Complementing TCP Congestion Control with
Forward Error Correction

V. Sharma', K. K. Ramakrishnan?, K. Kar®, and S. Kalyanaraman*

1 sharmv@rpi.edu,
Rensselaer Polytechnic Institute, Troy, NY 12180.
2 kkrama@research.att. com,
AT&T Labs Research, Florham Park, NJ 07932.
3 koushik@ecse. rpi.edu,
Rensselaer Polytechnic Institute, Troy, NY 12180.
4 shivkumar-k@in.ibm. com,
IBM Research, Bangalore, India.

Abstract. In this paper, we examine an emerging combination of chal-
lenges for TCP: increasingly bursty background traffic that is not subject
to flow and congestion control, higher bandwidth networks and small
buffers at network routers. As a result, TCP experiences short-term
bursty packet losses that may not reflect long-term congestion. In this
work, we propose a balanced approach that uses TCP congestion control
mechanisms including Explicit Congestion Notification (ECN) to iden-
tify and overcome congestion, supported by adaptive FEC for short-term
packet loss recovery due to bursty flows. We demonstrate the effective-
ness of using FEC with TCP SACK congestion control by showing that
such an approach improves performance for TCP flows for the emerging
bursty traffic, small buffer, high bandwidth-delay product environments.

Keywords: Next-generation transport, Congestion control, Loss recov-
ery

1 Introduction

TCP has been remarkably successful as a transport protocol, and has evolved
over the years to deliver the two core functions of reliability and congestion
control. In this paper, we examine potential ways in which TCP may evolve to
address a new combination of emerging challenges to TCP’s performance.

The first challenge for TCP is to co exist with the exploding growth of multi
media communications, including streaming and interactive video applications.
Multimedia applications predominantly use RTP/UDP, and manifest themselves
as bursty background traffic to regular TCP flows.

The second challenge is the increasing capacity of the end to end communica-
tion path coupled with smaller buffers at core routers (relative to the bandwidth
delay product). The purpose of buffering is to absorb short term burstiness, so
that any loss signal received by the end system is a reasonably unambiguous

indication of medium to long term congestion, in terms of the round trip time
and the time scales of end to end congestion control, and not burstiness. How-
ever, small buffers when subjected to background traffic that is highly bursty
result in buffer overflows that are correspondingly bursty. Packet loss is transient
and short lived, operating in time scales well beyond the dynamic range of end
to end feedback based congestion control mechanisms. Importantly, such packet
loss patterns significantly blur the distinction between medium term congestion
and short term burstiness. TCP will increasingly confuse short term burstiness
for medium term congestion, and cut its transmission window multiplicatively
(following the traditional AIMD principle, and even with the newer versions that
are more aggressive in their increase policies) each time, thereby paying a signifi-
cant performance penalty. Worse yet, TCP may also timeout during larger bursts
when a complete window of packets or a retransmission is lost. Such timeouts
are a more severe response to the bursty cross traffic than is “truly necessary”,
and recovery from such “mistakes” takes several round trip times.

The right response to these short term bursty losses is to combat it with short
term recovery mechanisms that don’t necessarily operate in the larger multiple
RTT time scales of feedback based congestion control schemes. Approaches that
would help TCP recover from short term transient losses can greatly improve
TCP’s goodput and delay performance in these situations. Forward Error Cor-
rection (FEC) coding presents an alternative. If packets at the transport layer
are FEC coded, the receiver would be able to recover the data even when some
packets have been lost in transmission. This “insurance” like property of FEC
coding results in a reduction of packet re transmissions and consequently, saves
time and bandwidth.

The role of FEC coding in recovering from losses due to noisy/lossy links has
been explored earlier [1],[2],[3]. In prior work, we developed enhancements to
TCP like transport protocols MPLOT and LT TCP in [1] and [2] (for multiple
paths and single path respectively) that employed FEC coding at the transport
layer as a means to counter packet losses from noisy/lossy wireless links. Our
protocols distinguished congestion losses from link losses by using the Explicit
Congestion Notification (ECN) [4] as definitive indicator of congestion. Another
useful feature of these protocols was the dynamic adaptation of FEC coding to
match the losses incurred in the network. This helped in minimizing bandwidth
wastage due to coding overhead. The end to end packet delay was also reduced
due to the reduction in re transmissions needed to recover from losses. We showed
in [1],]2] that such features are very effective in recovering from losses due to noisy
links. As a result, the enhanced transport achieves a significantly higher goodput
and lower delay than existing TCP protocols.

In this paper, we are interested in the question whether adaptive FEC mech-
anisms have a role beyond lossy wireless environments, and in the overcoming
the challenge of short term transient losses in high bandwidth delay product
networks with small buffers, combined with the presence of non congestion con-
trolled traffic such as UDP. We show that adaptive FEC mechanisms can be
used to recover more efficiently from bursty losses in such situations. Beyond

loss recovery, we are also interested in complementing congestion control by dis-
tinguishing true congestion from short term bursty losses. In this paper, we pro-
pose a balanced approach for TCP congestion control evolution: to use explicit
congestion notification (ECN) to respond to congestion, supported by adaptive
FEC for short term packet recovery. While fixed coding overhead may be unde-
sirable as it reduces goodput, we show that adaptive coding feature of MPLOT
and LT TCP, on the other hand, actually boosts goodput. We demonstrate that
this approach results in a much smoother degradation in goodput with increas-
ing packet losses as compared to conventional TCP SACK. This is one of our
fundamental goals to achieve a much more gradual degradation in goodput as
compared to the highly non linear (exponential) decay in goodput seen by TCP
applications as the level of transient overload increases. It is worth noting that
our scheme does not make TCP more aggressive, or send beyond the constraints
placed by congestion control mechanisms such as self clocking, congestion win-
dow, AIMD, timeout window reduction etc. We use FEC primarily as a reliabil-
ity technique to enhance TCP SACK, and it has collateral benefits of helping
in “brittle” phases of congestion control caused by burstiness and small buffers.
In essence, our paper makes the case that FEC as a reliability technique has
broader applicability beyond lossy wireless environments, and can complement
TCP SACK’s congestion control mechanisms for emerging bursty, small buffer,
high bandwidth delay product environments.

The paper is structured as follows: in the next section, we discuss the moti-
vation for our work along with the related work, followed by a brief discussion on
transport layer FEC coding and how TCP SACK can be modified to make effec-
tive use of FEC. We then discuss the results of our simulation based evaluation
and conclude by summarizing our results.

2 Motivation and Related Work

Liu et al. [5] have observed that medium/high speed streams exhibited high
burstiness due to packet accumulation. One stream was observed to peak at 600
Mb/s for a few micro-seconds when it transferred only 3.1 Mb/s in 3 seconds.
Fitzek et al. [6] observed peak-to-mean values between 15 and 45 for bit-rates of
audio/video streams. These studies indicated a high burstiness in traffic patterns
for new streaming applications.

Appenseller et al. [7] showed that router buffer sizes can be much smaller than
the end-to-end bandwidth-delay product. Their theoretical results showed that
the router buffer size is bounded by 1/y/n of the bandwidth-delay product when
a link is being used by n identical TCP-like flows. Mascolo et al. [8] take this
study a step further by proposing a TCP congestion control framework aimed at
minimizing end-to-end bandwidth loss due to congestion. However, the results
in [7],[8] were based on the assumption that only identical TCP-like flows use
the network. Furthermore, in deriving bounds on the buffer sizes, these works
only focus on maintaining a desired throughput value, and ignore the goodput
metric which is more relevant in practice.

A bursty unresponsive flow (e.g. UDP) can quickly overflow small queue
buffers leading to congestion losses for TCP flows. Consequently, TCP flows
would reduce their packet rates, thereby reducing throughput. Due to packet
losses, a TCP flow can take multiple Round Trip Times (RTTSs) to recover lost
packets by re-transmissions. Due to the nature (AIMD policy) of TCP congestion
control, after a packet loss has occurred, it can take a long time for a TCP flow
to build up it’s throughput and goodput to levels before the congestion losses.
Consequently, a TCP flow will potentially lose significant amounts of bandwidth
and incur large delays due to the bursty losses caused by an unresponsive flow.

In presence of such bursty losses, therefore, it serves TCP well to recover from
losses quickly to reclaim lost bandwidth. FEC has been used to recover from
packet losses due to noisy links in [1],[2] and [3]. Hayasaka et al. [9] use FEC to
recover lost video packets due to congestion. Their solution needs a long buffering
time to transmit FEC packets before video transmission, however. Yu et al. [10]
use simplistic M/M/1 queueing models to derive optimal block size and code-
rate for FEC to recover from congestion losses, but only under very idealistic
conditions and assumptions (like all flows use TCP and are identical) which may
not hold in reality. Li et al. [11] use fixed coding overhead and flexible packet
scheduling to counter packet losses from noisy links. The packet scheduling is
varied to control the average loss-rate. A fixed coding rate approach may however
reduce goodput due to unnecessary coding overhead, as we demonstrate later in
this paper. Nguyen et al. use an exhaustive line-search to schedule a block of
coded packets for minimizing the likelihood that the receiver would not be able
to recover lost data. Here the authors only consider bandwidth constraints in
their work, ignoring any increments in delays incurred in the process.

Ahlswede et al. [12] present network-coding as a possible solution to recover
from losses in multi-cast applications. Application of network-coding has not
been applied/studied for unicast TCP flows extensively, however. There have
been a few attempts to study the effects of network-coding on TCP flows, but in
the context of wireless networks. For example, Huang et al. [13] and Ghaderi et
al. [14] study the impact of network-coding on unicast TCP flows running over
wireless mesh networks, and conclude that significant gains cannot be attained
unless the MAC layer is significantly changed.

We note that FEC has been primarily used to recover from non-congestion
losses. The overhead required by FEC is an undesirable feature which can poten-
tially reduce goodput (compared to the case with no coding) if FEC provisioning
is not done appropriately. In the next section we show how FEC can be used
intelligently to employ it’s loss-tolerance properties while limiting the overhead
incurred to negligible levels in presence of bursty non-responsive flows. The basic
idea is to employ FEC only when losses are incurred, and in proportion to the
amount of losses incurred. We then show through simulations that our proposal
benefits TCP by allowing it to recover from losses and obtain more goodput
than the conventional TCP-SACK.

3 Packet Recovery using FEC Coding

3.1 FEC Coding at the Transport Layer

In this paper, we use the term FEC to refer to erasure codes which have excellent
loss tolerance properties. In brief, a (n, k) block FEC code adds (n—k) redundant
units to k data units in such a fashion that the original £ data units can be
recovered from any of the k£ units. This implies that a few FEC coded packets
can be lost during transmission, but the receiver would still be able to decode
and recover the original data packets from the remaining packets received.

Since our goal is to complement TCP congestion control with FEC, we pro-
pose to code packets (or TCP segments) at the transport layer itself. As a result,
data can be recovered at the receiver even when a few packets are lost due to
short-term congestion. FEC would reduce the number of re-transmissions, thus
increasing TCP goodput during lossy phases. Reduction in re-transmissions also
reduces the delay incurred in recovering from packet losses, allowing the TCP
flow to quickly build up to throughput and goodput levels prevailing before the
losses.

The performance of an (n, k) FEC block code depends on two key parame-
ters — (i) code-rate %, and (ii) block size n. The choice of these two parameters
significantly influences the goodput and delay properties of the transport proto-
col.

The degree of loss-tolerance attained by FEC coding is directly proportional
to the code-rate. A higher code-rate also indicates a higher coding overhead.
Hence, there exists a trade-off between degree of loss-tolerance and coding over-
head. A fixed code-rate is clearly not optimal because it would consume band-
width even in zero-loss conditions, reducing goodput. A fixed code-rate is also
useless if packet losses exceed the degree of loss-tolerance provided by the code.

Clearly, we require a code-rate that would adapt to variations in network con-
ditions. An adaptable code-rate would only provide loss-tolerance during lossy
conditions (more specifically, provision enough FEC based upon an estimate of
loss statistics), thereby reducing bandwidth wastage. Therefore, the transport
protocol must be able to estimate network losses as well as establish require-
ments for the degree of loss-tolerance required from the FEC code. We show in
[1] that in order to decode any block without additional re-transmissions with
high probability, a code-rate that is inversely proportional to the sum of aver-
age packet loss-rate and packet loss-rate deviation is appropriate. The likelihood
of decoding bounds the expected goodput from below, providing a minimum
performance guarantee.

The choice of block size determines the average delay experienced by the
application. Since the receiver must at least wait for the amount of time it takes
to transmit the complete block of n packets, a larger block size would lead to
an increase in delay. As a block must consist of an integral number of packets,
the desired code rate often imposes restrictions on the block size. For instance,
a code-rate of 1.01 can be realized exactly only by a block of size 101 (as a
(101, 100) code, for example), or multiples of it.

Lundqvist et al. [3] and our prior work [1] argue for a maximum block size
equal to the window size (which is a measure of the connection’s bandwidth-delay
product) to attain the optimal trade-off between goodput and delay.

3.2 TCP-SACK modifications for effective use of FEC

We modify the standard TCP-SACK to employ FEC coding as mentioned in
the previous section. We denote this version of TCP as TCP-cd (coded TCP).

The focus of TCP-cd design is to emphasize that FEC, a mechanism for reli-
ability and loss recovery, when integrated into TCP, also has collateral benefits
by reducing the “brittleness” of TCP congestion control. The brittleness is ob-
served particularly in small-window phases and during transient burst losses, in
addition to other situations. The “insurance” provided by FEC helps provide
additional resilience under these conditions, and specifically leads to reduced
latency during the loss recovery phase and reduced fall back to timeouts that
hurt performance.

TCP-cd calculates the packet loss rate from loss measurements using Expo-
nentially Moving Weighted Average (EWMA), and then calculates the variance
of packet losses accordingly. We use the method described in [1] for the MPLOT
protocol to measure and update packet loss statistics. TCP-cd then scales the
TCP congestion window by the inverse of the packet delivery rate, i.e., (1 -
packet loss rate). This extra redundancy ensures that the “loss adjusted” con-
gestion window remains at the level as originally targeted, on an average. TCP-
cd encodes the data packets with a (n,(1 — pu — o)n) block code where n is
the scaled window size, u is the average packet loss rate and o2 is the packet
loss variance. TCP-cd dynamically adapts the code-rate and block size as the
measured /estimated loss rate varies. Unlike some implementations of TCP, the
window is not reduced simply based on the receipt of three duplicate acknowl-
edgements. Instead, we use ECN to detect congestion and reduce the window.
TCP-cd is a simpler version of MPLOT [1] in the sense that it only includes
FEC coding from MPLOT while excluding any capabilities to take advantage of
out-of-order transmission, packet size adjustment and other policies employed
by MPLOT to take advantage of multiple paths.

In order to estimate the effect of FEC, we also simulate another variant of
TCP-SACK — TCP-la (loss aware TCP), that measures the packet loss statistics
like TCP-cd but does not employ FEC coding. Thus in TCP-la, packet loss
measurements are only used to scale up the congestion window as described
above. We simulate TCP-SACK, TCP-la and TCP-cd under different conditions
to measure the throughput, goodput, packet losses and timeouts. The simulations
in the next section show that TCP-cd achieves better goodput than TCP-SACK
and TCP-la even though all the three protocols have the same throughput.

4 Simulation Results

In this section, we present results from simulation experiments which show that
intelligent use of FEC coding, as discussed in section 3.2, helps in substantially

improving the performance of TCP by increasing end-to-end goodput. The ef-
fect of bursty packet losses due to short-term transient congestion are overcome
without triggering the more severe congestion response of TCP. Through simu-
lations, we aim to investigate the following issues: (i) whether and by how much
does coding help in improving TCP throughput and goodput in the presence of
bursty unresponsive flows, (ii) how buffer sizes at network core routers impact
the effectiveness of the use of FEC, and (iii) the extent of burstiness (in terms
of the the peak-to-mean ratio of the bursts) for which of FEC is effective in
improving TCP goodput.

Our ns-2.30 simulations use the typical single bottleneck dumb-bell topol-
ogy. We use varying numbers of different types of sources (responsive (TCP),
non-responsive (UDP), with/without congestion control) for assessing the contri-
bution of FEC coding in recovering from congestion losses. We use a bottleneck
link bandwidth of 10 Mb/s and a Round Trip Time (RTT) of 40 ms in the
simulations, unless specified otherwise. To understand the impact of our work
for networks with high bandwidth-delay product environments, we examine our
results with varying buffer sizes, as a function of the bandwidth-delay product,
at the bottleneck.

4.1 Complementarity of FEC and congestion control

We first investigate the effectiveness of FEC coding in attaining higher good-
put in the presence of losses due to buffer overflows, both with and without
congestion control. To first understand the role of coding in improving good-
put when a transport protocol does not use flow and congestion control, we
simulate an end-end reliable transport protocol similar to TCP except that the
sources have no window flow control and therefore transmit at a constant packet
rate (e.g., UDP with reliability built-in). We simulate 10 such sources over a
single-bottleneck topology and vary the bottleneck bandwidth from 6 Mb/s to
15 Mb/s. Each source transmits application (data) packets at 1 Mb/s. If the
packet flow is (n, k) coded, then the sending rate is increased to 7 Mb/s to keep
the rate of data packets the same. For the coded flows, a block size of 10 packets
is used. The queue is a simple drop-tail queue with a buffer size equal to the
bandwidth-delay product.

Figure 1(a) shows the cumulative goodput achieved by all the sources as the
traffic overload, defined as the difference between the aggregate application traffic
rate and the bottleneck bandwidth, is increased. The uncoded flow experiences
losses only when the bottleneck is overloaded (i.e., the bottleneck bandwidth is
10 Mb/s or lower). However, for the coded flows, packet loss occurs earlier, once
the sending rate exceeds 10£ Mb/s for an (n, k) coded flow (i.e., the aggregate
sending rate exceeds the bottleneck bandwidth). Furthermore, the uncoded flows
exhibit higher goodput as compared to coded flows when the traffic overload is
less than 1 Mb/s. This is intuitively expected, since the code-rates used for
the coded flows in the three cases shown in the simulations are at least 10%.
However, as the traffic overload increases, the coded flows experience a more
gradual decay in goodput than uncoded flows, thereby achieving higher goodputs

at higher levels of congestion. These results show that FEC coding can certainly
help reduce packet loss rates at high congestion levels. In addition, the extent of
coding overhead (low with (10,9); high with (10,5)) has a significant impact on
the goodput.

In the next set of simulations (results shown in figure 1(b)), we introduce
a rudimentary congestion control function (similar to the AIMD algorithm in
TCP) along with FEC coding to gauge their combined effect, and compare the
performance of coded flows with the uncoded case subject to similar congestion
control. For coded flows, we only consider the (10,9) block code case. We use two
block sizes: one a fixed block size of 10 as before, and another where the block size
is set to the bandwidth-delay product. Note that the two curves corresponding
to no congestion control are the same as in figure 1(a), and are included here
for comparison. We observe that the goodput is substantially improved with the
introduction of the simple congestion control mechanism. However, performance
of the coded case improves more than the uncoded case. This is particularly true
if the block size is set to the bandwidth delay product, which attains significantly
higher goodput compared to the uncoded case. More importantly, the reduction
in goodput for coded flows is linear (gradual) in nature as compared to uncoded
flows which experience a more severe non-linear reduction in goodput. These
results imply that FEC coding can work well with congestion control mechanisms
in improving goodput by reducing losses, particularly if the block size is set to
the bandwidth-delay product. We explore this issue in more detail in the rest of
our simulation experiments.

4.2 Benefits of FEC with TCP flows under bursty losses

In order to represent the conditions of unresponsive and bursty flows that expose
TCP flows to congestion losses, we simulate a periodic UDP flow that transmits
at a peak rate for a certain time-period and then turns off for an equal time
period (50% duty cycle). We use an ON-period of 50 RTT (2000 ms) and vary
the peak rates from 3 Mb/s (low congestion) to 15 Mb/s (high congestion) in
our simulations.

We first compare the throughput values (aggregate rate of packets sent, in-
cluding retransmissions and in the coded case, redundancy packets) obtained
by the three TCP variants for different UDP rates and router buffer sizes, and
establish the fact that our use of coding stays within the window flow control
limits of TCP. Figure 2 shows the average throughput values (as a percent-
age of the bottleneck bandwidth) along with their 95% confidence intervals for
TCP-cd, TCP-la and TCP-SACK, when the buffer size at the routers is equal
to the bandwidth-delay product. We note that the throughput values of the
three algorithms are roughly the same. (This trend is also observed for buffer
sizes of BW.RTT/2 and BW.RTT /4 — not shown due to space limitations.) The
similar throughput for the three algorithms is because they use the same TCP
congestion control mechanism (AIMD algorithm with similar parameters), and
therefore increase and decrease window sizes similarly in response to congestion
losses. However, for the same throughput, we show below that TCP-cd is able

12 T T

11+ Uncoded Flow il

10 _ (10,9) Coded Flow 7

ol ==Ll i
@ ~_ 3
S 8k e N N
st 7 // \ . i
= 6l ST — 4
%5— L
84— (10,8) Coded Flow / el

3k ; 3

N (10,5) Coded Flow i

1r i

L L L L L
03 -2

-1 0 1
Traffic Overload (Mb/s)

(a) Effect of coding on goodput of flows with
no congestion control.

12
1L (109) coded with congestion control]
and block size= BW.RTT)
e ~ (10,9) coded B
ofF o= with congestion control |
Q /
a8r
27h
56
Qo sk
§ ak (10,9) coded no congestion control a
o N -4
s Uncoded and no congestion control i
1k i
0 L L L L L
-3 -2

-1 0 1

Traffic Overload (Mb/s)

(b) Effect of coding and congestion control
on goodput.

Fig. 1. The use of FEC coding in congested networks can have a significant effect on
goodput. The combination of coding and congestion control leads to more gains.

to attain much higher goodput by being able to convert a larger fraction of the
throughput to goodput, as compared to TCP-SACK and TCP-la.

By using dynamic coding, we limit the coding overhead appropriately (as
compared to using a fixed coding rate), and adapt the coding rate nicely to
match the time-varying loss rate on the path of a flow. We now measure how
dynamic adaptive coding affects goodput in presence of TCP congestion control.
The average goodputs (as a percentage of the capacity of the bottleneck) with
their 95% confidence intervals are shown in figures 3-5, for the three variants
and buffer sizes of BW.RTT, BW.RTT/2 and BW.RTT/4, respectively. Note
that the bottleneck capacity is 10 Mb/s; thus even at an average UDP rate of 6
Mb/s, only 60% of the bottleneck bandwidth is used by the UDP flow.

For TCP-SACK and TCP-la, the goodput reduces by almost 75% as the av-
erage UDP rate increases from 1.5 Mb/s to 6 Mb/s. This shows the severe impact
that bursty flows can cause to goodput, even if they do not lead to long-term
congestion. In contrast, the goodput for TCP-cd decays by about 60% across
the same range of average UDP rates. This shows that use of FEC helps in rapid
recovery from losses, thereby reducing re-transmissions and increasing goodput.
This behavior is consistent across all values of buffer sizes simulated. Comparing

T T T

— ol TCP-cd —— | ol i
= —~
Sw TCP-la] § sl TCP-cd +——
27 $ 0= TCP-la]
8 e TCP-SACK o § 6]
g 50 ¥ 5 sl TCP-SACK ——
Saf 1 Swf
% 0+ — -‘;i 30
3o b S 20
£ 10 — O pf —

0 Il Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il Il

[
13
N}

25 3 35 4 45 5
Average UDP Rate (Mb/s)

Fig. 2. Throughput when router buffer
size equals bandwidth-delay product.

Fig.3. Goodput when router buffer
size equals bandwidth-delay product.

g

8

T T T
TCP-cd —— |

;\90, = 0%k

£ =

s TCP-la e

27 — T

8ol TCP-SACK o= | &

k] k]

g%or 25

?LAO* T 240* q
S 1 Ewp TCP-la |
R 4 3of 1
£ = TCP-SACK e~

F F 1

H
S
T
.
5
T

o
o

=
[
N

25 3 35 4 45 5 25 3 35 4 45 5
Average UDP Rate (Mb/s) Average UDP Rate (Mb/s)

Fig.4. Goodput when router buffer
size equals half of the bandwidth-delay
product.

Fig.5. Goodput when router buffer
size equals quarter of the bandwidth-
delay product.

the throughput and goodput values, we note that TCP-SACK is only able to
convert 30% of its throughput to goodput (at an average UDP rate of 6 Mb/s)
while TCP-cd can convert 66.7% of throughput to goodput at the same average
UDP rate. This is more than a 100% improvement in converting throughput
to goodput. Since the goodput performance of TCP-la and TCP-SACK is very
similar, this implies that the performance improvement observed for TCP-cd
is exclusively due to the effective use of coding, and not due to the loss-rate
based scaling of the congestion window. Comparing the three figures (the three
different bandwidth-delay product cases) we observe that the performance dif-
ference between TCP-cd and the other two TCP versions is more pronounced at
lower values of the average UDP rates as the buffer size becomes smaller. This
is particularly important as we go to higher bandwidth-delay product environ-
ments, where correspondingly the amount of buffering available at routers may
be smaller.

To understand the cause for the improved goodput with TCP-cd, we examine
the packet loss and timeout behavior of the different alternatives. The packet loss
rate increases with an increase in average UDP rate as expected. In addition to
the reduction in window size as a result of TCP’s loss-based congestion response,

14+ 14
ESPIS Qsize= BW.RTT Sty
3 \\ R
guof 210+ L
E Qsize= 05BW.RTT g Qsize=BW.RTT
=18 Z8r \
.0 £l Qsize= 05BW.RTT
gr Qsize = 0.25.BW RTT £
o4 &4 Qsize=025BW.RTT
E £
Far c 2t

o L ok n I

5 55 6 6.5 75 55 6 6.5 75
Average UDP Rate (Mbl/s) Average UDP Rate (Mbl/s)
(a) TCP-SACK (b) TCP-cd

Fig. 6. The time spent in timeout by TCP-SACK and TCP-cd.

there is also a likelihood of TCP flows suffering timeouts. We look at the average
time spent in timeouts by TCP-SACK and TCP-cd respectively in figures 6(a)
and 6(b), for the three different buffer sizes. The timeouts become significant
when the average UDP rate exceeds about 60% of the bottleneck capacity (which
corresponds to the peak UDP rate exceeding 100% of the bottleneck capacity).
However, while there is no dramatic difference between TCP-SACK and TCP-cd
in terms of time spent in timeouts, TCP-cd does in fact see improvements in the
amount of timeouts experienced with smaller router buffers.

Figure 7(a) overlays the variation in UDP traffic and the corresponding aver-
age packet loss rate measured at a TCP receiver when the UDP flow transmits at
a peak rate of 10 Mb/s on a path with a bandwidth 10 Mb/s. TCP experiences
losses when the UDP flow turns on, resulting in TCPs reducing their window,
thereby reducing throughput and goodput as well. Packet retransmission and
the potential of retransmitted packets being lost result in further reduction in
goodput. In figure 7(a), which shows the loss-rates for TCP-SACK, the aver-
age packet loss is high, frequently experiencing 100% packet loss (resulting in
timeouts). We now look at the average loss rate measured by a TCP-cd receiver
in figure 7(b). While the packet loss rate is still high, it is considerably lower
than the loss-rate observed for TCP-SACK. FEC coding thus enables a TCP
flow to tolerate the co-existence of non-cooperating flows and overcome the ef-
fect of transient packet losses. Even under heavy congestion useful information
is delivered through the use of coding.

We now study the impact of increasing the burstiness of UDP flows on TCP-
SACK and TCP-cd. For this purpose, we maintain the peak rate of the UDP
flow equal to the bottleneck bandwidth of 10 Mb/s and vary the ON-period
for the UDP flow. The OFF-period of the UDP flow is fixed (at 2 secs), and
we observe the throughput and goodput achieved by TCP-SACK and TCP-cd,
while varying the ON-period from 0.4 secs to 20 secs, resulting in a peak-to-mean
rate ratio of the UDP flow varying from 1.1 to 6. We present the throughput
and goodput values for the two protocols in figures 8 and 9 respectively, where
the router buffer size equals half the bandwidth-delay product.

[Packet LossRate —— | [Packet LossRate ™ |
DPON
10| UDPO 1l uoPON |
%0 B 0 B
e 1 Seor —
g 701 B 70 B
160 4 a60r i | q
|
ol (I | -
340 1 Bor | I I 1
o o Il I |
30 — 30 I | ‘ | —
: o O T I e
wp] | |UPPOFF ‘ L1 oo oo e
0 L L L L L L L ‘ L 0 [\ 1 L L i \‘ L L | Il L
20 20 2 23 24 25 26 27 28 29 0 20 20 2 2B 24 25 2 21 28 29 30
Time(seconds) Time(seconds)

(a) Packet loss seen by a TCP-SACK (b) Packet loss seen by a TCP-cd flow.
flow.

Fig. 7. Comparison of packet losses for TCP-cd and TCP-SACK when UDP is trans-
mitting at peak rate of 10 Mb/s and the buffer size is quarter of the bandwidth-delay
product. The losses seen by TCP-cd are significantly less than those of TCP-SACK.

©
S
T
L
o
S
T
L

ol TCP-cd TCP-SACK o |

=]
T
L

TCP-SACK

>
T

TCP-cd

5 838338
T

@
S

Goodput (% of Bandwidth)
n
8

Throughput (% of Bandwidth)

i

S
™
L

10+ 1

0
11 15 2 25 3 35 4 45 5 55 6 11 15 2 25 3 35 5 5 55 6
Peak to Mean ratio of UDP Flow Peak to Mean ratio of UDP Flow

o

Fig. 8. Throughput comparion for dif- Fig.9. Goodput comparison for differ-
ferent levels of burstiness of UDP flow ent levels of burstiness of UDP flow
(buffer=half BW-Delay product). (buffer=half BW-Delay product).

We note from figure 8 that the throughput achieved by TCP-cd is the same as
TCP-SACK, across the range of UDP burstiness values considered. In contrast,
the goodput achieved by TCP-cd gets significantly better as the burstiness of
UDP flow increases, as we observe in figure 9. For a peak-to-mean ratio of 6,
the goodput achieved by TCP-cd is twice that of TCP-SACK. As the burstiness
reduces, the UDP flow acts more like a constant rate flow, reducing the gains
made by FEC.

In summary, we conclude that the use of adaptive FEC along with TCP
congestion control can lead to significant goodput gains in scenarios that are
typically observed in current networks, where there is likely to exist signifi-
cant amounts of cross-traffic from non-cooperative UDP flows. The goodput
improvement is more pronounced as the burstiness of the unresponsive flows,
and hence the congestion losses, increases. This becomes particularly important
in higher bandwidth-delay product environments, especially with routers having

small buffers. Use of adaptive FEC coding helps in significantly extending the
dynamic range of operation of feedback based congestion control mechanisms.

5 Summary and Conclusions

As networks evolve to higher bandwidth-delay product environments and have
to carry traffic that is unresponsive to congestion control, the capabilities of
congestion control will be pushed beyond their designed limits. In this paper,
we demonstrated that existing TCP congestion control mechanisms can be effec-
tively complemented by packet level FEC coding to quickly recover from short-
term congestion losses caused by bursty unresponsive flows. The approach we
propose is particularly useful in to help TCP perform reasonably well even when
traffic is bursty causing transient overloads, buffer sizes are small and feedback
delays are large, thus extending the dynamic range of traditional feedback-based
congestion control protocols. The extent of goodput benefit provided by FEC
coding increases as the router buffer size reduces. This is a particularly impor-
tant as it allows routers to retain relatively small buffers for the emerging high
bandwidth-delay environments, thereby reducing queueing delay while FEC cod-
ing protects goodput against short-term queue overflows. We also showed that
the performance gains delivered by packet level FEC increases as the burstiness
in the traffic and the associated packet losses due to congestion increase. The
significant gains in goodput are achieved without a corresponding increase in
throughput, as the overhead of FEC coding is minimized by adapting the code-
rate to network losses. Our scheme is able to use the loss-tolerance property of
FEC to attain higher goodput, while right-sizing the overhead associated with
FEC.

In summary, intelligent/adaptive FEC coding can complement TCP’s con-
gestion control to effectively counter losses caused by the combination of bursty
unresponsive flows and router buffer sizes that are small compared to the band-
width delay product in high-speed networks.

References

1. Sharma, V., S.Kalyanaraman, K.Kar, Ramakrishnan, K., Subramanian, V.:
MPLOT: A Transport Protocol Exploiting MultiPath Diversity using Erasure
Codes. In: Proc. IEEE INFOCOM. (2008)

2. Subramanian, V., Kalyanaraman, S., Ramakrishnan, K.: An end-to-end transport
protocol for extreme wireless environments. In: Proc. IEEE Military Communica-
tions Conference (MILCOM 06), Washington D.C, USA (october 2006)

3. Baldantoni, L., Lundqvist, H., Karlsson, G.: Adaptive end-to-end FEC for im-
proving TCP performance over wireless links. IEEE International Conference on
Communications 7 (June 2004) 4023-4027 Vol.7

4. Ramakrishnan, K., Floyd, S., Black, D.: RFC 3168 - The Addition of Explicit
Congestion Notification (ECN) to IP. (2001)

5. Liu, Z., Hu, C., Zheng, K., Chen, S., Liu, B.: A trace study for characteristics of
packet arrivals. IEEE 7th Malaysia International Conference on Communication
& 13th IEEE International Conference on Networks (MICC-ICON) 1 (Nov. 2005)

10.

11.

12.

13.

14.

Fitzek, F., Zorzi, M., Seeling, P., Reisslein, M.: Video and audio trace files of
pre-encoded video content for network performance measurements. First IEEE
Consumer Communications and Networking Conference (CCNC) (Jan. 2004) 245—
250

Appenzeller, G., Keslassy, 1., McKeown, N.: Sizing router buffers. SIGCOMM
Computer Communication Review 34(4) (2004) 281-292

Mascolo, S., Vacirca, F.: Congestion control and sizing router buffers in the inter-
net. IEEE Conference on Decision and Control & European Control Conference
(CDC-ECC) (Dec. 2005) 6750-6755

Hayasaka, M., Gamage, M., Miki, T.: An efficient loss recovery scheme for on-
demand video streaming over the internet. The 7th International Conference on
Advanced Communication Technology,(ICACT) 2 (2005) 1301-1306

Yu, X., Modestino, J., Bajic, I.: Performance analysis of the efficacy of packet-level
fec in improving video transport over networks. IEEE International Conference on
Image Processing (ICIP) 2 (Sept. 2005) I1-177-80

Li, Y., Zhang, Y., Qiu, L., Lam, S.: Smarttunnel: Achieving reliability in the
internet. In: Proc. of IEEE INFOCOM. (2007)

Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4) (2000) 1204-1216

Huang, Y., Ghaderi, M., Towsley, D., Gong, W.: TCP performance in coded
wireless mesh networks. IEEE SECON (2008)

Ghaderi, M., Towsley, D., Kurose, J.: Reliability gain of network coding in lossy
wireless networks. IEEE INFOCOM (2008)

