
Gossip-based counting in dynamic networks

Ruud van de Bovenkamp, Fernando Kuipers, and Piet Van Mieghem

Network Architectures and Services
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
{R.vandeBovenkamp, F.A.Kuipers, P.F.A.VanMieghem}@tudelft.nl

Abstract. We propose Gossipico, a gossip algorithm to average, sum
or find minima and maxima over node values in a large, distributed,
and dynamic network. Unlike previous work, Gossipico provides a con-
tinuous estimate of, for example, the number of nodes, even when the
network becomes disconnected. Gossipico converges quickly due to the
introduction of a beacon mechanism that directs messages to an au-
tonomously selected beacon node. The information spread through the
network shows a percolation-like phase-transition and allows informa-
tion to propagate along near-shortest paths. Simulations in various dif-
ferent network topologies (ranging in size up to one million nodes) il-
lustrate Gossipico’s robustness against network changes and display a
near-optimal count time. Moreover, in a comparison with other related
gossip algorithms, Gossipico displays an improved and more stable per-
formance over various classes of networks.

Keywords: Gossip-algorithms, network dynamics, node counting

1 Introduction

Several developments over the past years, such as the growing use of peer-to-
peer overlay networks and sensor networks have led to the deployment of very
large distributed networks. Although distributed networks are very scalable, they
have no central point where information is stored, which makes it challenging to
gather global network properties or perform coordinated actions.

One of the paradigms that has emerged to spread and gather information
in a fully distributed network is that of gossip algorithms [1]. During the gos-
sip process, a node periodically selects one of its neighbours and either sends,
requests or exchanges information with that neighbour. This simple communi-
cation structure can be used to perform various tasks in distributed networks,
ranging from overlay building and information location to calculating functions
such as sums and averages.

In this paper we investigate averaging and summation over node values in
large dynamic networks, and in particular the specific case of counting the num-
ber of nodes. Good estimates of the size of a distributed network can be valuable

in optimising the performance of protocols and services that run on top of it,
such as topology building in a peer-to-peer network. Node counting can also pro-
vide information on how many sensors are still working in a sensor network or
how large an ad-hoc network currently is. The latter can be useful in vehicular
communication to estimate traffic conditions.

This paper is organised as follows. Related research is first discussed in Sec. 2,
after which we propose our gossip-based counting algorithm Gossipico in Sec.
3. In Sec. 4, we illustrate the algorithm’s speed and robustness against network
dynamics by a series of simulations. Sec. 5 presents our conclusions.

2 Related Work

Algorithms specifically designed to estimate or count the number of nodes in
a network can be roughly divided into three groups: probabilistic polling al-
gorithms, random walk based algorithms, and gossip-based algorithms [2]. We
highlight two representative examples of the first two techniques, after which we
overview gossip-based algorithms. The probabilistic polling technique proposed
by Kostoulas et al. [3] uses a conditional reply to a request message to estimate
the network size, where the condition is determined by the distance between the
replying node and the initiating node. In the algorithm by Massoulié et al. [4],
a node sends a message containing an initial counter value on a random walk,
and each node that is passed on the walk adds a degree dependent value to the
counter. When the random walk returns to the initiating node, it can estimate
the network size based on the counter value.

The gossip-based algorithms in [5, 6] rely on averaging an initial value over
all nodes to estimate the network size. Jelasity and Montresor [6] initialise the
node values to 0, with the exception of a single “special” node that has value
1. Nodes find the estimate of the network size as the reciprocal of the average.
Montresor and Ghodsi [5] first build an overlay structure based on random node
values to determine an initial guess of the network size at each node. That initial
guess is subsequently averaged to improve the estimate. In the work of Kempe
et al. [7] each node has a weight-value pair, and periodically sends half of its
weight and value to both a random neighbour and itself. Nodes sum the pairs
they receive and estimate the network size by dividing the summed value by
the summed weight. By assigning a 1 or 0 to the initial weight of one or all
of the nodes, the algorithm either sums or averages. Finally, Guerrieri et al. [8]
studied the performance of both an averaging-based gossiping algorithm and
three variations on a token collecting algorithm in delay-tolerant networks.

A major drawback of the random walk and probabilistic polling strategies is
the poor accuracy [2]. Size estimation based on averaging using gossip, however,
currently also has its drawbacks. First of all, the process has to be started by
a single node, which requires some sort of coordination in the initial phase of
the algorithm. Moreover, the estimate of the network size at a specific node
can exhibit a large overshoot, and joining or leaving nodes cause large local
variations in the estimate that have to be spread out over the network. More

extreme network dynamics such as the joining of two networks will result in an
estimate that is half the new network size, whereas splitting the network in two
will lead each part to believe it consists of the original number of nodes.

Our goal is to develop a gossip algorithm that does not share the drawbacks
that averaging-based algorithms show and can be used in continuously changing
networks, even when the network becomes disconnected. In our design we aim
for little processing and storage at each node. Also, all nodes are uniform in
capabilities and function, i.e. no node is special. The only requirements for the
nodes are that they have a unique identifier and can reliably pass messages to
their direct neighbours.

3 Gossipico

We propose Gossipico, a gossip-based algorithm that does not rely on averag-
ing to estimate the network size, but combines messages to count the number
of nodes. Message combining offers more flexibility in algorithm design than
pair-wise gossip interactions alone, and allows for the simultaneous execution of
several functions such as summation, finding maxima, and averaging in a sin-
gle algorithm. Gossipico consists of two parts: Count and Beacon. Count
performs the actual counting of the nodes, while Beacon is used to speed up
Count. We first introduce the basic ideas behind Count and Beacon in Sec.
3.1 and 3.2, respectively, and will further develop those in Sec. 3.3 where we add
robustness against dying nodes and disconnecting networks. In both Count and
Beacon, nodes initiate communication periodically. We define a gossip cycle as
the time period during which all nodes have initiated communication with one
of their neighbours. The time between cycles in a deployment scenario will be a
trade off between bandwidth consumption and speed.

3.1 Count

The general idea behind Count is that information from every node is combined
and then spread to all the nodes again. This idea is illustrated in Fig. 1, where in
the left-hand side picture every node has a single token. Each node periodically
selects a random neighbour and gives this neighbour all its tokens (the path of
the tokens is indicated by arrows); when a node receives tokens from another
node it spreads messages telling how many tokens it has. The centre picture
shows the spreading messages as hexagons with the number of tokens inside. As
can be seen, tokens start to accumulate at different points in the network and
the first estimates of the network size start to spread. In the right-hand side
picture all tokens have piled up and every node knows how many tokens there
are.

In Count the exchanged messages are more complex than tokens to allow
for greater functionality: counting both upwards and downwards, averaging and
finding minima and maxima. A message M = {C,F, T} contains a count value
C ∈ Z, a freshness value F ∈ N, and a type value T ∈ {0, 1}. The type value

11

1

1

1

1

1

1

1
1

1
11
1 1

8

1

1

1

8

8
8 8

8

8

1
1 1
11

4

4

3
3 3

1
1
1

Fig. 1. Three snapshots in the counting process.

indicates whether the message is an Information Spreading (IS) (T = 0) mes-
sage, corresponding to the hexagons in Fig. 1, or an Information Collecting (IC)
(T = 1) message, corresponding to the tokens. The count value C is the current
estimate of the network size, whereas the freshness value F is a measure for the
estimate’s recentness. The message with the highest value for F contains the
most recent information.

Every node that joins the network is initialised with an IC message with
count and freshness value 1, i.e. M = {1, 1, 1}, analogous to the single token in
Fig. 1. Nodes send their message periodically and always create a new IS message
afterwards. Messages are processed by the receiving node by following one of four
rules, based on the type and the freshness of both the received message, Mr, and
the receiving node’s current message waiting, Mw (subscripts r and w stand for
received and waiting, respectively). These four rules are explained below:

1 (Tr = 0, Tw = 0) If both messages are IS messages, the received message will
replace the waiting message if the received message has a higher freshness
value F than the waiting one. By keeping the message with the freshest
information, only new information is spread through the network.

2 (Tr = 1, Tw = 0) A received IC message will replace a waiting IS message in
order not to lose the collected information.

3 (Tr = 0, Tw = 1) A received IS message will be discarded if the waiting
message is an IC message. This again ensures that no collected information
is lost.

4 (Tr = 1, Tw = 1) If both messages are IC messages, a new message will
replace the waiting message. The new message will be an IC message con-
taining the sums of the waiting and received messages’ C and F values, i.e.
M = {Cw + Cr, Fw + Fr, 1}.1 We call the process of replacing Mw and Mr

by a new message combining messages.

In addition to the waiting message, every node has two state values: a count
value Cs ∈ Z, and a freshness value Fs ∈ N (subscript s stands for state).

1 Nodes should be initiated with a message Mw = {V, 1, 1} to sum over node values
V instead. Finding a minimum or maximum value is achieved by not summing the
values but keeping the highest or lowest value, whereas averaging requires an extra
field in the message where the number of summed values are counted to allow the
average to be calculated as V/C.

After processing the message, the receiving node updates its state values Cs
and Fs if the resulting waiting message contains fresher information. Without
separate state information, a node’s estimate of the network size could go down
temporarily when, for example, rule 2 forces a node to discard an IS message
with fresher information, in order not to lose an IC message. After the node
has passed on this IC message, it uses the state information to create a new
spreading message with the most recent information it has.

All nodes are counted when there is only one IC message left. Rule 4 forces
nodes to combine a received and waiting IC message, thereby reducing the num-
ber of IC messages in the network. At the same time, nodes cannot create new
IC messages after initialisation; all new waiting messages are IS messages. The
four rules described above ensure that if there is only one IC message left, it will
contain the combined information of all the initial IC messages.

A message’s freshness value will only differ from the count value in dynamic
networks or when the algorithm is used to sum or average. When the algorithm is
used in dynamic settings, the freshness value could run out of its range, but this
can be fixed by allowing nodes to accept messages with a freshness value much
lower than their Fs as fresher, if Fs is close to the maximum, or, alternatively,
to trigger a recount using the mechanisms described in Sec. 3.3.

3.2 Beacon

The rules listed in Sec. 3.1 ensure that an IC message is passed on from one
node to another, until it reaches a node that already has an IC message waiting,
where it is combined. When nodes select a communication partner at random,
IC messages perform random walks. Since a static network is counted when the
last two remaining IC messages are combined, the count time is at least equal
to the time it takes two independent random walks to meet at the same node,
which increases prohibitively with the network size. Hence, IC messages should
be forwarded in a less random fashion in order to speed up the counting process.

IC messages have a much higher chance of meeting each other when they
are guided to a particular node in the network. We propose Beacon to guide
IC messages towards each other by using a beacon. A beacon is a node whose
location information spreads through the network by means of gossip.

Every node starts out as a beacon and competes for dominance with the other
nodes to ensure that eventually there will be only one beacon. The competition
resembles a battle between different armies, with the beacons as the army leaders.
Every node j belongs to an army Aj that has a certain strength Sj ∈ R; node j
also knows which neighbour Pj is the first hop towards the beacon of its army,
and the estimated hopcount Dj to that beacon.

Initially, every node forms its own one-node army with a randomly chosen
strength, i.e. Aj = j, Pj = j, Dj = 0, and Sj = random.2 Nodes periodically
and randomly select one of their neighbours to skirmish with. The outcome of
such a skirmish is determined by two rules:

2 We assume perfect randomness, i.e. Pr[Sj = Sk] = 0, for j 6= k.

1 If both nodes are of the same army, the shortest path to the beacon is
updated.

2 If one node is stronger than the other, the weaker node is incorporated into
the army of the stronger one. The losing node takes over the values for A
and S from the winning node, sets the winning node as the next hop to the
beacon, and sets the estimated hopcount to one more than the estimated
hopcount of the winning node.

Following these rules, the strongest node in the network will defeat all other
nodes and become the only beacon. At the same time, the hop sequences towards
the beacon converge to shortest paths along which IC messages can combine.

3.3 Network dynamics

Gossipico, as outlined so far, can cope very efficiently with a growing net-
work: new nodes simply initialise their message at Mw = {1, 1, 1} and start
communicating. Node (and link) removals, however, are more challenging. A
node can leave gracefully by sending an IC message with a count value of −1
(Mw = {−1, 1, 1}) to account for its departure, but when a node dies, it cannot
send this message. Moreover, even when a node leaves the network gracefully,
there is no guarantee that the network will remain connected. If the network in-
deed becomes disconnected, a restart of the counting process must be triggered.

In order for nodes to be able to trigger a recount, the counting process is
restricted to work only within the Beacon armies. When a new army is built, the
nodes that are a part of that army count the size of their army using Gossipico
as described above. As the growing army conquers the network, the network is
counted. Triggering a restart comes down to building a new army that can defeat
the reigning army.

Gossipico copes with dying nodes and disconnecting networks by following
a single rule: every time a link is removed, the nodes adjacent to the link rebuild
their armies to trigger a recount. In case the link removal did not disconnect
the network, the two new armies will compete for dominance and the network
is recounted. In case the link removal disconnects the network, the two revived
armies will both survive, but cannot reach each other to compete. The algorithm
is unaffected by network dynamics such as node and link addition or removal,
because every node can trigger a recount in response to node or link removals.

Recounts are possible in Count if nodes will only accept messages from
neighbours that are in the same army, and return any received messages to the
sender otherwise. When a node is incorporated in a new army, it will create a
new IC message with all values set to one (Mw = {1, 1, 1}) to be counted in its
new army.

Two concepts are added to Beacon to support recounts: army revival and
immunity. Army revival allows a node j that is conquered by another army
(Aj = k) to build its own army again by selecting a new random strength Sj and
setting itself with a zero distance as the first hop to the beacon (Pj = j,Dj = 0).
The newly revived army of node j (Aj = j) will also be immune (Ij = k) to

Algorithm 1 Count

Init: Mw ← {1, 1, 1}

Sending
1: if Tw = 1 & A 6= id

then
2: select peer P
3: else
4: select random peer
5: end if
6: send message Mw to

peer
7: Mw ← {Cs, Fs, 0}

Receiving
8: if Ar 6= A then
9: return Mr to sender

10: return
11: end if
12: if Tr = 0 & Tw = 0

then
13: if Fr > Fw then
14: Mw ←Mr

15: end if
16: end if
17: if Tr = 1 & Tw = 0

then
18: Mw ←Mr

19: end if
20: if Tr = 1 & Tw = 1

then

21: Mw ← {Fw +
Fr, Cw + Cr, Tw}

22: end if
23: if Fw > Fs then
24: Fs ← Fw

25: Cs ← Cw

26: end if

resetCount
27: Cs ← 1
28: Fs ← 1
29: Mw ← {1, 1, 1}

A message consists of three fields: C, F , and T , i.e. M = {C, F, T}. Subscripts r, w and s indicate
received, waiting and state, respectively.

its previous army k. The immunity ensures that all nodes of army j will win
all skirmishes with nodes of army k. Without immunity the recount will be
suppressed if the new army j is weaker than the reigning army k.

Although Gossipico is robust against dying nodes and other network dy-
namics using recounts as described above, a node’s count value might drop during
the recount process. Dips do not last long, and can even be avoided at the ex-
pense of a slight delay if nodes estimate the network size based on their estimate
before the recount and the current count value. A node’s estimate X could be
calculated as X = (1 − f(t))Xold + f(t)Cs, where Xold is the node’s estimate
at the time it was incorporated into a new army and f(t) is a logistic function
that shifts the current estimate from the previous estimate to the current count
value. The logistic function is given by f(t) = 1/(1 + exp(−t+ 2D+ 5)) where t
is the number of times the node created the same IS message. The constant 5 is
used to make sure that f(t) starts at a value close to 0. The distance D to the
beacon ensures that high diameter (and therefore slower converging) networks
automatically adjust to the recount time without the need of a tuning parame-
ter. If the value of Cs is larger than Xold, nodes accept Cs as the best estimate.
In all simulations we avoid dips.

3.4 Interaction between Count and Beacon

The interactions between Count and Beacon are illustrated in Fig. 2. Count
uses the next hop to the beacon in Beacon when an IC message is sent and the
army information when receiving messages; Beacon resets the count process
when a node is conquered by another army. The precise interactions will be
discussed using the pseudo-codes of both Count and Beacon.

Gossipico

Count Beacon
C MF IP S DA

uses

reset update path

skirmish

pr winner

revive army

invokes

sending

receiving

Fig. 2. Interactions between Count and Beacon.

The pseudo-code for Count is given in Algorithm 1. Lines 1-6 ensure that
if a node wants to send an IC message (T = 1), and it is not the beacon of
its own army, it will send the message to the next hop towards the beacon of
its army. In all other cases the node will send its waiting message to a random
neighbour. After sending a message a new waiting message is created in line 7.
Lines 8-11 make sure that nodes only accept messages from within their army. If
the message is indeed from within the army, it is processed according to the four
rules in Sec. 3.1: lines 12-16 execute rule 1, rules 2 and 3 are executed in lines
17-19, and finally lines 20-22 form rule 4. The node’s state values are updated in
lines 23-26 if the new information is fresher than the current information. When
a node is incorporated into a new army, it has to reset its state and message as
shown in lines 27-29.

Algorithm 2 shows the pseudo-code for Beacon. The first thing that is
checked during a skirmish is whether one of the nodes is immune to the army of
the other node, as can be read from lines 1-8. If this is the case, the node that is
immune will win the skirmish and the losing node takes over the strength, army
and immunity from the winning node (ll. 26-30), sets the winning node as the
first hop towards the beacon (ll. 29-30), and resets its Count process (l. 31).
If both nodes are of the same army (ll. 9-12) the shortest path to the beacon
is updated by checking whether either node can reach the beacon quicker via
the other (ll. 18-25). If both nodes are from different armies, the stronger one
will incorporate the weaker one (ll. 13-17). When a node revives its army it will
determine a new random strength, set its army id equal to its node id, set its
immunity equal to its present army, set itself at distance zero from the beacon
and reset its Count process (ll. 32-37).

3.5 Convergence of Gossipico

In this discussion we divide the node counting process into three stages, although
in reality these stages happen at the same time. In the first stage, the armies
fight for dominance to establish a single beacon. In the second stage, the nodes
send their IC messages around until they have all been combined. Finally, in the
third stage, there is only one IC message left and the freshest count value spreads
through the network. All three stages can be bounded by the spreading time of
a single rumour in a network, which Giakkoupis [9] bounds as O(φ−1 log(N)),

Algorithm 2 Beacon

Skirmish(Node i,j)
1: if Ii = Aj then
2: prWinner(i,j)
3: return
4: end if
5: if Ij = Ai then
6: prWinner(j,i)
7: return
8: end if
9: if Ai = Aj then

10: updatePath(i,j)
11: return
12: end if
13: if Si > Sj then
14: prWinner(i,j)
15: else

16: prWinner(j,i)
17: end if

updatePath(Node
i,j)

18: if Di < Dj + 1 then
19: Pi ← j
20: Di ← Dj + 1
21: end if
22: if Dj < Di + 1 then
23: Pj ← i
24: Dj ← Di + 1
25: end if

prWinner(Node i,j)
26: Aj ← Ai

27: Sj ← Si

28: Ij ← Ii
29: Dj ← Di + 1
30: Pj ← i
31: resetCount . in

Count

reviveArmy(Node i)
32: Si ← random integer
33: Di ← 0
34: Pi ← i
35: Ii ← Ai

36: Ai ← i
37: resetCount . in

Count

where N is the number of nodes in the network and φ the conductance.3 It is
important to note that φ depends on the network type and can depend on N .

During the first stage, the beacon information of the strongest army spreads
unhindered through the network, just as a rumour in Giakkoupis’ work. During
the second stage, the IC messages are routed towards the beacon. Most messages
combine on their way to the beacon, but in the worst case they combine at the
beacon. Since the beacon information was spread in at most φ−1 log(N) rounds,
the longest path to the beacon is also O(φ−1 log(N)). During the third stage
of the algorithm, a single piece of information, i.e. the count value of the last
IC message, spreads to all other nodes by means of gossip; this is exactly the
same process as rumour spreading. Simulations in the following section show
that Gossipico has an O(log(N)) convergence in random and scale-free graphs.

4 Simulation results

We have performed various simulations to test the convergence and dynamic
behaviour of Gossipico. Time is measured in gossip cycles. During each gossip
cycle, the nodes are processed sequentially and in a random order. The count
time of the network is defined as the number of gossip cycles that pass until
every node in the network reaches a count value equal to the network size, and
is averaged over a number of runs. When we use Erdős-Rényi random graphs,
the probability p that a link exists is set to p = 2 log(N)/N ; scale-free graphs are

3 φ = min
S⊆N ,

∑
i∈S

di≤|L|

cut(S,Sc)∑
i∈S

di
, where cut(S, Sc) is the set of links crossing a partition

of a graph G = (N ,L) in S and Sc, with N the set of nodes, L the set of links, and
di the degree of node i.

10
2

10
3

10
4

co
u

n
t

ti
m

e
in

 g
o

ss
ip

 c
y

cl
es

10
2

10
3

10
4

10
5

10
6

network size in nodes

 Count SF
 Count ER
 Gossipico SF
 Gossipico ER

Fig. 3. Count time for Gossipico and
Count. ER indicates an Erdős-Rényi
graph, SF a scale-free graph.

36

34

32

30

28

26

24

22

20

18

16

14

12

co
u

n
t

ti
m

e
in

 g
o

ss
ip

 c
y

cl
es

10
2

10
3

10
4

10
5

10
6

network size in nodes

3.6 + 5.2log(N)

6.0 + 4.0log(N)

 Gossipico ER
 Gossipico SF
 curve fit ER
 curve fit SF

Fig. 4. Count time for Gossipico.

generated following the preferential attachment model in Batagelj and Brandes
[10] with such a number of links per new node that the total number of links
is closest to that in an Erdős-Rényi graph with the same number of nodes. We
will first discuss the rate of convergence in static networks. We then discuss the
dynamic behaviour of Gossipico.

4.1 Counting in static networks

To illustrate the impact of Beacon on the performance of Count, we compare
the performance of Gossipico to that of Count alone. Since Count can be seen
as an extension of randomized token forwarding algorithms, these simulations
also illustrate by how much Beacon might speed up other algorithms. Simulated
network sizes range up to 106 nodes, and for every size a hundred different
networks were generated.

Fig. 3 shows the count time for both Gossipico and Count as a function of
the network size for the two graph types. It is clear from Fig. 3 that Gossipico
greatly outperforms Count on its own. The count time of Count scales as a
power function of N , whereas the count time of Gossipico scales logarithmi-
cally. The logarithmic scaling of Gossipico is illustrated in Fig. 4. This plot
is based on an average over 500 runs per size and shows an error band at ±
one standard deviation. The count time can be fitted with 3.6 + 5.2 log10(N) for
the random graphs and 6.0 + 4.0 log10(N) for the scale-free graphs. For random
graphs the fit goes through all data points from N = 100 nodes and upwards,
whereas for scale-free graphs the fit starts at N = 1000 nodes, because the
scale-free degree distribution only emerges for larger networks. Both Count
and Gossipico perform better in scale-free graphs than in random graphs; the
hub nodes in scale-free graphs function as meeting places where IC messages can
be combined. Because Beacon ensures that Gossipico scales logarithmically
in random and scale-free networks, Count and similar algorithms are made
suitable for use in very large networks.

10,000

9,999

9,998

9,997

9,996

9,995

av
er

ag
e

co
u

n
t

v
al

u
e

20015010050

time in gossip cycles

100,000

99,999

99,998

99,997

99,996

99,995

 Network size
 ER
 SF

Fig. 5. Average estimate of the network
size during a targeted beacon node attack
for both ER and SF graphs and two differ-
ent initial sizes.

2500

2000

1500

1000

500

0

n
et

w
o

rk
 s

iz
e

in
 n

o
d

es

3753503253002752502252001751501251007550250

time in gossip cycles

 size component 1
 size component 2
 avg. estimate comp. 1
 avg. estimate comp. 2

1

2 3

4

5

Fig. 6. Average estimate of the network
size after random node additions (1), tar-
geted link removals leading to disconnect-
edness (2,3), and reconnecting (4,5).

4.2 Counting in dynamic networks

In order to illustrate Gossipico’s robustness against node failure and to show
that no node is indispensable, we track the average estimate of the network
size while the node currently functioning as beacon is killed every 40th cycle. By
killing a node it is meant that all links adjacent to the node are removed and that
the node’s state information and current message are lost to the network. We
start out with both Erdős-Rényi random graphs and scale-free graphs ranging
from N = 1000 to N = 100, 000 nodes. In Fig. 5 the average estimate of the
network size over time is shown. As can be seen from Fig. 5, the average estimate
of the network size follows the real network size. During the 25 cycles after the
beacon dies, the network is recounted and the nodes shift their estimate from
the previous count value to the new one to prevent a drop in the estimate. Even
when the beacon node dies before the network is recounted, the average count
value does not fluctuate too much as can be seen in the case of the 100, 000 node
network (the upper graph in Fig. 5). This shows that Gossipico can keep up
with dynamics with a rate of change close to, or marginally over, its own speed
of convergence without introducing large fluctuations in the estimate.

We next show Gossipico’s behaviour in fully dynamic and disconnecting
networks. We start by creating two random graphs, one of 1500 nodes (com-
ponent 1) and one of 500 nodes (component 2), and connect them by adding
10 links between randomly selected nodes in each component. After fifty cy-
cles we add 300 nodes to each component, all new nodes only link to nodes in
their own components. After another 100 cycles the 10 links connecting the two
components are removed, and are added again after another 150 cycles.

The average estimate of the network size over time is plotted in Fig. 6. The
figure shows that the maximum count time for the initial 2000-node network
over all the runs in this simulations is 33 cycles, regardless of the bottleneck of
10 links connecting the two components.

The addition of the 300 nodes per component (event 1 in Fig. 6) shows that
new IC messages combine along near shortest paths. All IC messages combine,
on average, within 7 cycles, while the average hopcount in these bridged net-
works is 4.2. After another 14 cycles, the spreading process finishes. The narrow
dip (which only lasts for 1 cycle) in the estimated network size that is visible im-
mediately after the addition of the new nodes is the result of the initial estimate
of 1 of all new nodes.

Removing the bridging links between the two components (event 2) has a
similar impact on the average estimate as a single dying node. The estimate falls
(event 3) rapidly after an initial delay of about 25 cycles, without fluctuating.
Regardless of the fact that 20 nodes trigger a recount at the same time, the
estimate of the component size smoothly approaches the correct value in both
components.

After reconnecting the two components (event 4), the estimate of the network
size is updated just as quickly as a normal count of the network would be, as
can be seen by comparing the first 25 cycles in Fig. 6 to the first 25 cycles
after the components are reconnected in cycle 300. The increase in the smaller
component is continuous, while the estimate in the larger component displays a
bend (event 5) half way. This bend can be explained by observing that in half of
the cases the army in the smaller component will dominate the network, and in
the other half of the cases the army in the larger component will do so. When the
larger component assimilates the smaller, the nodes in the smaller component
will immediately accept the new count value as the new estimate because it is
higher than their previous count value. In the opposite case, the nodes in the
larger component will hang on to their previous count value a little longer. In
either case, the counting process continuous without a restart as soon as the two
components are connected.

Figs. 5 and 6 illustrate that Gossipico smoothly tracks all dynamics in the
network, ranging from node addition to dying nodes and network components
disconnecting and reconnecting again. Instead of relying on a periodic recount,
Gossipico reacts to changes in the network. This ensures that in periods of
network stability the estimate of the network size is also stable, while during
periods of network dynamics, the algorithm tracks the changing network size.

4.3 Maximum count value over time

In this section we discuss the maximum count value in the network as a func-
tion of the normalised number of sent messages. The product of the num-
ber of nodes and the expected hopcount E[H] is taken as the normalisation
constant. We simulated four different network topologies, an Erdős-Rényi ran-
dom graph, a scale-free graph, a square grid, and a path. For each network
type the highest count value in the network after every interaction between
two nodes is averaged over 500 different realisations, both for N = 1, 000 and
N = 10, 000. As an approximation of the average hopcount of both an Erdős-
Rényi graph and a scale-free graph we use log(N), while for the grid and path

graph we use the approximation for a regular lattice E[H] ' d
3N

1/d, where
d is the dimension of the lattice (for a grid d = 2, for a path d = 1) [11].

1.0

0.8

0.6

0.4

0.2

0.0

C
m

ax
/N

43210
number of messages/(N·E[H])

 Grid 1k
 Grid 10k

 SF 1k
 SF 10k

 ER 1k
 ER 10k

 Path 1k
 Path 10k

Fig. 7. Maximum count value as a func-
tion of the normalised number of sent mes-
sages for four graph types.

Fig. 7 shows that the normalised
number of sent messages before the
maximum count value is reached, is of
the same order of magnitude for all
four networks. The main difference be-
tween the networks lies in the slope
of the curves. In random and scale-
free graphs, the maximum count value
follows an S-curve that is more pro-
nounced for larger networks, while in
the grid and path graphs the maximum
count value increases more steadily,
and shows little influence of the net-
work size. The difference between the
grid and path graphs on the one hand
and the random graphs on the other, is probably best explained by the speed
at which the winning army can grow. The winning army in the path graph will
grow at a fixed rate because the configuration at the borders of the army never
changes. A growing army will always have two nodes at its endpoints that are
neighbours with different armies. In the case of a square grid, the nodes in the
winning army roughly form a circle and the army grows at an increasing rate
proportional to the circumference of that circle. The increase in growth rate,
however, is stable. For the random and scale-free graphs the situation is quite
different. With every addition of a node to the winning army, the percentage of
nodes not in the winning army that can be reached by the winning army can
increase rapidly, thus allowing the army to grow explosively. After a brief initial
phase the number of nodes in the winning army undergoes a phase-transition and
covers almost the entire network. Similar phase transitions have been observed
in processes where connections are randomly formed and have been explained
in the context of percolation theory (e.g., [12]). Although the average hopcount
is the most important factor in the count time for all four network types, the
speed at which an army can grow determines the slope of the graph.

5 Conclusions

We have proposed a gossip algorithm, Gossipico, to count the number of nodes
in a network (or sum/average over node values). Our algorithm works by combin-
ing messages, which has an advantage over averaging-based counting algorithms
in that the estimate approaches the network size quicker and more smoothly.
Gossipico uses only O(log(N)) messages per node to count Erdős-Rényi random
graphs and scale-free graphs, while randomised token forwarding based counting
algorithms use O(Nα) messages per node, with a power exponent α > 0. The

count time closely follows the average hopcount for grids and path graphs, which
matches the lower bound O(D), with D the network diameter.

A major improvement, besides speed, over previous algorithms is that Gos-
sipico automatically restarts the counting process when a change is detected
that could lead to disconnectedness in the network. When two components are
joined, the algorithm converges to the correct count without a restart, which is
impossible for algorithms based on averaging. Simulations show that Gossipico
is a very robust algorithm that provides nodes with a continuously updated es-
timate of the network size at a speed of convergence that equals that of rumour
spreading, which is known to be very fast.

References

1. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proc. of the 6th annual ACM Symp. on Principles of Distributed Computing.
(1987) 1–12

2. Le Merrer, E., Kermarrec, A.M., Massoulie, L.: Peer to peer size estimation in
large and dynamic networks: A comparative study. In: Proc. of the 15th IEEE Int.
High Performance Distributed Computing Symp. (2006) 7–17

3. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., Demers, A.: Decentralized
schemes for size estimation in large and dynamic groups. In: Proc. of the 4th IEEE
Int. Network Computing and Applications Symp. (2005) 41–48

4. Massoulié, L., Le Merrer, E., Kermarrec, A.M., Ganesh, A.: Peer counting and
sampling in overlay networks: random walk methods. In: Proc. of the 25th annual
ACM Symp. on Principles of Distributed Computing. (2006) 123–132

5. Montresor, A., Ghodsi, A.: Towards robust peer counting. In: Proc. of the 9th
IEEE Int. Conf. on Peer-to-Peer Computing. (2009) 143–146

6. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay
networks. In: Proc. of the 24th Int. Distributed Computing Systems Conf. (2004)
102–109

7. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proc. of the 44th IEEE Symp. on Foundations of Computer Science.
(2003) 482–491

8. Guerrieri, A., Carreras, I., De Pellegrini, F., Miorandi, D., Montresor, A.: Dis-
tributed estimation of global parameters in delay-tolerant networks. Computer
Communications 33 (2010) 1472–1482

9. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conduc-
tance. In: Proc. of the 28th Symp. on Theoretical Aspects of Computer Science.
(2011) 57–68

10. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys.
Rev. E 71(3) (2005) 036113

11. Van Mieghem, P., Hooghiemstra, G., van der Hofstad, R.: A scaling law for the
hopcount in internet. Technical report, Delft University of Technology (2000)

12. Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random net-
works. Science 323(5920) (2009) 1453–1455

