
Work in Progress: Performance Evaluation of
Fast Startup Congestion Control Schemes

Michael Scharf

Institute of Communication Networks and Computer Engineering (IKR)
University of Stuttgart, Germany

michael.scharf@ikr.uni-stuttgart.de

Abstract. The Transmission Control Protocol (TCP) uses the Slow-
Start mechanism at the beginning of a connection and after idle times.
The Slow-Start delays the transport of data in particular if the round-trip
time is large, which is undesirable for interactive applications. In order
to speed up transfers, several alternatives have been proposed recently.
This paper evaluates the performance and robustness of new fast startup
congestion control schemes. We compare both end-to-end approaches as
well as protocols that rely on additional feedback from the routers, us-
ing implementations in the Linux stack. Both testbed measurements and
simulation studies quantify the potential performance improvement, the
risk of packet loss, and the benefits of additional router support. Our
results, which are also partly verified analytically, reveal that end-to-end
fast startup mechanisms would not cause too much performance degra-
dation if they are selectively used and carefully tuned. Additional router
support would improve the fairness at the cost of a higher complexity.

Keywords: Congestion Control, TCP, Slow-Start, Quick-Start

1 Introduction

Most Internet applications use the Transmission Control Protocol (TCP) for
reliable, best effort transport. TCP uses congestion control [1] to adapt to the
available bandwidth on the path. Still, after the connection setup or after idle
periods it is difficult to determine an appropriate sending rate. TCP’s conges-
tion control uses the Slow-Start heuristic in these cases. This mechanism works
well in the Internet, but it may require many round-trip times (RTTs) until an
appropriate sending rate is reached and thus significantly delay data delivery.

This raises the question whether a faster startup is possible. The design of
startup procedures for new flows is one of the remaining open issues of the
Internet congestion control [2]. Recently, several new fast startup mechanisms
have been developed, which all modify the Slow-Start. One solution is the Quick-
Start TCP extension [3, 4], which allows higher initial sending rates if the routers
along the path approve a corresponding request. Since this requires modifications
in the network entities, Quick-Start cannot be used in today’s Internet. As a
potential alternative, Jump-Start [5] has been proposed. Jump-Start is a pure



Aggressive

fast startup

Bandwidth

estimation

ssthresh

adaptation

Jump−Start, ...

Slow−Start

EnhancedStandard

Slow−Start

End−to−end congestion control

(implicit notification)

Sporadic

feedback

Quick−Start

Frequent

(explicit notification)

Router−assisted congestion control

Flow startup approaches

feedback

Reno, Cubic, ...

Paced Start,

Hybrid SS, ...

rate pacing

Using

control

No burstiness

Larger

window

Rate Control

Limited SS, ...

Protocol, ...

Fig. 1. Classification of flow startup principles

end-to-end mechanism. It uses rate pacing with a high initial sending rate, but
reacts conservatively if the available bandwidth is exceeded. Further possibilities
include e. g. increasing TCP’s initial window beyond the value allowed by [6].

This paper compares several fast startup congestion control mechanisms.
We study both end-to-end solutions, which only require modifications in the
sender, as well as Quick-Start TCP, which is an example for a router-assisted
approach. Unlike simulation studies such as [4, 5], we implement the new fast
startup mechanisms in the Linux kernel in order to obtain realistic results. In
addition to testbed measurements, we also run simulations using the Network
Simulation Cradle [7] for the user-space execution of real network stack code.
To the best of our knowledge, this is the first comparative study of the new fast
startup schemes and thereby complements our work on Quick-Start TCP [8, 9].

The rest of this paper is structured as follows: Section 2 discusses the de-
sign space of fast startup congestion control and reviews selected proposals. In
Section 3 we present an analytical model that is used to verify our experiments.
Section 4 introduces our Linux implementations and our evaluation methodol-
ogy. In Section 5 we compare benefits and risks of different fast startup schemes
using analysis, simulations, and measurements. Section 6 concludes the paper.

2 Fast Startup Congestion Control

2.1 The TCP Slow-Start and Enhancements

The Slow-Start is one part of TCP’s congestion control strategy. The basic idea
is to start a transfer with a small congestion window and increase the window
by one segment whenever an acknowledgment (ACK) arrives. This results in an
exponential increase of the window, until the Slow-Start Threshold is reached
and the Congestion Avoidance phase is entered. Originally, the initial window
was one segment [1], but today a value of three segments is permitted by [6].

Several extension of the TCP congestion control, such as the Cubic algo-
rithm [10], have been developed to improve the Congestion Avoidance phase
in high-speed networks. Still, most TCP stacks use the original Slow-Start [1],
which causes two problems: First, it can take a long time until the source can
fully utilize the available bandwidth on a path, in particular if the RTT is large.



SYN Data Further data

SYN−ACK First ACK Last ACK
Receiver

Sender

Time

Sensing Validation ContinuationProbing

Fig. 2. Four phases of a fast startup

Queue

Write data

CWND Validation

Fast startup decision

Congestion window

TCP

Socket

Application

Time

Time

Fig. 3. Fast startup usage scenarios

As a result, data transfers of interactive applications are unnecessarily delayed.
Second, the exponential increase may be too aggressive (“Slow-Start overshoot”)
and cause multiple packet losses. An ideal congestion control should actually en-
sure that new flows converge quickly to their fair share of resources [2].

These issues are addressed by several improved startup approaches that are
classified in Fig. 1. In order to overcome the overshooting problem, several en-
hancements have been developed, such as Limited Slow-Start [11]. Also, band-
width estimation techniques have been proposed in order to determine the path
capacity during the Slow-Start, e. g., with a Paced Start [12] or a Hybrid Slow-
Start [13]. These enhancements still start with a small initial window.

2.2 Fast Startup Design Space

There are also several proposals how to speed up the Slow-Start and mitigate its
performance limitations, which are surveyed e. g. in [3]. In general, a more intel-
ligent end-to-end flow start startup mechanism could use some of the following
information that is often available in end-systems: The round-trip time, cached
state variables for this destination (e. g., a congestion manager), observable ap-
plication communication characteristics (such as the amount of queued data in
the socket), the local interface capacity, or application requirements.

Another option is to use explicit feedback from network entities along the
path. Recently, several router-assisted congestion control mechanisms have been
proposed. Potential solutions range from TCP enhancements, such as Quick-
Start TCP [3], to completely new congestion control frameworks for a Future
Internet. For instance, the Rate Control Protocol [14] suggests to uses some
additional per-packet processing to speed up data transfers.

These fast startup mechanisms can be characterized by four phases that
are shown in Fig. 2: During the sensing phase, some path characteristics are
determined, potentially using explicit network feedback. Then the sender starts
to send data (probing). The validation phase starts when corresponding ACKs
arrive. The sender can then determine whether the initial choice was reasonable.
Finally, the sender switches to the continuous congestion control (continuation),
typically after the last ACK for the initially sent data has been received.

As depicted in Fig. 3, Slow-Starts do not only occur at the beginning of a
connection, but also after longer idle periods, if the congestion window valida-
tion [15] is triggered. In this case fast restart mechanisms can be applied.



Table 1. Comparison of the considered fast startup schemes

Quick-Start Jump-Start More-Start Initial-Start

Sensing Router feedback — — —

Probing Approved rate Play out app. data Use given rate Large window
(rate pacing) (rate pacing) (rate pacing) (no pacing)

Validation Observe loss Count retransm. Count retransm. unmodified

Continuation Revert ofter loss Adapt after loss Adapt after loss unmodified

2.3 Overview of Selected Fast Startup Approaches

In the following, we consider four different fast startup mechanisms:
Quick-Start TCP [3] is an experimental TCP extension that uses explicit

router feedback. With Quick-Start, end-systems can ask for a high initial sending
rate, e. g., during the three-way handshake. If all routers along the path approve
the request, data transfers can start with this high rate. Further details about
the Quick-Start mechanism and its implications can be found in [4, 8, 9].

Recently, Jump-Start [5] has been proposed as an end-to-end fast startup
mechanism. The basic idea is to play out the queued application data during the
first RTT using rate pacing. Thus, the more data is available, the higher is the
initial rate. Jump-Start risks to start with a too large data rate. In order to cope
with overshooting, the TCP retransmissions are counted during a validation
phase. At the end of the loss recovery, the congestion window is adjusted to
roughly half of the successfully transmitted segments. The authors of [5] argue
that Jump-Start is not overly aggressive since most of today’s TCP connections
only transmit few data and would thus start with a rather small rate.

The principles of Quick-Start and Jump-Start can also be combined to a
new end-to-end startup variant: Similar to Quick-Start, the applications could
explicitly choose a “reasonable” initial rate, e. g., by considering application re-
quirements or a congestion manager. Unlike Quick-Start, this rate is just used
without asking routers for approval, in combination with a careful reaction to
packet loss like Jump-Start. We label this combination “More-Start”.

As a reference, we also consider the trivial mechanism of just increasing the
initial congestion window to a larger value, without any further modifications
of the TCP congestion control (Initial-Start). Table 1 highlights the differences
between the four schemes and their functions during the four startup phases.

3 Speedup Analysis

3.1 Analytical Slow-Start Model

In order to verify our simulation and measurement results we use an analytical
Slow-Start model developed by Bodamer (see [8]). As shown in Fig. 4, we model
an end-to-end path by its TCP path capacity R = L

MTU · r and its minimum
round-trip time τ . Therein, r is the data rate at IP layer, MTU = 1500 byte



τ/2

τ/2
ACKs

Rate r

"Bottleneck" link
ReceiverSender

Fig. 4. Simplified path model

0 RTT 2 RTT 3 RTT

R
0

Time4 RTT

Round 1
Round 2

Round 3

Round 4

Amount of data s

Ψ =4

R

S
e
n
d
in

g
 r

a
te

 R
(i
)

here:

(Round 5)

Rate R(i) exceeds R

Available bandwidth R

first RTT
Pacing during

Fig. 5. Fast startup with rate pacing

is the maximum transmission unit, and L is the maximum segment size (MSS).
Two further important parameters are the initial congestion window w and the
number of segments b that a receiver acknowledges in one segment. As detailed
in [8], the transfer time ΓSS(s) of a certain amount of data s in Slow-Start is

ΓSS(s) =
s

R
+
(
τ +

L

R

)
· ψ − L · w

R

γψ − 1
γ − 1

. (1)

Eq. (1) neglects packet loss and limitations by the receive window or a small
initial Slow-Start Threshold. It also does not include unidirectional latencies
or connection setup delays. ψ is the index of the last Slow-Start round that is
completely used, and γ = 1 + 1

b . In [8] the index ψ is calculated as

ψ = max(min(
⌈
logγ

(
1
w

(
R·τ
L + 1

)) ⌉︸ ︷︷ ︸
Window exceeds BDP

,
⌈
logγ

(⌈
s
L

⌉
γ−1
w + 1

)
− 1
⌉︸ ︷︷ ︸

Transfer completed early

), 0). (2)

From this model follows TSS(s) = ΓSS(s) + τ as minimum response time of
a client-server application. The Linux network stack can be characterized by
L = 1448 and b = 1, if the Quick-ACK mechanism [16] is active.

3.2 New Model for Rate Paced Fast Startup Schemes

The fast startup mechanisms considered in this paper use rate pacing during the
first RTT. This results in a different behavior that can be modeled as follows: If
the initial sending rate R0 is smaller than the end-to-end available bandwidth R,
and if the sender continues in Slow-Start, the data rate is increased by a factor
γ every RTT, resulting in rounds as depicted in Fig. 5. During round i, data
is continuously sent with rate R(i) = R0 · γi−1. The maximum amount of data
that can be sent when round i is completed is M(i) = R0 · τ · γ

i−1
γ−1 . The transfer

time is then

ΓPaced(s) = τ · Ψ +
s−M(Ψ)

min (R,R0 · γΨ )
. (3)

Similar to Eq. (2), the index Ψ of the last round with a rate R(i) < R is

Ψ = max(min(
⌈
logγ

(
R
R0

) ⌉
︸ ︷︷ ︸
Rate exceeds R

,
⌈
logγ

(
s·(γ−1)
R0·τ + 1

)
− 1
⌉

︸ ︷︷ ︸
Transfer completed early

), 0). (4)



Network interface

TCP/IP stack code

Socket interface

− Implemented

− Support

− Unimplemented

Kernel function calls:

Network model

Creation

Configuration

Timer interruptS
h

a
re

d
 l
ib

ra
ry

Host model Application model

Simulation program

NSC

Simulation library

Kernel code Stack−specific code (C) Stack−independent code (C++)

Fig. 6. Real code simulations with NSC

T

T

Central bottleneck

10 Mbit/s

configured delay

Access link

1 Gbit/s 1 Gbit/s

Access link

Client

Client

Client

Server

Server

Server

Fig. 7. Dumb-bell simulation topology

The minimum server response time for an approved Quick-Start rate q can
be derived from Eq. (3) as TQS(s) = ΓPaced(s) + τ with R0 = L

MTU · q. As
described in [3], there is only a limited number of valid values for q. It must be
emphasized that Eq. (3) does not apply if the Slow-Start Threshold is adapted
after the validation phase (cf. [9]). In case of Jump-Start, the initial rate R0

depends on the amount of queued application data. If a threshold u is used,
TJS(s) can be obtained from (3) with R0 = min(s,u)

τ . In the following we use
u = 64 KiB. For Mean-Start, TMS(s) can be determined similar to TQS, but
without limitations for the granularity for q. The minimum server response time
TIS(s) of Initial-Start follows directly from Eq. (1) with a larger value for w.

4 Implementation and Evaluation Methodology

4.1 Linux Network Stack Implementations

In order to compare the different fast startup schemes, we have implemented
Quick-Start, Jump-Start, More-Start and Initial-Start in the Linux network
stack. Our Quick-Start TCP implementation is described in [9]. Compared to
Quick-Start, our implementations of end-to-end fast startup schemes are com-
paratively simple, since only TCP code is affected. Still, the realization of rate
pacing in Jump-Start and More-Start causes some complexity, as it requires
timers and an additional state machine. These aspects, as well as potential in-
teractions with flow control, are addressed in [9]. Our Quick-Start patch requires
more than 2000 additional lines of kernel code, while e. g. Jump-Start only needs
several hundred lines. But it is not sufficient to modify only the congestion con-
trol implementation. For Jump-Start, the socket processing workflow must also
be adapted in order to determine the amount of queued application data.

4.2 Simulation and Measurement Methodology

In our measurements we use computers with Ubuntu/Fedora systems and Linux
kernel 2.6.24. We always activate the non-standard-compliant Quick-ACK mech-
anism [16] to make our results reproducible and independent of the activation
heuristics of the kernel. This implies b = 1, i. e., in our studies the Slow-Start
may be significantly faster than a standard-compliant TCP stack with b = 2.



Kuyushu Institute of Technology

(Internet2)(JGN2plus)

North Carolina
State University

1 Gbit/s

RTT 233 ms

(Sangtae Ha)(Kazumi Kumazoe)

Fig. 8. Network path in experiments

3.12s

25,821

bytes

bytes

403

0.12s

bytes

403

Request 2

Response 1 Response 2

356

bytes

0.09s0.07s 1,196

bytes

Request 3

Response 3

Time

Document 2

bytes

329

Request 1

Document 1

Epoch 3Epoch 2Epoch 1

0.1s

2
t

bt
1

a

Fig. 9. Illustration of the a-t1-b-t2 model

We use the default stack configuration and the “Cubic” high-speed congestion
control [10], which is Linux’s default choice. The socket buffer sizes have been
increased to 8 Mbyte in order to avoid limitations by the TCP flow control.

We also simulate with the Linux network stack in order to perform realistic,
controlled studies with a larger number of entities. Our simulation tool uses the
Network Simulation Cradle (NSC) version 3.0 [7] for the user-space execution of
kernel code. The NSC architecture and its integration into our simulation tool
is illustrated in Fig. 6. The corresponding wrappers and tools are documented
in [17, 18]. Our simulations are performed with kernel version 2.6.18, both with-
out and with our fast startup patches.

In the simulations we use the classic dumb-bell topology [19] with N client-
server pairs, a central bottleneck with r = 10 Mbit/s, a drop-tail buffer, and
configurable delays (see Fig. 7). Unless stated otherwise, the buffer length is
B = 50 packets and the RTT is τ = 200 ms. In our local testbed, the client
and server applications run on computers that are interconnected by 10 Mbit/s
Ethernet segments. The Linux network emulation “NetEm” enforces latencies.
Furthermore, we also perform some real-world experiments over a long-distance
high-speed path, using the experimental infrastructure shown in Fig. 8.

For workload modeling we follow the approach of [20], i. e., the characteristics
of client-server applications are described by traces of requests and responses
as shown in Fig. 9. As simplest model we use fixed-sized small requests and
responses. Furthermore, we study scenarios with a given downlink load, which is
realized by scheduling request-response vectors over persistent TCP connections.
The response length is Pareto distributed (mean m = 125 or 10 kbyte, shape
factor α = 1.1, cutoff at 10 MB), and the inter-arrival time is assumed to be
exponential. We also replay Internet traffic traces [21] in a dumb-bell topology
with nine different RTTs, as recommended in [19]. Our main performance metric
is the server response time, which corresponds to the duration of epochs in Fig. 9.

5 Performance Comparison

5.1 Fundamental Startup Behavior

As a first step, we compare the Slow-Start (SS) to Quick-Start (QS), Jump-Start
(JS), More-Start (MS), and Initial-Start (IS) in a very simple simulation setup:
Figure 10 shows downlink traces for one client and one server (N = 1), with a



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time since SYN segment [s]

0

1

2

3

4

5

6

7

8

9

10

D
at

a 
ra

te
 [M

bi
t/s

]

SS
QS 1 (10 Mbit/s)
QS 2 (10 Mbit/s)
JS (64 KiB)
MS (10 Mbit/s)
IS (10 MSS)
IS (83 MSS)

Fig. 10. Traces of a single startup (sam-
pling time granularity 200 ms)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time since SYN segment [s]

0

1

2

3

4

5

6

7

8

9

10

D
at

a 
ra

te
 [M

bi
t/s

]

SS
QS (10 Mbit/s)
JS (64 KiB)
MS (10 Mbit/s)

Connection 1

Connection 2

(greedy)

(2 MB)

Fig. 11. Startup of a new flow against a
long-lived competing TCP connection

request of 100 B and a response of 2 MB. Here, the Slow-Start needs over 1 s until
the path is fully utilized. All fast startup mechanism are better in this scenario:

The largest approvable Quick-Start rate is q = 5.12 Mbit/s. If such a request
is performed during the connection setup, and if it is approved, the data transfer
can start immediately with this rate. After finishing the probing phase, there are
different options [9]: The sender can either continue in Slow-Start (“QS 1”) or
adapt the Slow-Start Threshold to the Quick-Start window (about 83 segments)
and continue in Congestion Avoidance (“QS 2”). The latter variant is more
careful, but it may result in longer delays and is not further considered here.

Our Jump-Start implementation plays out up to u = 64 KiB during the
first RTT and is thus starts slightly slower. In Fig. 10 the best performance
would be achieved if the sender knew approximately the available bandwidth of
r = 10 Mbit/s and used it (More-Start). Not shown is that a higher initial rate
would, of course, cause packet loss, and the resulting completion time would be
similar to Slow-Start. Finally, increasing the initial window to w = 10 would
also work in this scenario. However, any initial value larger than the bottleneck
buffer size will cause severe packet loss, resulting in no significant improvement.

A bottleneck link might already be occupied by existing flows. In order to
study the convergence behavior in this case, a similar simulation scenario has
been set up with N = 2 clients and servers and a start offset of 10 s. Figure 11
shows selected examples of the resulting flow startup. Three observations can be
made: First, with Slow-Start, a short flow is unable to reach a rate of 5 Mbit/s,
which would be its fair share. This long convergence is an inherent aspect of Slow-
Start. Second, Quick-Start does not improve the convergence, if the routers use
an admission control strategy that prevents over-commitment (cf. [8]). Due to
lack of free capacity, the Quick-Start request is denied at the bottleneck, and
the second connection therefore falls back to Slow-Start. Third, a fast startup
e. g. with Jump-Start or More-Start improves the performance of the new flow
at cost of the already established connection. It is an open and controversial
question whether such an aggressive behavior of short flows is fair, nor not [2].



10
3

10
4

10
5

10
6

10
7

Transfer data size [byte]

0.1

1

10

S
er

ve
r 

re
sp

on
se

 ti
m

e 
[s

]

Analytical model
Simulation (Linux 2.6.18)
Testbed measurement (Linux 2.6.24)

Slow-Start

Jump-Start (64 KiB)

Quick-Start (10 Mbit/s)

More-Start (10 Mbit/s)

Initial-Start (10 MSS)

Initial-Start (83 MSS)

Fig. 12. Maximum possible speedup for
path capacity 10 Mbit/s and RTT 200 ms

10
3

10
4

10
5

10
6

10
7

Transfer data size [byte]

0.1

1

10

S
er

ve
r 

re
sp

on
se

 ti
m

e 
[s

]

Analytical model
Measurement (Linux 2.6.24) on

Slow-Start

Quick-Start

100 Mbit/s

1 Gbit/s

path between NCSU and Kuyushu

10 Mbit/s req.

(1 Gbit/s, RTT 233 ms)

Speedup by
factor 10

Fig. 13. Speedup on the high-speed path
with different Quick-Start request rates

5.2 Speedup Compared to Slow-Start

The performance benefit of fast startup schemes depends on the amount of
data s, the available bandwidth r, and the RTT τ , as determined in Section 3.
Figure 12 compares the analytical values for the response times TSS, TQS, TJS,
and TIS with the simulation and testbed measurement results for a large buffer
(B = 1000 packets). The graph for standard TCP reveals the typical steps of
the Slow-Start. As to be expected [4, 8], a fast startup can improve the response
time in particular for mid-sized response sizes. Figure 12 also reveals that model
and experiments slightly differ in case of Jump-Start: If a perfect rate pacing was
used, the response time for transfers up to s = u = 64 KiB would be TJS = τ .
However, our real implementation only uses a limited number of timers (cf. [9])
and therefore sends faster if s � u. Figure 13 presents the results of a similar
experiment with Quick-Start on a long-distance path (r ≈ 1 Gbit/s). Due to
lack of full Quick-Start router support, this study assumes that requests up to
that rate are indeed approved. In such a high-speed environment, a fast startup
mechanism can achieve substantial transfer time speedups up to a factor of 10.

Figure 14 studies the scenario of several connections sharing the bottleneck.
The results have been obtained by simulating the exchange of requests and
responses over N = 50 persistent TCP connections between 50 client-server
pairs. In this case, Slow-Start is also used if the congestion window validation [15]
is triggered. Obviously, when the load ρ at the bottleneck increases, the response
times get larger. A lower bound can be determined by integrating (1) and (3)
over the response size distribution. Figure 14 reveals some important differences
between the different schemes: First, as the load increases, the Quick-Start and
Slow-Start performance is similar because of the Quick-Start admission control.
Quick-Start also needs one RTT for the signaling, which reduces the speedup. An
Initial-Start with w = 83 MSS again turns out to be detrimental in combination
with a bottleneck buffer of B = 50 packets. Significant overshooting also occurs
when one just starts with full link speed (More-Start). An interesting result is
that Jump-Start can keep the response time at a low level even for high load.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Average downlink load

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 s
er

ve
r 

re
sp

on
se

 ti
m

e 
[s

]

SS
QS 1 (10 Mbit/s)
JS (64 KiB)
MS (10 Mbit/s)
IS (10 MSS)
IS (83 MSS)

Lower bounds by analytical model

Slow-Start
Jump-Start

Quick-Start

Fig. 14. Impact of the bottleneck load
(Pareto distr. responses m = 125 kB)

0.8 0.9 1 1.1 1.2
Speedup of default algorithm vs. reference

0.5

1

1.5

2

2.5

3

3.5

S
pe

ed
up

 o
f f

as
t s

ta
rt

up
 s

ch
em

e 
vs

. r
ef

er
en

ce

QS 1 (10 Mbit/s)
QS 3 (10 Mbit/s)
JS (64 KiB)
MS (10 Mbit/s)
IS (10 MSS)
IS (83 MSS)

Unfair

Detrimental

Target region

Ideal

Contrary

Speedup at cost 
of connections using
default cong. control

both groups

Slower than defaultWorse performance for both

Speedup of

Fig. 15. Unfairness between competing
default and fast startup connections

5.3 Fairness and Risk of Packet Loss

Any fast startup mechanism can result in fairness problems and risks to cause
packet loss. Still, our experiments show that this may not be a severe problem
if a sophisticated fast startup is used. Fig. 15 shows the result of an experiment
similar to Fig. 14, except that there are now N/2 unmodified network stacks
(“default”) and N/2 that use a fast startup. Simulations are performed with
two different traffic characteristics (m1 = 125 kB, N1 = 50 and m2 = 10 kB,
N2 = 400) and two different loads (ρ1 ≈ 0.05, ρ1 ≈ 0.3). The x- and y-axis in
Fig. 15 represent the resulting response times of the two groups. The reference
value is the case that all end-systems use Slow-Start. In this representation, the
interaction between the default and the fast startup mechanisms can be classi-
fied into four different cases. In the best case (“target region”), the fast startup
schemes speed up their own transfers without significantly slowing down connec-
tions that use the default TCP congestion control. According to our results, both
Quick-Start and Jump-Start are rather fair. The other variants can significantly
affect the performance of connections that use an unmodified network stack.

5.4 Performance Impact for Typical Internet Workloads

The overall performance benefit of fast startup congestion control is difficult to
quantify. Many TCP-based applications often transfer small objects that fit in
today’s initial congestion window, and most Internet RTTs are small, too. In
these cases the existing Slow-Start performs reasonably well. This can also be
observed in Fig. 16, which were obtained by replaying traffic traces [21] among
N = 450 client-server pairs using realistic RTT distributions between 4 ms and
200 ms (cf. [19]). The traces are scheduled so that the downlink load of bottleneck
is ρ ≈ 0.3. If Jump-Start were used by all entities, epoch completion times
that are of the order of several hundred milliseconds can be improved, but the
overall benefit is not large. Using Quick-Start by default (“QS 1”) even performs
worse on such a moderately loaded link, since many requests get denied. An



0.01 0.1 1 10
Epoch completion time [s]

0.01

0.1

1

C
om

pl
. c

om
ul

at
iv

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

SS
QS 1 (10 Mbits/s)
QS 3 (10 Mbit/s)
JS (64 KiB)

Fig. 16. Performance with traffic traces
from [21] for a downlink load of 0.3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Packet loss probability at bottleneck

0.6

0.7

0.8

0.9

1

1.1

5%
 q

ua
nt

ile
 o

f e
po

ch
 c

om
pl

et
io

n 
tim

e 
[s

]

SS
QS 1 (10 Mbit/s)
QS 3 (10 Mbit/s)
JS (64 KiB)
MS (10 Mbit/s)
IS (10 MSS)
IS (83 MSS)

Target 
region

Load 0.2

Load 0.3

Load 0.25

QS 1 (10 Mbit/s)

SS

QS 3 (10 Mbit/s)

IS (10 MSS)
JS (64 KiB)

IS (83 MSS)

MS (10 Mbit/s)

Fig. 17. Tradeoff between speedup and
packet loss in the same setup

improvement is possible if Quick-Start is only selectively enabled, e. g., for data
transfers > 10 kB (“QS 3”). The results for the other fast startup mechanisms,
which are omitted, are similar to the Jump-Start graph.

Fig. 17 reports packet loss statistics in the same setup and relates them to
the 5 %-quantile of the epoch completion time. The quantile is one possibility to
quantify the speedup of selected communication patterns. With default stacks,
the packet loss probability is of the order of 1 % in the given scenario. Quick-Start
and Jump-Start, as well as a limited increased initial window, only moderately
increase packet loss, while the other variants are more aggressive. These results
again indicate that both Quick-Start and Jump-Start are not overly harmful,
with Jump-Start being much simpler to implement and to deploy.

6 Conclusion and Future Work

New fast startup congestion control approaches aim at replacing the TCP Slow-
Start. This papers studies the performance of four different mechanisms by ana-
lytical models, by simulation, and by measurements. We consider the Quick-Start
TCP extension, the Jump-Start proposal, a new combination of both, and the
simplest approach, i. e., just to increase TCP’s initial congestion window. All
schemes are implemented in the Linux stack. According to our results, Jump-
Start performs well, even though it causes some unfairness to competing flows
using Slow-Start. Of all schemes, Quick-Start is the most conservative one, but
the required router support raises several unsolved issues. In contrast, the other
more aggressive alternatives could cause harm. Specifically, it is not an option
just to significantly increase the initial window without rate pacing. Also, a
promising solution is to enable fast startup only in selected cases and for ap-
plications that can indeed benefit, but this would require additional intelligence
in the network stack. Future studies could address some algorithmic details, in
particular the response to packet loss. Further work is also needed to understand
the overall implications of using fast startup congestion control on Internet scale.



Acknowledgments

This work is partially funded by the German Research Foundation (DFG) within
the SFB 627. The author thanks the Kuyushu Institute of Technology and the
North Carolina State University for providing access to their infrastructure.

References

1. Jacobson, V.: Congestion avoidance and control. In: Proc. ACM SIGCOMM ’88.
(August 1988) 314–329

2. Welzl, M., Papadimitriou, D., Scharf, M., Briscoe, B.: Open research issues in
Internet congestion control. IRTF Internet Draft, work in progress (August 2008)

3. Floyd, S., Allman, M., Jain, A., Sarolahti, P.: Quick-Start for TCP and IP. IETF
RFC 4782 (experimental) (January 2007)

4. Sarolahti, P., Allman, M., Floyd, S.: Determining an appropriate sending rate over
an underutilized network path. Computer Networks 51(7) (2007) 1815–1832

5. Liu, D., Allman, M., Jin, S., Wang, L.: Congestion control without a startup phase.
In: Proc. PFLDnet2007. (February 2007)

6. Allman, M., Floyd, S., Partridge, C.: Increasing TCP’s initial window. IETF RFC
3390 (proposed standard) (October 2002)

7. Jansen, S.: Simulation with real world network stacks. In: Proc. Winter Simulation
Conference. (2005)

8. Scharf, M.: Performance analysis of the quick-start TCP extension. In: Proc. IEEE
Broadnets. (September 2007)

9. Scharf, M., Strotbek, H.: Performance evaluation of quick-start TCP with a Linux
kernel implementation. In: Networking 2008, LNCS 4982. (May 2008) 703–714

10. Rhee, I., Xu, L.: Cubic: A new TCP-friendly high-speed TCP variant. In: Proc.
PFLDnet2005. (February 2005)

11. Floyd, S.: Limited slow-start for TCP with large congestion windows. IETF RFC
3742 (experimental) (March 2004)

12. Hu, N., Steenkiste, P.: Improving TCP startup performance using active measure-
ments: algorithm and evaluation. Proc. IEEE ICNP (November 2003) 107–118

13. Ha, S., Rhee, I.: Hybrid slow start for high-bandwidth and long-distance networks.
In: Proc. PFLDnet2008. (March 2008)

14. Dukkipati, N.: Rate Control Protocol (RCP): Congestion Control to Make Flows
Complete Quickly. PhD thesis, Stanford University (October 2007)

15. Handley, M., Padhye, J., Floyd, S.: TCP congestion window validation. IETF
RFC 2861 (experimental) (June 2000)

16. Sarolahti, P., Kuznetsov, A.: Congestion control in Linux TCP. In: Proc. USENIX
Annual Technical Conference. (June 2002)

17. Zeeh, C.: Integration of the Linux-TCP/IP Protocol Stack into an Event-Driven
Simulation Environment. Diploma thesis, University of Stuttgart, IKR (2006)

18. Proebster, M.: Performance Evaluation of Congestion Control with Explicit Router
Signaling. Diploma thesis (in German), University of Stuttgart, IKR (2008)

19. Andrew, L., et al.: Towards a common TCP evaluation suite. In: Proc. PFLD-
net2008. (March 2008)

20. Weigle, M.C., Adurthi, P., Hernández-Campos, F., Jeffay, K., Smith, F.D.: Tmix: A
tool for generating realistic TCP application workloads in ns-2. ACM SIGCOMM
Computer Communication Review 36(3) (2006) 65–76

21. Web site: WAN in Lab. http://wil.cs.caltech.edu/suite/TrafficTraces.php (2008)


