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Abstract. In recent years a number of TCP variants have emerged
to optimise some aspect of data transport where high delay-bandwidth
product paths are common. We evaluate a different scenario - latency-
sensitive UDP-based traffic sharing a consumer-grade ‘broadband’ link
with one or more TCP flows. In particular we compare Linux implemen-
tations of NewReno, H-TCP and CUBIC. We find that dynamic latency
fluctuations induced by each TCP variant is a more significant differen-
tiator than ‘goodput’ (useful throughput), and that CUBIC induces far
more latency than either H-TCP or NewReno when multiple TCP flows
are active concurrently. This potential for ‘collateral damage’ should in-
fluence future efforts to re-design TCP for widespread deployment.
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1 Introduction

Transmission control protocol (TCP) [1] deserves significant credit for the in-
ternet’s wide-spread utility over the past 25+ years. The relatively modern
NewReno variant of TCP [2] balances two key goals: Provide reliable trans-
fer of byte-streams across the IP layer’s unpredictable packet-based service, and
minimise congestion inside end hosts and the underlying IP network(s) while
maximising performance [3]. As the dominant transport protocol for internet-
based applications [4], maximisation of TCP performance has been an active
and challenging area for academic and industry research into congestion control
(CC) techniques [5]. A common focus has been on the interactions between mul-
tiple TCP sessions when sharing a common congestion point or path segment,
particularly on long paths with high link speeds.

This paper looks at an increasingly important new scenario - TCP flows
sharing consumer-grade ‘broadband’ links with non-reactive, latency-sensitive
UDP-based applications such as Voice over IP (VoIP) and online games. In
particular we focus on the impact of the Linux implementations of NewReno,
CUBIC [6, 7] (currently the default CC algorithm for Linux TCP connections),
and H-TCP [8, 9] variants of TCP. Each variant provides different dynamic re-
sponse to congestion within an IP network, which has a direct impact on the



latency experienced by other flows sharing a congestion point. We characterise
the extent to which both CUBIC and H-TCP induce greater median latency than
NewReno yet provide little nett gain in goodput (useful throughput as measured
by the application on top of TCP).

Section 2 begins with an over-view of issues surrounding TCP CC research.
Section 3 describes our testbed, instrumented to allow precise tracking of latency
versus TCP’s congestion window size and congestion events. In section 4 we il-
lustrate the range of latencies, and frequency of latency fluctuations, experienced
by unrelated UDP flows sharing a congestion point with long-lived NewReno,
CUBIC and H-TCP flows.

2 Background

The evolution of the internet’s IP-based network and underlying infrastructure
has exceeded initial architectural design assumptions and expectations in a num-
ber of areas. Since congestion control (CC) was first proposed [10] and subse-
quently mandated [11], there has been significant ongoing research to ensure CC
kept pace with the underlying network it was designed to efficiently utilise and
protect from congestion collapse.

The Internet Research Task Force’s (IRTF) Internet Congestion Control Re-
search Group (ICCRG) [12] and Transport Modeling Research Group (TMRG)
[13] have been established to shepherd the development, evaluation and (where
applicable) standardisation of improved and altogether new CC mechanisms and
schemes, with a focus on transport protocols.

A particularly large body of work has developed around improvements to the
Additive Increase Multiplicative Decrease (AIMD) congestion window (cwnd)
scaling factors and congestion detection mechanisms used by the defacto-standard
NewReno CC algorithm. Wireless environments (where packet loss is not indica-
tive of congestion) and large bandwidth-delay product (BDP) paths (which take
multiple minutes to re-probe network capacity after congestion backoff) are some
of NewReno’s current problem areas where it is failing to meet the goal of effi-
cient network utilisation.

A raft of new protocols have been proposed in recent years, which typically
aim to solve a weakness in NewReno under a specific subset of network scenarios.
The resulting proposals are being discussed, evaluated and refined within the
context of the ICCRG and TMRG, with an eye to eventual publication as an
experimental or fully fledged Internet Engineering Task Force (IETF) standard.

Evaluation of TCP related CC mechanisms is itself an active area of re-
search. Steps are being taken to develop a set of public baseline test scenarios
and metrics with which to compare new CC algorithms [14]. Evaluation by in-
dividual algorithm implementers thus far has largely focused on aspects such as
intra-protocol fairness, inter-protocol fairness with NewReno, throughput and
convergence.

While there are good reasons to maintain multiple CC implementations for
research purposes and specific application use cases, the need for a suitable



default for the average network stack is important. It is therefore crucial to test
real-world implementations of proposed protocols in common network scenarios
that a standardised protocol would likely be deployed in.

To date, we have found very little prior work [15, 16] investigating home
broadband scenarios and the behaviour of emerging TCPs, or TCPs interacting
with non-congestion reactive, latency-sensitive traffic in this environment. The
continuing convergence towards IP based entertainment, information access and
communication service delivery ensures this is an area of increasing importance.

Gaming and voice over IP are two such services of interest, both typically
delivered using constant rate, non-congestion reactive flows of small UDP pack-
ets. Online multiplayer computer games, and the popular first person shooter
genre in particular, have well known latency sensitivity requirements for effective
game play [17]. Voice over IP is another real-time service with well characterised
latency tolerances, previously examined in the context of traditional telephony
[18, 19] and now IP networks more recently [20]. The requirements of these in-
creasingly important applications must be taken into consideration within the
context of transport protocol research and development.

3 Experimental Methodology

Figure 1 shows our experimental topology - one congestion point (a FreeBSD
router1 with configurable forwarding latency and instrumented to log actual
queue utilisation over time), four Debian Linux hosts2 acting as TCP or UDP
sources and sinks, and a precision traffic capture tool3 to calculate one way delay
(OWD) through the router. Our simple dumbbell testbed is not topologically
equivalent to the actual network paths traversed by typical consumer traffic.
Nevertheless it is suitable for this paper’s focus on the interactions between
TCP and UDP flows.

As consumer broadband links vary widely around the world we settled on
emulating 1Mbps links with drop-tail queues of 60000 bytes in each direction
(based on previously published estimations of buffering in consumer routers [21,
22]). The drop-tail queues create the bottleneck shared by all traffic traversing
the router, and RTT/2 of delay is added in each direction using dummynet [23].
We experimented with total RTTs of 50ms and 100ms to emulate delays conceiv-
ably experienced by typical consumer activities. Configured latency is accurate
to within 0.5ms as the router’s kernel was set to tick at 2000Hz (kern.hz = 2000).

1 FreeBSD 7.0-RC1 on a 2.80GHz Intel Celeron D (256K L2 Cache), 512MB PC3200
DDR-400 RAM, with two Intel PRO/1000 GT 82541PI PCI gigabit Ethernet cards
as forwarding interfaces.

2 A 2.6.25 kernel ticking at 1000Hz, each one a 1.86GHz Intel Core2 Duo E6320 (4MB
L2 Cache) CPU, 1GB PC5300 DDR2 RAM and Intel PRO/1000 GT 82541PI PCI
gigabit Ethernet NIC.

3 Two Endace DAG 3.7GF gigabit ethernet capture card ports
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Fig. 1: Testbed for measurement of shared, congestion-induced queuing delays

Hosts A, B, C and D are instrumented with Web100 [24, 25] - tracking TCP
connection parameters (such as cwnd) by polling every 1ms over the lifetimes of
active TCP sessions.

Bulk TCP traffic was generated using Iperf [26], with data flowing from Host
A to C and ACKs from Host C to A. Uni-directional UDP traffic from Host B
to D (186byte IP packets every 20ms, emulating non-reactive VoIP traffic) was
generated using Tcpreplay [27]. No traffic flowed in the reverse direction from
Host D to B.

Load-time tunable variables of the Linux CUBIC and H-TCP implementa-
tions were left at their default values, except as noted here. For CUBIC, we set
“max increment” to 1004. To ensure H-TCP’s consistency with the published
internet draft [8] we disabled “adaptive backoff” and “adaptive reset”, but left
“RTT scaling” on5.

Trials were run five times for each combination of TCP algorithm, testbed
RTT and number of TCP flows. Trials lasted for at least three minutes or twenty
congestion epochs, which ever was longer. For each group of five runs we dis-
carded the highest and lowest results and took the average of the remaining
three.

4 This variable has been removed in more recent CUBIC specifications and setting it
to 100 effectively disabled any effect it might have in our test scenarios.

5 The H-TCP code also ran with a patch functionally equivalent to [28] that fixed a
visible bug in H-TCP’s behaviour.



4 Results

Our initial experiments focus on measuring the following characteristics: TCP
goodput, latency as experienced by the UDP flow over time, the frequency of
congestion events as observed in the router’s bottleneck queue and the number
of packets retransmitted by TCP.

4.1 Goodput achieved by NewReno, CUBIC and H-TCP

Goodput for each trial run was calculated using tcptrace [29], providing a mea-
sure of the application level (or “usable”) bitrate achieved during each trial. All
three TCP variants exhibited much the same average goodput when RTT was
both 50ms and 100ms. Table 1 lists the average aggregate goodput across all
flows.

RTT (ms) Algorithm

No. Flows

1 2 5

Goodput Statistics (KB/s)a

µ σ µ σ µ σ

50

NewReno 111.8 0.01 112.2 0.19 112.2 0.10

H-TCP 111.9 0.06 112.5 0.11 114.2 0.50

CUBIC 111.9 0.04 112.6 0.24 114.5 0.39

100

NewReno 111.9 0.01 112.2 0.01 112.5 0.23

H-TCP 111.8 0.04 112.7 0.19 114.0 0.43

CUBIC 111.9 0.04 112.7 0.25 114.3 0.39

a Where 1KB = 1000 bytes

Table 1: Aggregate ‘goodput’ of one, two and five concurrent flows - NewReno, H-TCP
or CUBIC congestion control, 50ms or 100ms RTT, 1Mbit/sec bottleneck

Consumers constrained by 1Mbit/sec links and 50ms or 100ms paths were
not the original design target for TCP variants such as CUBIC and H-TCP.
Indeed, H-TCP and CUBIC were intended to be NewReno-like over links with
low bandwidth delay product (BDP), so our goodput results are not unexpected.

However, our experiments reveal that H-TCP and CUBIC diverge from NewReno
in significant ways when we consider the latency caused by each TCP variant’s
congestion control behaviour in low BDP environments.

4.2 Latency induced by NewReno, CUBIC and H-TCP

Latency-sensitive applications such as VoIP and online games typically generate
UDP flows that have simplistic (or non-existent) reaction to congestion within



the underlying IP network path. Such applications are increasingly important in
the consumer market, and TCP’s cyclical variation of cwnd is known to cause
bottleneck queuing delays to fluctuate regularly. Our experiments suggest that
this ‘induced latency’ should be considered an important differentiator between
TCP variants that expect deployment in consumer contexts.
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Fig. 2: Cwnd, Induced OWD and Queue Occupancy vs Time across three consecutive
congestion epochs of a single H-TCP flow. Path is 1Mbit/sec @ 100ms RTT



Illustrative examples of the cyclical variation in cwnd, one way delay (OWD)
and queue length induced by TCP are provided by Figures 2a and 2b. These
figures clearly highlight the relationship between cwnd, queue occupancy and
induced OWD during three consecutive congestion epochs of a single H-TCP
flow sharing the bottleneck link with a single UDP flow over a 100ms RTT path.

0 100 300 500

0
.0

0
.4

0
.8

delay (ms)

C
D

F

newreno
htcp
cubic

(a) One TCP flow

0 100 300 500

0
.0

0
.4

0
.8

delay (ms)
C

D
F

newreno
htcp
cubic

(b) Two TCP flows

0 100 300 500

0
.0

0
.4

0
.8

delay (ms)

C
D

F

newreno
htcp
cubic

(c) Five TCP flows

Fig. 3: Cumulative distribution of OWD for NewReno, H-TCP and CUBIC. Path is
1Mbit/sec @ 50ms RTT

More usefully, Figures 3a, 3b and 3c show the CDF of OWD experienced by
our single UDP flow over at least twenty congestion epochs when the bottleneck
link is shared with one, two and five TCP flows respectively. Plots for 100ms
looked identical. In this case the path has a 50ms baseline RTT (25ms OWD),
thereby fixing the best case OWD at 25ms, which is visible in the figures. The up-
per bound is the maximum queuing delay (480ms, being 60000 bytes at 1Mbps)
plus the path’s intrinsic 25ms OWD. A statistically insignificant number of UDP
packets were dropped during queue full events, and these are excluded from the
latency statistics presented here. NewReno, H-TCP and CUBIC clearly inter-
act very differently with the bottleneck queue over time - behaviours directly
attributable to their particular algorithms for managing the TCP congestion
window.



RTT (ms) Algorithm

No. Flows

1 2 5

Induced Latency Statistics (ms)

Median µ σ Median µ σ Median µ σ

50

NewReno 393.2 387.7 74.2 422.8 410.1 67.1 445.5 427.3 68.2

H-TCP 347.0 371.1 73.5 390.8 397.8 66.3 459.6 439.2 59.7

CUBIC 456.2 452.2 35.5 474.1 465.7 31.9 485.0 476.4 26.1

100

NewReno 409.8 402.4 81.0 442.4 427.6 73.7 466.0 447.1 74.1

H-TCP 353.3 383.6 85.1 405.5 414.8 71.5 479.0 459.1 62.9

CUBIC 487.8 476.7 42.0 494.5 485.2 37.8 504.3 494.7 32.1

Table 2: Latency induced by NewReno, H-TCP or CUBIC congestion control on one,
two or five concurrent flows, 50ms or 100ms RTT, 1Mbit/sec bottleneck

H-TCP mimics NewReno cwnd growth for the first second after congestion,
and then follows a parabolic growth function proportional to x2/2 until the next
congestion event (where x is related to the time since last congestion).

CUBIC follows a cubic growth function proportional to 0.4x3 (where x is also
related to the time since last congestion). Unlike H-TCP, CUBIC takes NewReno
cwnd growth as a baseline. The algorithm switches to the NewReno growth
function if the cubic growth function calculates a value less than NewReno would
have achieved in the same amount of time since congestion.

The difference between the growth functions themselves is also pertinent.
Unlike parabolas, cubic functions grow quickly in their concave region, gradu-
ally slowing as they reach an inflection point before switching to convex mode
operation and grow quickly again. This behaviour is particularly noticeable in
Figure 3a. The CUBIC data shows a steep increase in latency at 400ms (con-
cave growth), which slows between 440ms-480ms (near inflection point) before
starting to grow again (convex growth).

As more TCP flows are added (Figures 3b and 3c) the CUBIC flows con-
tinue to induce significant additional delay whereas the H-TCP flows tend to
induce NewReno-like latency. (More concurrent flows create more frequent con-
gestion events, and the individual H-TCP flows spend proportionally more time
exhibiting NewReno-like cwnd growth.) Table 2 quantifies the median, mean and
standard deviation of latencies induced during the separate trials of NewReno,
H-TCP and CUBIC congestion control with one, two or five concurrent flows.

4.3 Impact of congestion events

Figure 4 plots the average number of queue full events per minute, observed
during a sixty second period in the middle of each trial. A queue full event occurs
when the dummynet bottleneck queue reaches capacity and drops packets until
it is able to accept a new packet.
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Fig. 4: Average number of “queue full” events per minute
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Fig. 5: Average number of retransmitted packets

In the one and two TCP flow cases, H-TCP’s parabolic cwnd growth function
causes it to consistently overshoot the queue capacity by some margin, resulting
in the larger number of queue full events. However for the five flow case, H-
TCP’s tendency to remain in NewReno mode due to the increased frequency of
congestion events results in fewer queue full events. CUBIC on the other hand
demonstrates no such restraint, which results in faster increases in queue full
events per flow than H-TCP or NewReno.

Retransmitting packets due to network and receiver losses should ideally
be kept to a minimum to ensure efficient network resource utilisation. In the
low BDP bottleneck scenarios under investigation, retransmissions are almost
entirely caused by a flow’s cwnd overshooting the path capacity and subsequently
overflowing the bottleneck queue. A TCP’s cwnd growth function therefore plays
an integral part in balancing protocol scalability (quickly probing the path to
utilise available bandwidth) and stability (minimising the time a connection is
not sending user data).

Figures 5a and 5b plot the average aggregate number of retransmissions
for the 50ms and 100ms trial sets respectively6. Because they are optimised to

6 Calculated using tcptrace and summed for each test run



aggressively probe for network capacity for benefit in high BDP environments, H-
TCP and CUBIC both trigger significantly more retransmissions than NewReno.

These results also align with those of Figure 4, as we would expect queue full
events and retransmissions due to lost packets to be closely correlated.

5 Conclusion and Further Work

We have performed a comparison of the Linux implementations of NewReno,
H-TCP and CUBIC TCP over an emulated path that (roughly) approximates
a congested consumer broadband link. First we observed that ‘goodput’ (useful
throughput) was essentially equivalent for each TCP variant when pushing data
over a 50ms or 100ms RTT path with a 1Mbps bottleneck link speed and 60000
byte queue. Then we explored the latency that would likely be experienced by
VoIP-like UDP traffic sharing such a congested ‘consumer’ link with each TCP
variant.

CUBIC was observed to induce noticeably more latency than either H-TCP
or NewReno when one or more active TCP flows congest a link. With one or
two concurrent flows, it is even possible for H-TCP to induce less latency than
both CUBIC and NewReno. For example, two TCP flows sharing a 50ms RTT
path with a 60000 byte queue at a 1Mbps bottleneck induced median latencies of
422.8ms, 390.8ms and 474.1ms for NewReno, H-TCP and CUBIC respectively.
With five concurrent flows the median induced latencies rose to 445.5ms, 459.6ms
and 485.0ms respectively.

The impact of induced latency on VoIP and online game applications is a form
of ‘collateral damage’. We believe future efforts to re-design TCP for widespread
deployment should aim to minimise this impact, rather than aiming for fairness
between TCP flows or maximisation of goodput in long, fast networks. Addition-
ally, the largest difference between the latency induced by the optimised variants
stems from differences in their “low speed” compatibility modes. Algorithm de-
velopers should consider these findings in the future refinement of compatibility
modes, as there are likely gains to be had by defining better behaving options
for broadband-like environments.

The current behaviour of the tested common TCP variants in broadband
environments strongly indicates that CPE manufacturers need to provide better
mechanisms to appropriately manage their device’s queues. The current trend
towards large unmanaged (by default) queues in CPE is demonstrably bad news
for consumers.

Our analysis suggests a number of areas for future work. In order to rule
out implementation effects, a similar suite of tests should be performed using
independent implementations of NewReno, H-TCP and CUBIC (ideally under
a different operating system, such as FreeBSD). Extending the evaluation to a
wider set of TCP variants and further exploring useful metrics to differentiate
the impact of TCPs in the home broadband environment is required. Finally,
exploring simple ways in which CPE manufacturers can easily address the issues
raised by this research would result in some material benefit to consumers. For



example, evaluating the appropriate tuning and impact of various queue man-
agement schemes with a goal of making recommendations to CPE manufacturers
would be a worthwhile outcome.
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