayed at 80% to 90%, if the SWS avoidance algorithm was not
applied on the client.

4.4 Solutions

Our first idea was to notify the sender about the amount of additional memory
needed. Thus the sender was to be able to predict the reduction of the arwnd
more exactly. However, simulation runs with this feature did not lead to signifi-
cantly better results.

The best outcomes were achieved by ”telling the truth”. Like in FreeBSD,
when the receiver did not read, the arwnd was reduced by the payload and the
additional memory. Even if the sender cannot follow the peer window closely,
the regular updates are enough to guide the sender.

0 200 400 600 800 1000 1200 1400
0.9

1.0

1.1

1.2

1.3

1.4

1.5

User Message Size @BytesD

R
a
t
i
o
o
f
t
r
a
n
s
m
i
t
t
e
d

b
y
t
e
s
t
o
d
e
l
i
v
e
r
e
d

b
y
t
e
s

without SWS Avoidance, Nagle disabled

with SWS Avoidance, Nagle disabled

without SWS Avoidance, Nagle enabled

with SWS Avoidance, Nagle enabled

Memory needed for incoming message: 250 B

Reading speed = 5000B�s

Fig. 7. Ratio of transmitted to delivered bytes, if the size of the real receiver window
is announced

Figure 7 shows the transmitted to delivered bytes ratio for the cases that SWS
avoidance is present and Nagle enabled. It is well to be seen, that the application
of the Nagle algorithm only has an impact on the number of retransmissions,
if SWS avoidance is not present. In the other case, both graphs are the same.
Thus, if SWS avoidance is applied, there are almost no retransmissions needed.
The reason for the increase of the graph for larger user message sizes has been
explained in the last subsection.

As a consequence, the strategy for implementors to avoid retransmissions in
case of flow control is to set the advertised receiver window to the real value,



so that it reflects the receiver window. Thus it is not possible that the receiver
window runs out of memory before the arwnd reaches zero.

5 Conclusion

In this paper we discussed the influence of the message orientation on the im-
plementation of congestion and flow control, using the example of SCTP. We
pointed out that the way the outstanding bytes are counted, has an impact on
the fairness towards TCP connections. Therefore we recommended that the out-
standing bytes should be calculated by taking the data message headers into
account.

Looking at the different implementations and their way to apply flow control,
we encountered problems, if the receiver window was exhausted faster than the
advertised receiver window. The absence of the SWS avoidance algorithm still
worsened the transmitted to delivered bytes ratio. Simulation results revealed
that a solution to this problem is the announcement of the value of the actual
receiver window in the advertised receiver window parameter. The application
of the SWS avoidance algorithm even led to runs without retransmissions.

References

1. Stewart, R.: Stream control transmission protocol. RFC 4960 (September 2007)
2. Varga, A., Hornig, R.: An Overview of the OMNeT++ Simulation Environment.

International Conference on Simulation Tools and Techniques for Communications,
Networks and Systems (SimuTools) (March 2008)

3. Rüngeler, I., Tüxen, M., Rathgeb, E.: Integration of SCTP in the OMNeT++
simulation environment. In: Proc. of the 1st international conference on Simulation
tools and techniques for communications, networks and systems workshops. (2008)

4. Varga, A., Hornig, R.: INET Framework Documentation. Retrieved from:
http://github.com/inet-framework/inet (2009)

5. Ong, L., Yoakum, J.: An Introduction to the Stream Control Transmission Protocol
(SCTP). RFC 3286 (May 2002)

6. Allman, M., Floyd, S., Partridge, C.: Increasing tcp’s initial window. RFC 3390
(October 2002)

7. Braden, B. et al.: Recommendations on Queue Management and Congestion Avoid-
ance in the Internet. RFC 2309 (April 1998)

8. Allman, M.: TCP Congestion Control with Appropriate Byte Counting (ABC).
RFC 3465 (February 2003)

9. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (April
1999)

10. Postel, J.: Transmission Control Protocol. RFC 793 (September 1981)
11. Clark, D.: Window and Acknowledgement Strategy. RFC 813 (July 1982)
12. Tüxen, M.: SCTP Testtool. Retrieved from: http://sctp.fh-muenster.de/sctp-

testtool.html
13. Free Software Foundation: Guile. Retrieved from: http://www.gnu.org/software/

guile/guile.html
14. Nagle, J.: Congestion Control in IP/TCP Internetworks. RFC 896 (January 1984)


