
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Entelecheia: Detecting P2P Botnets in their Waiting
Stage

Huy Hang, Xuetao Wei, Michalis Faloutsos
University of California, Riverside

Email: {hangh, xwei, michalis}@cs.ucr.edu

Tina Eliassi-Rad
Rutgers University

Email: eliassi@cs.rutgers.edu

Abstract—Detecting botnets is a critical need for securing one’s
network and the Internet at large. Despite significant efforts, the
problem of botnet detection is still unresolved, especially, when
one wants to detect: (a) decentralized or peer-to-peer botnets, (b)
botnets that are in a non-active period known as the “Waiting”
stage, and (c) polymorphic bots that evade signature detection.
We propose a graph-based approach called Entelecheia that is
aimed at addressing all three challenges above.

The inspiration for our work started with the following
question: Can we detect botnets by examining long-lived and
low-intensity flows? Despite their intuitive appeal, right out of
the box solutions produce too many false positives. To make it
effective, we propose a graph-based solution that focuses on the
“social” behavior of the botnet. Specifically, we introduce: (a) the
concept of Superflow, to create a graph of likely malicious flows,
and (b) two synergistic graph-mining steps to cluster and label
botnet nodes. We conduct extensive experiments using real botnet
traces injected into real traffic traces. Our approach, Entelecheia,
produces a median F1 score of 91.8% across various experiments
and is robust to various setups and parameter values. Entelecheia
can be seen as a first step towards a new and more effective way
of detecting botnets.

Index Terms—botnet, security, community, graph-mining,
anomaly detection.

I. INTRODUCTION

The ability to detect botnets is a crucial component of a
network’s security system. A botnet is a group of compromised
computers collective controlled by a botmaster that often
engages in malicious activities for financial gain such as
facilitating spam campaigns or performing Distributed Denial
of Service (DDoS) attacks. At the height of its growth in 2007,
the spamming Storm botnet [9], [20] controlled upwards of
twenty million computers and gained enough computational
capability (in instructions per second) to rival a supercomputer
[22]. In March 2010, Microsoft obtained a restraining order to
take down the servers of the Waledac botnet, which infected
hundreds of thousands of computers and was capable of
sending between 1 and 2 billion spam messages per day [24].

Botnets have two interesting dimensions that are relevant in
our work: (a) botnet architecture and (b) botnet lifecycle.

a. Botnet architecture: There are two fundamental ap-
proaches in botnet architecture: (a) the centralized approach,
which uses Command and Control (C&C) channels such as
Internet Relay Chat (IRC) to receive instructions from a
single source, (e.g. R-Bot, Spybot, or Gaobot), and (b) the
decentralized approach, which utilizes a peer-to-peer protocol
to coordinate its operation (e.g. Storm and Nugache). The

Superflow
Graph Module

Filtering &
Clustering Module

Superflow
Graph G

Traffic Trace T

List of suspected
bots Hs

Fig. 1. Entelecheia has 2 modules: Superflow Graph and Filtering &
Clustering.

decentralized (or P2P) approach offers higher resiliency and
the botnets implementing it are harder to both detect and take
down.

b. Botnet lifecycle: There are different stages in the life-
cycle of a P2P bot [23]: (a) Infection, in which the bot
spreads, via email attachments, drive-by-downloads, etc; (b)
Rally, where the bot bootstraps itself by connecting with a
peer list; (c) Waiting, where the bot waits for the botmaster’s
command; and (d) Executing, in which it actually carries out
a command, such as a DoS attack. Each stage has its own
distinct behavior, as such customized solutions for each stage
can lead to more effective solutions.

We focus on the problem of detecting P2P botnets at
the Waiting stage with two requirements: (a) we assume no
signatures, or equivalently assume that the P2P bot has not
been seen before, and (b) we assume no seed information
through a blacklist of IPs. The Waiting stage is rather “quiet”
compared to the other stages, where more aggressive com-
munications takes place. During this particular stage of the
cycle, bots are known to maintain infrequent and low-intensity
communications with their peers compared to other traffic
[25]. It is this behavior that we quantify and exploit in our
solution.

To the best of our knowledge, no previous work addresses
the aforementioned problem in the challenging context de-
scribed above. Very few efforts focus on detecting P2P botnets
in their Waiting stage [7], [5]. The most relevant work is
BotMiner [7], which uses signatures and statistical properties
to detect botnets to in both Executing and Waiting stages.
However, it needs signature analysis and deep-packet inspec-
tion, which reduces its effectiveness when signature-matching

Networking 2013 1569697015

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2

is not an option, as per one of our problem requirements.
Other efforts detect botnets at the more visible Executing
stage [27], [15], [21], which dovetails with the detection of
DoS attacks [10]. Some earlier efforts focus on detecting
centralized botnets [3], [17] and modeling the behavior of
botnets at different stages [8], [7]. There has been much
work on application classification, which is a more general
problem. We provide a detailed discussion of previous work
in Section VI.

We propose Entelecheia,1 an approach for detecting peer-
to-peer botnets during their Waiting stage by exploiting their
“social” behavior. The driving insight for our work started
with this question: Can we detect botnets by focusing on long-
lived and low-intensity flows? Despite their intuitive appeal,
traditional anomaly detection tools such as [19] introduce
many false positives. To overcome this problem, we take
advantage of the information hiding in the network-wide
interactions of the nodes. Once we create the appropriate
graph, we develop graph-mining techniques on it to detect
bots. Our approach produces a median F1 score2 of 91.8%,
in a very challenging setting: (a) no signatures available, (b)
no initial seeding information, (c) P2P botnets, and (d) during
the Waiting stage.

Apart from being a stand-alone solution, we envision our
approach as an essential component in a network administra-
tor’s toolset against botnets.

Our key contributions are summarized below.
a. A novel graph-based behavior-focused approach. We

introduce Entelecheia, an effective approach for detecting bots,
the power of which lies in synthesizing: (a) an intuitive
observation on how bots operate, (b) the creation of graphs that
captures long-lived low-intensity flows, through the definition
of Superflows, and (c) two synergistic graph-mining steps to
cluster and label botnet nodes. First, we introduce the concept
of Superflows, one of the novelties of which is the focus on the
interactions between IP addresses only, i.e., using a 2-tuple, in-
stead of the 5-tuple of the common definition of flows. Second,
once the Superflow graph is created, we exploit the homophily
inherently present in the botnet traffic by identifying clusters
of nodes which exhibit high communication persistence.

b. Entelecheia detects botnets effectively. We evaluate
Entelecheia on real-world network traces that contained Storm
and Nugache [9], [20]. Our approach delivers a median F1
score of 91.8% on a dataset of 20 distinct network graphs, as
we explain in Section IV. In fact, the median precision rate
that Entelecheia obtained is 98.1%, which shows how accurate
Entelecheia is.

c. Entelecheia is robust to variability and statistical
“noise”. We show that Entelecheia is fairly robust for a wide
range of parameter values, natural variability, and statistical
noise, all of which are important for a practical deployment.

1The name stands for ENtrap Treacherous ELEments through Clustering
Hosts Exhibiting Irregular Activities.

2The F1 score is the harmonic mean of Precision and Recall rates. We
will show how to calculate all three metrics in Section IV.

t = 2t = 1 t = 3 t = 4 t = 7 t = 8

(A)

srcIP dstIP

(5, TCP, 6) (12, TCP, 21) (13, TCP, 21)

S1 S2 S3

t = 2t = 1 t = 3 t = 4 t = 7 t = 8

t = 1.5 t = 3.5

S1 S2

(B)

srcIP dstIP

(5, TCP, 6) (12, TCP, 21) (13, TCP, 21)

(11, UDP, 8)

Fig. 2. The 3-tuple above each flow indicates, in order, its source port,
protocol, and destination port. Given an allowable gap of 0.5 seconds
between the start and end times of the flows: (A) The three flows become
trivial Superflows. (B) The first three flows can be merged even though their
source ports, protocols, and destination ports are not identical.

Table I shows the recommended values and the ranges of the
parameters used in our experiments.

We intend to make our code and datasets available to the
community in order to contribute towards a systematic and
community-wide effort to botnet detection. We have seen first
hand that research on botnet detection could benefit greatly
from a structured approach that would provide: (a) easy
access to real and realistic traces and (b) the establishment
of benchmarks for the purpose of evaluating and comparing
detection methods.

The remaining of the paper is organized as follows: In Sec-
tion II, we formally define our novel concept of Superflows.
Section III showcases Entelecheia in detail and explains the
intuition behind each step that the algorithm makes. In Sec-
tion IV, we describe our experiments and the effectiveness of
Entelecheia. In Section V, we discuss deployment, advantages
and limitations of our method. Section VI presents previous
work and we conclude the paper in Section VII.

II. SUPERFLOWS: DEFINITIONS AND VIRTUES

We introduce Superflows, which helps us hone in on the
botnet behavior. Recall that a flow in the traditional sense
is defined by a time-stamped 5-tuple: <srcIP, dstIP,
srcPort, dstPort, protocol>. Intuitively, a Super-
flow is the maximal group of flows that satisfy the following
two criteria: (a) they are between the same pair of nodes
irrespective of port numbers or protocols and (b) they are close
in time. Two flows are close in time if their starting and ending
times are within Tgap, the interflow gap parameter.

Figure 2 demonstrates how Superflows are formed in an
intuitive manner. There are four steps to how Superflows are
constructed for a given trace:

Step 1: We identify flows using the standard definition of
a flow.

Step 2: In the beginning, every flow is considered as a trivial
Superflow.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3

(a) 5,000 hosts in WIDE (b) 13 Storm hosts (c) 82 Nugache hosts

Fig. 3. Botnet behavior exhibits long-duration and low-intensity as evident in (b) and (c). These scatterplots show duration versus volume of Superflows in
real data traces of backbone (a: WIDE) and botnet-only traffic (b: Storm) and (c: Nugache).

Step 3: We merge two Superflows into a larger Superflow
when both of the following clauses are satisfied:
• Clause 1: The two Superflows are between the same two

nodes regardless of their protocols and port combinations.
• Clause 2: The starting time of the second (later) Super-

flow is within the gapinterval, Tgap, from the end of the
first (earlier) flow.

Step 4: We repeat Step 3, until there are no more Superflows
to merge.

Consider two Superflows, S1 and S2, between the same two
nodes with starting (s) and ending (e) times: s1, e1, s2, e2.
The duration of S1 is d(S1) = e1−s1 and the duration of S2 is
defined likewise. For illustration purposes, let us assume that
S1 starts before S2. The second Clause shown above can be
represented by the condition: s2−e1 ≤ Tgap where Tgap ≥ 0.

Similarly, we define v(S1) to be the volume (in megabytes)
of the Superflow S1. If S1 can be merged with S2, the volume
v(S) of the resulting Superflow S is equal to v(S1) + v(S2).
Note that the starting time of the resulting Superflow S is now
s1 and the ending time is now e2. It also does not matter if
S2 starts before S1 ends because in such a case s2 − e1 ≤ 0
and by definition, 0 ≤ Tgap.

We next discuss why standard flows are less effective in
detecting botnets and present the virtues of Superflows.

a. The commonly-defined flows are less effective in detect-
ing botnets. Previous work [25] showed that using only stan-
dard flows does not provide high detection rates (only 87.5%
for Storm and 34.8% for Nugache). We will demonstrate in
Section IV that using Superflows raises detection accuracy
significantly.

Another drawback of standard flows is that in practice
flows are not uniquely defined. For example, different flow
extractors–such as CAIDA’s CoralReef, Wireshark’s TShark,
CERT’s YAF–generate different sets of flows on the same trace
because they have different definitions for a standard flow.
By grouping flows into Superflows, we remove some of this
variability and increase robustness.

b. Superflows capture the behavior of botnet traffic.
Figure 3 shows three heat maps. Each dot on a heat map is a
Superflow, its X coordinate is its duration in hours and its Y
coordinate is its volume in megabytes. Figure 3(a) shows the
scatterplot of the Superflows of a randomly selected 5000 hosts

in the WIDE traffic traces. Figure 3(b) and 3(c), respectively,
show the Superflows of the 13 Storm hosts and the 82 Nugache
hosts.

Figure 3 illustrates that regular hosts tend to produce Super-
flows with short durations and high volumes while malicious
hosts generate Superflows that live for hours and have very
low volumes. Opportunistic P2P bots communicate with their
peers as soon as the former comes online for as long as
possible in anticipation of commands from the botmasters.
Unsurprisingly, they would periodically send out keep-alive
messages to inform their peers that they are online and
awaiting instructions.

c. Superflows circumvent a bot’s effort to change its
communication ports. Upon inspection of the botnet traf-
fic, we saw that unlike the Storm bots, which reused the
same source-destination port combination, the Nugache ones
changed theirs. So, if we simply grouped flows according to
their classic 5-tuple, we would not be able to observe long-
lived flows from the Nugache bots because their flows would
be put into different groups due to their different source-
destination port combinations. Using the full 5-tuple would
not affect the detection rate of Storm bots, but it would hinder
the effort of identifying the Nugache ones.

Using only the tuple <srcIP, dstIP> as the key to
flows is a more natural and accurate manner to group the
flows together because it bypasses a bot’s attempt to change
its ports—like Nugache does—and gets to the core of the
communication itself: who is talking to whom? Furthermore,
when a legitimate long-lived, low-volume flow occurs, it is
likely to be the result of a keep-alive communication between a
machine and a server (such as a MSN Live Messenger server).
These are continuous TCP flows where the protocol and the
source and destination ports do not change. In such cases,
source and destination IPs are enough to uniquely identify
them.

d. Automating the Tgap parameter value selection. The
value of the gap, Tgap, is crucial for using Superflows in
practice. As a rule-of-thumb, the value for Tgap should not
be so large as to unreasonably consolidate every flow into a
Superflow and not so small where flows are not merged into
Superflows at all. We automate the selection of Tgap by setting
it to the median interflow time of the data trace. We chose the

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4

median because an inspection of the distribution of Interflow
Times showed us that the existence of rare but extremely
large values skewed the value of the mean and rendered it
unrepresentative of the behavior of Interflow Times.

Specifically, given two flows S1, S2 in Step 4, we say that
the Interflow Time between them is IT (S1, S2) = s2 − e1,
where s2 is the starting time of the second flow and e1 is
the ending time of the first. If S2 starts before S1 ends,
IT (S1, S2) = 0.

To select a value for Tgap, we collect all Interflow Times
between all pairs of successive flows between every pair of
communicating hosts and use the median value for Tgap. This
way, Tgap is not a free parameter, as its value adapts to the
data trace at hand.

III. ENTELECHEIA: DETECTING P2P BOTNETS

Our approach for detecting botnets can be decomposed
into two modules that work synergistically to (a) model the
network-wide interactions of the hosts in the network as a
graph, (b) focus on likely botnet activities, and (c) identify
clusters of potentially infected machines. We provide an
overview of the modules below.

1. Superflow Graph Module: This module is responsi-
ble for creating the Superflow Graph in which each node
represents a host in the network and each edge is a vector
of attributes that summarizes all of the Superflows sent
and received between a pair of source and destination IPs.
This Superflow Graph represents the social communication
behavior between hosts.

2. Filtering and Clustering Module: This module first
filters out high-volume edges since it is unlikely that they
represent Waiting-stage botnet activities. As Figure 3 showed,
the volumes of the Superflows from infected hosts tend to be
much lower than those from benign ones. By design, P2P bots
would form a web of peers among whom the connections are
long-lived. If we examine the Superflow Graph and assign
as edge weights the total duration of the Superflows (αd)
between the two nodes then clustering nodes together by their
connectivity would group infected hosts into communities with
a high percentage of long-lived edges.

Below are the detailed descriptions for the aforementioned
modules:

A. Superflow Graph Module

The input for this module is a network trace N = 〈H,F 〉
where H is the set of all hosts hi, for i = 1, 2, ..., |H|
in the network and F = {f1, f2, ..., f|F |} is the set of all
conventionally defined 5-tuple flows. The output is the Super-
flow Graph, which represents node-interactions with respect to
certain attributes of interest. Algorithm 1 presents the pseudo
code for this module. Below, we specify the attributes of
interest and offer rationale for their selection.

1) Identifying Superflows. We parse the given network
trace N to aggregate flows into Superflows. This process
involves: (a) extracting the set of flows F from the data trace,

Algorithm 1 Superflow Graph Module.
Require: Trace N = 〈H,F 〉, Tgap.

1: E ← {}
2: for all pairs of communicating hosts hi and hj do
3: Extract Fij , the flows between hi and hj
4: Construct Sij = {Sij

1 , S
ij
2 , ..., S

ij
l }, the set of Su-

perflows originating from hi to hj , using the Tgap
parameter.

5: αv ←
l∑

k=1

v(Sij
k)

6: αd ←
l∑

k=1

d(Sij
k)

7: edge eij ←< hi, hj , αv, αd >
8: E ← E ∪ {eij}
9: end for

10: return GS = 〈H,E〉

and (b) merging them into Superflows using Tgap as per the
definitions given in the previous section.

2) Reporting Superflow properties. At the moment, we
focus on two Superflow attributes that are sufficient to enable
effective botnet detection: Volume and Duration. Intuitively,
the Volume αv of an edge between any pair of nodes is
the sum of volumes (of the Superflows) between those two
nodes throughout the traffic trace. The Duration αd of an edge
between any pair of nodes is the sum of all durations (of the
Superflows) between those two nodes throughout the traffic
trace. Given that there are n Superflows between hosts A and
B, the Volume and Duration attributes of the edge AB are
respectively:

αv =

n∑
i=1

v(Si), αd =

n∑
i=1

d(Si)

where v(Si) is the volume of the Superflow Si and d(Si) is
its duration3.

In addition, one could expand the number of attributes to
more than Volume and Duration. In a more general form,
Line 7 of the algorithm can be rewritten as eij ← 〈hi, hj , A〉,
where A is a vector of attributes of interest, which could
include one attribute for the total number of packets, another
for packet size variation, etc.

B. Filtering and Clustering Module

Algorithm 2 explains the steps for the Filtering and Clus-
tering module. At a high level, the algorithm operates in three
steps:

a. Filtering out edges in the Superflow Graph that are
unlikely to be botnet activity. In this step, we want to focus
on edges with the profile of P2P-bot behaviors. We only use
the volume attribute αv in this stage, although other attributes
of interest can be utilized. In our initial experiments, we have

3See Section II

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

Symbol Name Recommended value Range
Tv Volume threshold 0.1 MB 0.01MB ≤ Tv ≤ 0.1MB (Figure 3)
Td Duration threshold 1 hour 1 sec ≤ Td ≤ 1 hour

TABLE I
THE PARAMETER RANGES IN OUR EXPERIMENTS. SEE TEXT FOR SELECTION PROCEDURE.

Algorithm 2 Filtering and Clustering Module.
Require: Superflow Graph GS = 〈H,E〉, Volume threshold

Tv , Duration threshold Td.
{Select low-volume edges}

1: Eselect = {edge e ∈ E: Volume(e) ≤ Tv }
2: R← Ratio of edges e in GS where d(e) ≥ Td

{Cluster the selected graph using Louvain}
3: C ← cluster(G(H,Eselect),Louvain)
4: Hs ← {}

{Find suspicious clusters}
5: for all c = 〈Hc, Ec〉 ∈ C do
6: Suspectc = {e ∈ Ec : Duration(e) ≥ Td}

{Calculate percentage of long-lived edges}

7: r ← |Suspectc|
|Ec|

8: if r > R then
9: Hs ← Hs ∪ {nodes of edges in Suspectc}

10: end if
11: end for
12: return Hs

examined other selection methods such as first selecting on
duration and a combination of volume and duration, but those
alternatives did not produce any performance gain.

Even when considering only volume, the selection process
can be predicated on other attributes. For instance, one could
envision different thresholds for TCP and UDP connections.
More in-depth discussion on how to select a value for Td and
how its effectiveness varies according to the selection can be
found Section IV.

b. Clustering. The choice of which graph-clustering (a.k.a
community discovery) algorithm to use is a parameter into our
approach, given that many algorithms already exist in the liter-
ature [6]. We selected the Louvain algorithm [4] to cluster the
Superflow Graph because (a) its notion of a community (with
high intra-link density) is well-suited for botnet detection; (b)
it is parameter-free; and (c) it is computationally efficient with
runtime proportional to |V | log |V |, where V is the set of
nodes in the graph. Louvain outputs a set of communities
C = {c1, c2, ..., cp}, where community ci = 〈Hci , Eci〉. Hci

is the set of hosts and Eci is the edges exclusively within the
nodes of cluster ci. In this paper, we use the words community
and cluster interchangeably.

c. Identifying suspicious clusters and nodes. At this step,
the algorithm decides whether a cluster is likely to contain a
group of infected hosts by examining the Duration attributes of
the edges within the cluster. For each cluster c, we collect all
edges e whose αe

d ≥ Td into the set Suspectc. We next divide
the cardinality of Suspectc by the cardinality of Ec, which is
the set of all edges found exclusively inside the community c.

This gives us a ratio r that quantifies the presence of long-lived
edges in the community.

We say that the cluster c is suspicious if r > R. Recall
that R is the percentage of long-lived edges as determined
by the parameter Td over the entire Superflow Graph GS . In
our experiments, we varied the value for the threshold R by
multiplying it with a modulator value ranging from 1.5 to 3
to account for statistical variations. While increasing R in this
particular fashion improves the precision of our method by a
very small amount, the recall rate decreases gracefully as the
value of the modulator rises. More details can be found in
Section IV.

Careful identification of bots within a cluster. Our initial
approach labeled all nodes in the suspicious clusters as ma-
licious. This choice produced many false positives. So, we
modified our approach to a two-step process for identifying
likely P2P bots in a suspicious cluster. First, we identify
suspicious clusters, and within those clusters, we label nodes
as malicious only if they transmitted or received long-lived
flows.

IV. EXPERIMENTAL EVALUATION

This section is divided into three parts where we introduce
the setup of our experiments as well as the datasets we use,
the two baseline approaches we evaluated to provide contrast
with Entelecheia, and finally the effectiveness of Entelecheia
itself. In a nutshell, we observe the following:

(i) Our approach is highly accurate (with a median F1-score
of 91.8%) in detecting botnets during their Waiting stage.

(ii) Using the 2-tuple is critical for high detection accuracy.
(iii) Our approach is robust for a wide range of parameter

values and statistical “noise”.

A. Experimental Setup

Baseline algorithm: 2-tuple and 5-tuple versions. In
our evaluation, we use two reference methods as baselines;
and determine whether detecting bots is as easy as simply
classifying all long-lived low-intensity connections as botnet
traffic.

Our baseline algorithm works as follows. Given a duration
threshold and a volume threshold, we label a host as a P2P bot
if it produces a Superflow S that is longer than the duration
threshold and smaller in volume than the volume threshold. We
use two variations of the baseline algorithm, which differ on
the communication information used: 2-tuple vs. 5-tuple flows.
The 2-tuple Baseline approach operates on Superflows as
defined in Section II. The 5-tuple Baseline approach operates
on 5-tuple flows that are aggregated in the time dimension
similar to Superflows (see Section II also).

In this study, we evaluate the following three methods:
(a) the 5-tuple Baseline approach, (b) the 2-tuple Baseline
approach, (c) and Entelecheia

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

1 sec
10 sec

100 sec
0.1 hr

0.5 hr
1 hr

1.5 hr
2 hr

2.5 hr
3 hr

Duration threshold Td

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
S

co
re

Nugache and Storm

(a) F1 Score, Baseline, 5-tuple

1 sec
10 sec

100 sec
0.1 hr

0.5 hr
1 hr

1.5 hr
2 hr

2.5 hr
3 hr

Duration threshold Td

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
S

co
re

Nugache and Storm

(b) F1 Score, Baseline, 2-tuple

Fig. 4. F1-score versus Td (the threshold of what constitutes a long-lived
communication) for the two Baseline approaches that use the 5-tuple and
2-tuple definitions. Tv = 0.1 MB throughout all experiments.

Parameter selection. Table I lists our parameters (namely,
Tv and Td), their definitions, their recommended values, and
the range of values tested for each parameter. To select
appropriate values for our parameters, we conducted extensive
experiments. We use Tv = 0.1 MB for defining volume-intense
flows, which proved to be most effective in our experiments.
With respect to the duration threshold Td, we provide results
for various values ranging from 1 second to 3 hours. Td = 1
hour balances precision and recall rates, offering very high
performance results.

1) Datasets and Analysis Tool: WIDE: From the MAWI
Traffic Archive [2], we downloaded a trace of 24 continuous
hours from a Trans-Pacific backbone line between the U.S.
and Japan on 03/03/2006 (sample point B). The IPs are anony-
mized and no packet payloads available. There are 3,528,849
unique IPs and 82,380,945 flows. 89% of all flows are TCP
and the rest are UDP. We chose the WIDE dataset because (a)
it is freely available online and (b) the length of the dataset
spans an entire 24-hour period, which gives us the ease of
integration with the Storm and Nugache botnet traces.

Storm and Nugache traces: The real-world malicious net-
work traces that we used in our experiments contain observed
data from 13 hosts infected with Storm and 82 hosts with
Nugache during a period of 24 hours. The IPs in these traces,
which are the same ones used in [7], are not anonymized. In

these bot traces, all spamming activities have been blocked
to avoid liability issues [25]. As a result, we only see the
communication traffic between the bots as they exhibit social
behaviors more closely associated with their Waiting phase
than an active stage of propagation or attack.

Analysis tool: We utilize ARGUS [1] (with its default pa-
rameter settings) to process and aggregate packets into flows.
We chose this tool because it is widely used and frequently
maintained by the developers. Recall that we aggregate flows
into Superflows, rendering our approach less vulnerable to
the fact that different flow extractors may produce different
amounts of flows due to their own definition of a flow and
various parameter settings.

2) Generating evaluation traces: We created traces for our
experiments by merging the botnet and the backbone traces.
At a high level, the process may sound simple; but there are
subtleties that must be addressed. In this section, we explain
our process and assumptions to make the detection as unbiased
and challenging as possible for stress-testing our method.

Overview: We generate 40 different graphs—each compris-
ing of 100-200K nodes—and partition them into 2 datasets:
D1 and D2, each with 20 graphs. Our goal is to identify 91
malicious nodes4 among 5000 benign nodes while making sure
that we respect the bipartite property of the WIDE trace.

a. Respecting the bipartite nature of the graphs. In
overlaying the malicious traces on the WIDE traces, we have
to respect their bipartite nature since there are two clear sides
in each dataset. A practical deployment of Entelecheia will
most likely be on a network of the same property. We envision
a detection algorithm to run at a firewall or a backbone link, so
we have taken extra care to map all the nodes of each bipartite
component to one bipartite component.

b. Removing the “extra” connectivity from the bot
traces. Since the initial botnet traces contain both internal
and external edges5, the graph representing those traces is not
bipartite. In our experiments, we remove the internal edges
to ensure that the graph formed by overlaying the malicious
traces on the WIDE ones remains bipartite. Note that by doing
so, we make the detection more difficult for our algorithm, but
more similar to an actual deployment of our solution.

c. Sampling the initial trace. Since the backbone trace
is large, our first thought was to select a random subset or
a time-based interval. Instead, we decided to ensure that the
benign graph is connected. The rationale is simple: the more
disconnected the graph of the benign nodes is, the easier it is
for our algorithm to discover strongly connected communities
of malicious nodes. It is for this reason that we need to sample
a sufficiently large trace from the initial WIDE traces that
would form a graph in which the nodes are connected.

To accomplish this, we start from a random node in the
graph representing the full 24-hour WIDE traces and collect
nodes via a breadth-first search until we obtained at least a
set of 5000 distinct nodes on the same side of the graph to

4There is an overlap between the 13 Storm nodes and 82 Nugache nodes.
5Internal edges represent the connections among the infected nodes.

External edges are the connections that go out to the rest of the Internet.

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

1 sec
10 sec

100 sec
0.1 hr

0.5 hr
1 hr

1.5 hr
2 hr

2.5 hr
3 hr

Duration threshold Td

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F1

S
co

re

Nugache and Storm

(a) F1 Score

1 sec
10 sec

100 sec
0.1 hr

0.5 hr
1 hr

1.5 hr
2 hr

2.5 hr
3 hr

Duration threshold Td

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

Nugache and Storm

(b) Precision

1 sec
10 sec

100 sec
0.1 hr

0.5 hr
1 hr

1.5 hr
2 hr

2.5 hr
3 hr

Duration threshold Td

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

Nugache and Storm

(c) Recall

Fig. 5. Entelecheia’s Precision, Recall, and F1 scores.

preserve the trace’s bipartite nature. The resulting evaluation
trace is comprised of all flows in the 24-hour period of
the original trace that involve those 5000 nodes and their
neighbors. This typically leads to the formation of a graph
with a population of between 100K-200K nodes. Typically,
the observed average node degree of a sampled graph is about
3 per node, but there is some variation.

This host selection process is repeated for a total of 40 times
(starting with a different random node each time) to produce a
set of 40 different traces. Each trace is then overlaid with the
botnet traffic in such a way that the known malicious hosts are
mapped randomly on the aforementioned 5000 nodes so that
the bots are always on the same side of the resulting network
graph. Half of those 40 traces (D1) are used as a training set
to help us fine-tune Entelecheia and select appropriate values
for its parameters. The other half forms the dataset D2 that
is used to test the algorithm’s performance. Each data point
(or box) on any boxplots thus represents the median and 95%
confidence interval of 20 runs unless otherwise stated. We use
Precision, Recall, and F1-scores as our evaluation measures
where:

Pr =
TP

TP + FP
Re =

TP
TP + FN

F1 = 2× Pr× Re
Pr + Re

TP stands for True Positives, FP for False Positives, and FN
for False Negatives.

There are two assumptions that we made for the evaluation
of Entelecheia:

Assumption 1: For our validation, we only count as True
Positives the nodes that we identified as bots who are among
the 13 Storm and 82 Nugache bots even though their direct
neighbors in the botnet traces are likely to be malicious hosts
themselves.

Assumption 2: Given Assumption 1, we further assume
that all the nodes in WIDE are benign and report as a False
Positive the classification of any such node as a P2P bot.

We revisit Assumption 2 later in Section IV-C.

B. Observations on the Baseline Approaches

Figure 4 shows the performance of the two baseline ap-
proaches on D1. Each data point represents the median of 20
runs and the box indicates the median of the top half (upper
quartile) and the median of the lower half (lower quartile).

The slanted lines on the boxes indicate the 95% confidence
interval around the median.

Observation 1: Using the 2-tuple level of aggregation for
Superflows captures botnet behavior more accurately than the
5-tuple. One reason is that using the 5-tuple yields a much
lower Recall rate since the Nugache worm changes its source
and destination port combinations quite often.

Observation 2: The Baseline approaches perform poorly on
D1 for every value of the duration threshold. The F1-score for
the 2-tuple Baseline approach never exceeds 40%. Compared
with the excellent performance of Entelecheia (see Figure 5),
this result yields two conclusions. First, there exists a large
amount of long-lived communications in the WIDE trace.
Second, simply flagging long-lived low-volume Superflows is
not sufficient to detect infected hosts.

C. Evaluating Entelecheia

Running Entelecheia on D1. We first evaluate the perfor-
mance of Entelecheia with various values for the parameter
Td to obtain the best range of values for it. Figure 5 shows
the classification performance versus the duration threshold Td
that defines a long-lived Superflow.

We observe the expected tradeoff between Precision and
Recall. Precision improves as the time threshold Td increases,
while Recall decreases. This observation further confirms that
P2P bots form communities with long-lived, low volume
connections. We select Td = 1 hour as the recommended
value for Td since it is in the middle of a plateau where the
performance is stable.

Running Entelecheia on D2. Having picked the value
for Td from our experiment on the dataset D1, we now run
Entelecheia on the second set of graphs, D2 to evaluate its
performance. The results are shown in Figure 6. Note that the
median Precision rate is 98.1%, which shows that Entelecheia
delivers highly accurate results.

The True False Positives: Detecting existing botnet traf-
fic. We investigated Entelecheia’s False Positives, namely the
source-destination pairs flagged as suspicious, which did not
correspond to injected botnet flows. We observed that the flows
were directed toward two TCP ports of the destination IPs:
139 and 445. Interestingly, these two ports are associated with
security risks on Windows systems. First, threats associated
with port 130 include the IRC centralized Spybot, while

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

8

Precision Recall F1 Score
Td = 1 hour (Recommended settings)

0.0

0.2

0.4

0.6

0.8

1.0
V

a
lu

e

Performance of Entelecheia

Fig. 6. Performance of Entelecheia on the Test set (D2): 20 new graphs.
Note that the median Precision rate is 98.1%.

worms, such as Sasser, compromised systems via port 445
when it is left open. We are convinced that these FPs are
of other previously unknown malicious activities, and argue
that the reported accuracy would be higher if we had ground
truth for the trace. In the experiment with the largest number
of False Positives, we have 26 FPs initially, from which 6 (or
23%) are manually verified to be bots or engaging in malicious
activities.

The False Negatives. Upon further inspection, we noticed
that six of the bots, (6.6% of all bots), that escaped Entelecheia
produced very few flows. This is due to two reasons. First,
most of their peers were not online. Second, the ones that
were online communicated with the other bots for less than
an hour before they went offline. This in turn created short-
lived Superflows, which is the reason why Entelecheia could
not detect them.

We argue that these infected machines, due to their being
disconnected from their peers, are not in the Waiting stage
and their having eluded Entelecheia does not undermine
Entelecheia’s effectiveness because of two reasons: 1) Most
of their peers were not online and 2) the ones that were
online communicated with the bots for less than an hour
before they went offline (the average volume for all of them
during the day is 55 bytes). The bots, as a result, produced
short-lived Superflows, which is the reason why Entelecheia
couldn’t detect them. We argue that these infected machines,
due to their being disconnected from their peers, are not in
the Waiting stage and their having eluded Entelecheia does
not undermine Entelecheia’s effectiveness.

V. DISCUSSION

Here we discuss several deployment issues, limitations, and
ways to improve our approach.

a. Evading Entelecheia: It is interesting to consider how a
botmaster could avoid detection by Entelecheia. Such a case
would mean a combination of the following three approaches:
(a) non-collaborative operation, (b) short-lived connections,
or (c) high-volume connections. First, abandoning the non-
collaborative operation would be a triumph for Entelecheia,
given that decentralized P2P botnet emerged as the answer

to the problem posed by the methods designed to expose
centralize botnets. Second, changing the last two properties
increases the risk of their behavior being caught by an anomaly
detection algorithm, which observes changes in the behavior
of nodes. In addition, the collaborative operation depends
strongly the long-lived connections between peers, therefore
it is difficult to change this behavior.

b. Deploying Entelecheia: practical tips and limitations.
Our approach has only two and quite intuitive parameters, such
as the thresholds for duration and traffic volume. We are con-
fident that the proposed values provide a good starting point
and some minor fine-tuning could be beneficial depending on
the deployment location and properties of the network. The
approach is lightweight as it operates at the packet header
level and retains only high level information of the interaction
(as opposed to signature based methods that require expensive
deep packet inspection capabilities).

In a practical deployment, we envision our approach as a
component in a comprehensive security system. For instance,
it could serve as the seeding phase for other monitoring tools
and approaches. More precisely, Entelecheia can be deployed
to identify an initial set of bots, which will be used by another
module to extract signatures.

While the anonymized and payload-free WIDE traces pre-
vent us from knowing whether P2P traffic already exists there,
we argue that legitimate P2P traffic are high-volume in nature
and will be filtered out before the Clustering step. We believe
our approach will still work with centralized botnets because
their traffic will simply form easy-to-detect clusters with high-
duration and low-volume flows.

VI. RELATED WORK

BotMiner [7] is the closest work to our research. It identifies
botnets by looking at the bots’ activities during different
phases of its life cycle. BotMiner has two main components:
1) a C-Plane monitor that converts flows into combined,
vectorized records (c-flows) and clusters the records to capture
command-and-control traffic and 2) an A-Plane monitor built
on the Snort engine[19] that clusters malicious activities (such
as spamming and scanning) through Deep-Packet Inspection
and signatures. Entelecheia has two advantages over BotMiner.
First, Entelecheia does not require signature examination. Sec-
ond, Entelecheia captures temporal information in the flows,
which BotMiner’s c-flows do not. Third, Entelecheia does not
rely on port information in the flows, which can be easily
manipulated by botmasters.

In [16], Li et al. presented their analysis on the prevalence
of scanning/probing patterns of bots and presented a statistical
approach designed to detect malicious hosts when they are
actively probing other hosts in order to discover vulnerabilities.
This can be considered a detection method for the Executing
phase. Entelecheia instead focuses on the Waiting one.

In [25], Yen and Reiter introduced the concepts of Traders
(genuine P2P users) and Plotters (compromised machines).
They presented a way to distinguish the two, which uses the
classical 5-tuple definition of a flow. Their approach achieves a

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

9

Storm-bot detection rate of 87.5% and Nugache-bot detection
rate of 34.8%. We on average achieve a 100% detection rate
for Storm and 87% for Nugache.

Zhang et. al. [26] proposes a scheme to separate stealthy
P2P attack traffic from benign P2P ones by utilizing flow
statistics to create statistical fingerprints for flow clusters. They
do not use connectivity in their clustering step, presumably
because it would complicate the process and makes it harder to
separate P2P traffic from other types. Entelecheia utilizes both
flow statistics and connectivity to deliver accurate detection
results.

Nagaraja et al. [18] propose a probabilistic detection scheme
that partitions the graph into subgraphs and designate clusters
with more homogeneous probability values as malicious. Ente-
lecheia uses the Superflow graph and finds communities based
on the standard notion of a community in social networks,
which is more analogous to P2P botnets social in nature.

Graph-based approaches have successfully been used in
problems where the goal is to identify the applications that
generate traffic [13], [14], [11], [12]. Entelecheia focuses on a
different problem, namely, detecting botnets in their Waiting
stage.

VII. CONCLUSION

We propose a novel, simple, intuitive, yet effective ap-
proach for detecting P2P botnets during their Waiting stage
by identifying their “social” behavior. We operate under the
following two requirements: (a) we assume no signatures or
prior knowledge; and (b) we assume no seed information
through a blacklist of IPs. Our key insight is to exploit the
inherent behavior of botnets by examining long-lived and low-
intensity flows. Identifying what constitutes as a long-lived and
low-intensity flow is not a simple task, as we demonstrated
through two baseline algorithms.

The algorithmic novelty of Entelecheia is two-folds: (a)
the concept of Superflow (which filters out flows that are
unlikely to be malicious) and (b) a graph-based behavioral
approach (which employs clustering techniques). We stress-
test our approach using real botnet traces from the Storm and
Nugache botnets injected into real traffic traces. Our approach
produces a median F1 score of 91.8%. It is robust to parameter
values and variations of the setup. This detection performance
is noteworthy since our IP network has less than 2% malicious
nodes.

Our work can be seen as a first step in developing
behavioral-based approach, that can lead to a series of tech-
niques for detecting botnets without signatures and during
their more quiet Waiting stage. Moreover, Entelecheia is
complementary to other botnet detection approaches such as
IP blacklists, deep packet inspection, and detection methods
in other stages of their lifecycle.

REFERENCES

[1] Argus: Auditing network activity. http://www.qosient.com/argus/.
[2] Mawi traffic archive. http://mawi.wide.ad.jp/mawi/samplepoint-B/

20060303/.
[3] BINKLEY, J. R., AND SINGH, S. An algorithm for anomaly-based botnet

detection. In Proc. of USENIX SRUTI (July 2006).

[4] BLONDEL, V., GUILLAUME, J., LAMBIOTTE, R., AND LEFEBVRE, E.
Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment (2008).

[5] COSKUN, B., DIETRICH, S., AND MEMON, N. Friends of an enemy:
identifying local members of peer-to-peer botnets using mutual contacts.
In Proc. of ACSAC 2010, ACM, pp. 131–140.

[6] FORTUNATO, S. Community detection in graphs. Physics Reports 486,
3 (2010).

[7] GU, G., PERDISCI, R., ZHANG, J., AND LEE, W. Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection. In Proc. of Usenix Security 2008, USENIX Association,
pp. 139–154.

[8] GU, G., PORRAS, P., YEGNESWARAN, V., FONG, M., AND LEE,
W. Bothunter: Detecting malware infection through ids-driven dialog
correlation. In Proc. of 16th USENIX Security Symposium (2007),
USENIX Association, p. 12.

[9] HOLZ, T., STEINER, M., DAHL, F., BIERSACK, E., AND FREILING,
F. Measurements and mitigation of peer-to-peer-based botnets: A case
study on storm worm. In Proc. of LEET 2008.

[10] HUSSAIN, A., HEIDEMANN, J., AND PAPADOPOULOS, C. A framework
for classifying denial of service attacks. In Proc. of SIGCOMM (August
2003).

[11] ILIOFOTOU, M., GALLAGHER, B., ELIASSI-RAD, T., G., X., AND M.,
F. Profiling-by-association: A resilient traffic profiling solution for the
internet backbone. In Proc. of ACM CoNEXT (Dec. 2010).

[12] ILIOFOTOU, M., KIM, H., FALOUTSOS, M., MITZENMACHER, M.,
PAPPU, P., AND VARGHESE, G. Graption: A graph-based p2p traffic
classification framework for the internet backbone. Computer Networks
(2011).

[13] ILIOFOTOU, M., PAPPU, P., FALOUTSOS, M., MITZENMACHER, M.,
SINGH, S., AND VARGHESE, G. Network Monitoring using Traffic
Dispersion Graphs. In Proc. of IMC (2007).

[14] JIN, Y., SHARAFUDDIN, E., AND ZHANG, Z. Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition. In Proc. of SIGMETRICS 2009 (2009), ACM, pp. 49–60.

[15] JOHN, J. P., MOSHCHUK, A., GRIBBLE, S. D., AND KRISHNA-
MURTHY, A. Studying spamming botnets using botlab. In Proc. of
NSDI 2008.

[16] LI, Z., GOYAL, A., CHEN, Y., AND PAXSON, V. Towards situational
awareness of large-scale botnet probing events. In IEEE Transactions
on Information Forensics & Security (March 2011).

[17] LIVADAS, C., WALSH, R., LAPSLEY, D., AND STRAYER, W. T. Using
machine learning techniques to identify botnet traffic. In Proc. of WoNS
(2006).

[18] NAGARAJA, S., MITTAL, P., HONG, C., CAESAR, M., AND BORISOV,
N. Botgrep: Finding p2p bots with structured graph analysis. In Proc. of
the 19th USENIX conference on Security (2010), USENIX Association.

[19] ROESCH, M., ET AL. Snort: Lightweight intrusion detection for
networks. In Proc. of LISA (1999), pp. 229–238.

[20] STOVER, S., DITTRICH, D., HERNANDEZ, J., AND DIETRICH, S.
Analysis of the storm and nugache trojans: P2p is here. USENIX;login
32, 6 (2007), 2007–12.

[21] STRINGHINI, G., HOLZ, T., STONE-GROSS, B., KRUEGEL, C., AND
VIGNA, G. Botmagnifier: Locating spambots on the internet. In Proc.
of Usenix Security 2011.

[22] TUNG, L. Storm worm: More powerful than blue gene? http://www.
zdnet.com/storm-worm-more-powerful-than-blue-gene-3039289226/.

[23] VACCA, J. Computer and Information Security Handbook. Morgan
Kaufmann, 2009.

[24] WHITNEY, L. With legal nod, microsoft ambushes waledac botnet. http:
//news.cnet.com/8301-1009_3-10459558-83.html.

[25] YEN, T., AND REITER, M. Are your hosts trading or plotting? Telling
p2p file-sharing and bots apart. In Proc. of ICDCS 2010, IEEE, pp. 241–
252.

[26] ZHANG, J., PERDISCI, R., LEE, W., SARFRAZ, U., AND LUO, X.
Detecting stealthy p2p botnets using statistical traffic fingerprints. In
Proc. of DSN (2011), IEEE.

[27] ZHAO, Y., XIE, Y., YU, F., KE, Q., YU, Y., CHEN, Y., AND GILLUM,
E. Botgraph: Large scale spamming botnet detection. In Proc. of NSDI
2009.

9

