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Abstract—Software-Defined Networks (SDN) can be seen as a
promising alternative to achieve the long-awaited power efficiency
in current communications systems. In these programmable
networks a power-aware mechanism could be easily implemented
leveraging the capabilities provided by control and data plane
separation. For such purpose, this paper proposes a novel solution
minimizing the number of active elements required in an SDN
with multiple controllers and in-band control traffic. In order
to provide a complete and fine-grained strategy, this proposal
comprises two crucial modules: GrIS, a green initial setup and
DyPAR, a dynamic power-aware routing. Besides being compati-
ble with SDN environments without a dedicated control network,
the proposed strategy is able to handle demanding traffic arrival
without degrading the performance of higher priority traffic.
Simulation results show that our heuristic approach allows to
obtain close-to-optimal power savings with differences under 8%.
Moreover, comparison with existing related methods using real
topologies validates the improvements achieved by our solution
in terms of power efficiency and performance degradation
avoidance. For instance, after routing all the incoming traffic, a
reduction of power consumption of up to 26.5% and an increase
of allocated demands of up to 26.7% can be reached by our
solution.

I. INTRODUCTION

Energy consumption concern in communication systems has
currently attracted a great deal of attention from research
community due to the exponential demand growth and the
ever-increasing number of connected devices [1]. According
to [2] by 2025 the global Internet will be responsible for more
than 10% of the world’s electricity consumption. Given that
in practice power consumption of network equipment is not
in proportion with their traffic load, putting unused network
elements into sleep mode (i.e. a low-power state) is an effective
and widely accepted strategy to decrease the consumption of
data networks [3].

In this context, Software-Defined Networking (SDN) is a
very well-suited architecture to perform power-aware routing
and manage the state of unused switch interfaces in a coordi-
nated and centralized way. The basic idea of SDN [4] -control
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and data planes separation- makes network environments more
manageable. The logically centralized control plane in SDN
provides a global knowledge of the network state information.
Moreover, it is responsible for managing network tasks and
perform device programming. Meanwhile, interconnection de-
vices only follow the rules set by the controller to forward
the traffic. Therefore, the implementation of a power-aware
solution in the control plane is a valuable opportunity to solve
the power consumption problem in data networks, making it
easier than with classical hardware-dependent standards.

Despite consistent efforts to improve the network power

efficiency, power-aware techniques may lead to performance
degradations. Inspired by this reality, this paper introduces a
new power-aware strategy combining a control plane config-
uration with a dynamic routing for an SDN architecture. This
solution dynamically reduces the number of active nodes and
links required to manage changing traffic patterns. Instead
of restricting the potential of power-aware solutions to low-
loaded environments, this work proposes a more fine-grained
strategy minimizing the power consumption while avoiding
the performance degradation of higher priority traffic.

Throughout this work we consider an SDN architecture with

multiple controllers and in-band control traffic [5]. In this
operational mode, links are shared between data and control
plane traffic. Hence, the proposed power-aware routing can be
applied also in cases when implementing a dedicated control
network is not feasible either for physical or cost-related
restrictions. In backbone networks this is a more realistic
scenario since additional links dedicated to directly connect
controllers and forwarding devices, are impractical and cost-
inefficient. Specifically, the major contributions of this work
are as follows:

o An Integer Linear Problem (ILP) is formulated to opti-
mize the number of active nodes and links in SDN with
multiple controllers and in-band control traffic.

« A novel power-aware mechanism is proposed to allocate
traffic demands in real time, reducing power consumption
and performance degradation of higher priority traffic.

« Real topologies, as well as existing related proposals, are
used to validate achieved improvements.



II. RELATED WORKS

Throughout recent years the power consumption of com-
munication networks has been extensively treated and several
solutions focused on reducing the number of active elements
have been proposed. For instance, Bianzino et al. [6] aim
to find the network configuration that minimizes the network
energy consumption, modeled as the sum of the energy spent
by all nodes and links carrying traffic. To achieve this, they
formulated an optimization problem for finding minimum-
power network subsets assuming the existence of traffic level
with known daily behavior. Therefore, an accurate prediction
of incoming traffic is required.

An energy-aware routing and traffic management solution is
proposed in [7] to reduce the energy consumption, determined
as the number of active Open-Flow switches in the network.
For this, a low complexity algorithm is presented using, for
each pair of endpoints, a pre-computed set of shortest paths
to select the route that minimizes the number of switches that
become active after allocating the flow. Although this proposal
allows real-time operation routing flows sequentially, only
low-loaded nighttime traffic is considered, failing to exten-
sively examine the implications of more demanding scenarios.

The authors of [8] presented the design of an Energy Mon-
itoring and Management Application (EMMA) to minimize
energy consumption in SDN-based backhaul networks. They
formulated this problem as a non-linear optimization model
and proposed heuristic algorithms for the dynamic routing of
flows and the management of the resulting link and switch
activity. However, such algorithms were implemented in an
SDN emulation environment with out-of-band control traffic,
limiting their applicability to networks where dedicated links
between the controller and forwarding devices are deployed.

In [9] authors proposed ElasticTree, a network-wide power
manager to save energy in data centers using SDN. This solu-
tion dynamically finds the minimum set of network elements
required by changing traffic loads, while satisfying perfor-
mance and fault tolerance constraints. In this regard, three
strategies were studied, namely Formal Model, Greedy Bin-
Packing and Topology-aware Heuristic. While the first option
presents scalability issues and the second saves less power, the
best performance is obtained by the Topology-aware Heuristic.
However, this approach is specifically conceived for FatTree
networks.

Other approaches about power efficiency in software defined
data center networks are presented in [10], [11]. The authors
of [10] simultaneously optimize the power saving and the
network performance, according to a pre-defined combination
of quality requirements. In [11] different energy-aware routing
strategies, combining common routing and scheduling algo-
rithms, are evaluated and implemented as a OpenNaaS-based
prototype. However, these strategies are only applicable in data
centers and are also incompatible with environments without
dedicated control networks.

Different from the aforementioned works, the aim of this
paper is to provide a power-aware control plane configuration
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Fig. 1. Power Model (redrawn from [12]).

combined with a dynamic routing strategy considering an
SDN architecture with multiple controllers and in-band control
traffic. Our approach is also able to handle more demanding
traffic patterns while reducing the performance degradation of
higher priority traffic.

III. POWER MODEL

Power consumption of networking devices is composed by
a static component (due to power consumed by chassis, fans,
line-cards, etc.) and a dynamic one, related to the rate of
traffic flowing through their port interfaces. Ideally, the static
part, also known as the idle component, which represents the
power required by an unused switch, should be null. Then, in
presence of an increasing traffic load, the power consumption
should behave proportionally and linearly grow along with the
traffic increase (line marked as Ideal in Fig. 1). However, this
model differs considerably from the real one (line marked as
Real in Fig. 1). In practice, whenever a device is active it will
consume a fixed amount of power (FP,,), irrespective of load
conditions. Additionally, this baseline power is increased by
the number of active ports and the utilization of each port.

In this regard, it has been previously measured that the
amount of traffic handled by port interfaces does not have
a significant effect on device’s consumption [12]. Explicitly,
while most of the power is consumed only by turning the
device on, increasing the port utilization from zero to full load
represents less than 8% of total power consumption [9]. There-
fore, in this paper we consider that the power consumed by a
network node depends on the baseline power and the number
of active ports, both of which represent fixed contribution.

IV. PROBLEM STATEMENT

To formalize the power consumption optimization problem
in SDN, in this section we present its mathematical formu-
lation. The proposed model seeks to optimize the overall
power consumption. To that end, the incoming traffic demands
and the associated required control traffic will be routed
minimizing the number of active network elements. In general,
our model leverages preliminary works presented in [13]-[15]
supporting that forwarding devices are put into sleep mode.

Being a general formulation, multiple controllers as well
as SDN with in-band mode are supported by this proposal.
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Given the controllers placement, our model also determines the
optimal distribution of switches between controllers in terms
of power efficiency and load balancing.

A. Network Model

In the proposed scheme the network topology can be
modeled as a graph G = (V, E, C), where V, E and C' denote
the set of switches, links and controllers respectively. Note
that network nodes can only fulfill one role, i.e. controller or
routing device. Additionally, we use ¢; ; to denote the capacity
of a link (7, 7) € E. Considering F as the entire set of traffic
flowing through the network between any pair of nodes, let D
denote the subset corresponding to data plane communications.
For the control plane, we use 7T to denote the subset of
communications between controllers and switches, and H
to denote the subset of communications between controllers.
Each flow f € F from source s; to destination tf, has
associated a throughput, denoted by dy.

B. Formulation

Considering the entire set of demands fixed and known
in advance, all the optimal control and data paths in terms
of power efficiency can be computed jointly in a global
optimization process. To formulate such optimization problem,
the required variables, objective functions and constraints are
defined as follows:

TABLE 1
NOTATION OF BINARY VARIABLES
[ Name | Description |
T Indicates whether link i, j is active
Yo Indicates whether node v is active
t{ J Indicates whether link 4, j is selected to route flow f
Av,c Indicates whether node v is associated with controller ¢

The objective function of our model seeks to reduce the
overall power consumption considering the number of active
nodes and links in the network. Consequently, both elements
are integrated in the following expression, where P, and
P, denote the power consumption of a port and a node,
respectively.

minimize 2P, Z zij+ Py Z Yo ey
(i,))€E veV

A single controller must be selected to manage each active
forwarding device in the network.

Z)\v,c = Yv

ceC

Yv eV 2)

Looking to avoid congested controllers, we set the max-
imum number of forwarding devices that can be associated
with each controller. In this way, active switches are evenly
distributed and the load is balanced among controllers.
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A node v € V is active if there is traffic in any of its
incoming or outgoing edges, being N (v) the set of neighbors
of v.

y“—2FZ<
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To avoid additional traffic load through network controllers,
data plane communications (i.e. f € D) cannot be routed
through these devices. Furthermore, control traffic between
controllers and switches (i.e. f € T) will not pass through
any other controller that is not the source or target of the
traffic. The same must hold true for communications between
controllers (i.e. f € H). In these constraints we use N(c) to
denote the set of neighbors of a controller ¢ € C and vy to
identify the forwarding device involved in the source/target
pair of traffic flow f € T.

0 Vfe DVceC
Yo oth <Ay VfeTVeeC (5)
nen(c) 0 VfGH,VCGC\{Sf,tf}
The routing of data plane communications and control traffic

exchange between controllers, follows the traditional flow
conservation constraints.

YveV,Vfe DUH : (6)
1 if v=sy
Sothu- DY t,=4-1 if v=t;
ueN(v) u€N (v) 0 otherwise

Meanwhile, for the subset of communications between
controllers and switches f € T, these constraints are modified
to assure that only active switches exchange control messages
with its controller. Similarly, the forwarding device and the
controller involved in the source/target pair of traffic flow
f €T, are denoted with vy and cy, respectively.

YoeV,VfeT: (7N
Yo Aus ey if v=sg
Z t] Z the =19 —Yohvye, ifv=t;
weN (v) u€N (v) 0 otherwise

Finally, a link (¢,7) is active if it is used by some traffic
flow f € F. Furthermore, the total traffic in each active link
must be less than its assigned capacity.

> tlidy < cijmij
fer

V(i j) € E ()

Although this model allows the attainment of optimal solu-
tions for the power consumption problem in SDN, it becomes
challenging to solve on large and even medium-scale topolo-
gies. This is because the difficulty of the power-aware routing
problem is known to be NP-Hard [16], so the consumption
of resources and time complexity grow exponentially with the
network size. To overcome this issue, in the next section we
develop a heuristic algorithm.



V. HEURISTIC ALGORITHMS

To compute all the routes (i.e. for data and associated
control traffic) using the global optimization model presented
previously, the entire set of traffic demands need to be fixed
and known in advance. Considering this as a limitation for
current dynamic networking environments, in this section
we propose a new approach to support time-variable traffic
requirements. The key idea of this proposal is to fully take
advantage of the high control flexibility given by the dynamic
configuration capabilities and centralized network view of
SDN without needing an accurate prediction of incoming
traffic. In order to allow that nodes are put into sleep mode we
assume network topologies with forwarding devices divided
into two categories: edge nodes, which are connected to some
traffic source/target and transit nodes, which merely route
other nodes traffic.

A. Green Initial Setup (GrlS)

An initial control plane configuration, previous to the data
traffic arrival, is required in order to support the in-band mode
in SDN. This control plane setup is intended to establish
the communication paths between switches and controllers, as
well as between controllers. In this way, when new traffic flows
arrive, switches can send to the controller routing requests
through packet_in messages. To do so, in this section we
propose an off-line solution denoted as Green Initial Setup
(GrIS). This component will be statically activated at specific
time instances as a planned operation.

The proposed strategy, shown in Algorithm 1, takes as
inputs the original network topology G with controller place-
ments, the subset of edge nodes S C V' and the control traffic
requirements R°. The outputs are a reduced graph with the
initially active network elements G4 = (V4, E4,C), an array
keeping the controller-switch associations A and the initially
required control paths P..

In the first step, the algorithm reduces the number of initially
active nodes using the NET_PRUNING function, shown in
Algorithm 2. This method aims to remove as many nodes as
possible, considering as candidates the set of network nodes
that will not be endpoints of incoming demands, denoted in
the pseudocode as N. For each node inside this set of transit
nodes, the function computes its betweenness centrality (B5,,),
as a measure of its intermediary role in the network. In the
proposed approach, we use a simplified version of this metric
considering only the shortest paths from each controller to
every switch. In particular, after computing the shortest paths
from each controller as single source, the B,, associated with a
node n is increased for each path containing the node (lines 5-
14). Using these values, transit nodes are sorted and stored in
the list N’. At each iteration of this list the function attempts
to increase the number of switched-off nodes. A new node is
removed only when in the resulting graph forwarding devices
remain being reachable by network controllers, i.e. at least
one path exists between every controller-switch pair in the
network.

Algorithm 1 GrIS Pseudocode
Require: G, S, R¢
1: G’ + NET_PRUNING(G, S)

2: O <+ Get_All_Admissible_Control_Paths(G’, R¢)
3: §' + S sorted by nodes priority criteria

4: s < First node in S’

50 [VA|L|EA| + o

6: repeat

7: for p € Ol[s] do

8: Initialize (V4', B4’ P!, A’ U")

9: for u e p\ S do

10: Power_Aware_Path_Selection(O[u)])

11: Update (VA/,EA/,Pé,A’,U’)

12: end for

13: forne L\ f do

14: r = Power_Aware_Path_Selection(O[n])
15: Update (VA" EA' P/ A, U)

16: for ver\ S do

17: Power_Aware_Path_Selection(O[v])
18: Update (VA', EA' P/, A" U")

19: end for

20: end for

21: for (c1,c2) € G’ do

22 Power_Aware_Path_Selection(O|c1, ¢2])
23: Update (VA', EA', P/, A" U)

24: end for

25: if V'] < [V A [EA| < || then

26: VA EA P AU « VA BA PLAL U
27: end if

28: end for

29: if [VA| = 00V |E#| = oo then

30: if s = last node in L then break

31: end if

32: s < Next node in S’

33: end if

34 until [VA] £ 00 A B4 £ 00

To accomplish this, a temporal graph, denoted as G’, is
created. This graph is used to check the required connectivity
between controllers and forwarding devices. After validating
that the possibility of reaching every node in the network from
any controller is not affected, the considered node is removed
from the resulting graph. This means that these nodes together
with their links are put into sleep mode in the original graph.

After pruning the network, the GrIS algorithm uses the
reduced graph G’ to find the overall set of admissible control
paths which satisfy control traffic requirements R¢ (line 2 in
Algorithm 1). As previously stated, these paths do not pass
through any other controller that is not the source or target of
the traffic. Using these computed control paths, a sorted list of
ingress and egress forwarding devices is stored in S’. This list
is sorted in ascending order following two priority criteria:

1) the number of possible controllers to associate with,
2) the number of possible control paths.
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Algorithm 2 NET_PRUNING
Require: G,S
.G+« G
N« V -8
: H + NULL
: B+ NULL
: for n € N do
B,=0
for c € C do
SP. < Set of shortest paths from controller ¢ € C
9: for p € SP. do
10: if nepthen B, =B, +1
11: end if
12: end for
13: end for
14: end for
15: N’ < N sorted according to increasing order of B
16: for n € N’ do

> Transit nodes
> Removed nodes
> Array of betweenness values

17: Remove from G’ node n

18: if nodes are still reachable by controllers in G’ then
19: Save n in H

20: else

21 G+ G

22: Remove from G’ nodes in H

23: end if

24: end for

Going through this list, the algorithm starts satisfying the
most critical cases and the solution can be found with fewer
iterations. The main loop of the Algorithm 1 determines for
each possible control path of the selected node s, the number
of active elements in the network after computing all control
routes. The configuration of paths with fewer active elements
is then selected in this process.

Inside this loop the algorithm first determines the paths be-
tween controllers and forwarding devices. Note that, for each
forwarding device x, Olx] contains admissible control paths
to each controller available in the network. Precisely, paths
selected in this step define one controller for each forwarding
device. Additionally, any time a path between a switch and a
controller is computed, nodes belonging to the control path but
not in S are analyzed by the algorithm. Note that these nodes
are the transit nodes that remained in the resulting graph after
pruning the network. Since they are used to route some traffic,
a control path is also established between them and some
controller. After determining all switch-controller associations,
the algorithm searches the paths between controllers.

In general, the power-aware path selected for every control
pair is the best route between them in terms of minimizing
the number of active elements in the network as long as it
has sufficient link capacity to route the traffic volume, under
the considered Maximum Link Utilization (MLU) constraint.
Additionally, during the selection of one control path between
each forwarding device and one controller, the number of
devices already attached to the controllers is considered in
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order to keep a balanced load. Since the set of admissible paths
obtained from the pruned network with a reduced number of
elements is significantly smaller than in the original topology,
the solution can be found with fewer iterations.

If after analyzing all control paths of node s, the algorithm
cannot find a feasible configuration of paths to route all control
and data plane communications, the main loop repeats this
process for the next node stored in S’. This is done until the
solution is found or until all forwarding nodes are analyzed,
i.e. when the algorithm breaks without a solution. Note that
this last option occurs when, given a controllers placement,
an admissible configuration for controller-switches association
could not be found or when the network has not sufficient
capacity to meet the demand requirements under established
constraints.

B. Dynamic Power-Aware Routing (DyPAR)

When a new traffic demand arrives, a routing request is
sent from the input node to its associated controller using
the previously computed path between both devices. Based on
its global knowledge of the network topology, this controller
calculates the required data path minimizing the number of
elements that need to be activated for this connection request
and creates the flow forwarding rules. The proposed dynamic
power-aware routing, denoted as DyPAR and shown in Algo-
rithm 3, performs in essence three crucial functions:

1) Power-aware data and control path selection;

2) Performance-aware data path selection;

3) Congestion-aware traffic reallocation.

For each incoming demand d, the algorithm starts trying
to get the set of admissible data paths across the current
active topology. This is done considering that admissible data
paths do not pass through any controller in the network. If
several paths were found, the one with the highest remaining
available link capacity is selected. In this way, the number of
future requests that can potentially be accommodated over the
currently active paths is increased. Then, traffic is allocated
and links utilization are updated.

On the other hand, if no admissible data path was found to
route the incoming traffic across the currently active topology,
the original network graph is then considered by the algorithm.
Since the now determined candidate routes will imply the
use of additional network elements, the data path minimizing
the number of active network elements is selected to carry
the demand. After updating the active topology and links
utilization, a loop is used to establish the required control plane
communications for each added node along the data path. In
the same way, the algorithm first considers the currently active
topology to set the required control path with some network
controller and the entire network in case of failing the initial
attempt.

In case of incoming traffic rates exceeding the remaining
available network capacity (line 19 to 21), the algorithm con-
siders all data paths in the original network without taking into
account the capacity restrictions, but keeping that data plane
communications cannot be routed through network controllers.



Algorithm 3 DyPAR Pseudocode

Algorithm 4 CONGESTION_AWARE_REROUTING

Require: G,G*, P, A, U,d
1: Py < Get_Admissible_Paths(G*, d)
2: if Py # Null then
3: pd < Lest loaded path in Py

4: Update U after routing py

5: else

6: P; + Get_Admissible_Paths(G, d)

7: if P; # Null then

8: pq < Power_Aware_Path_Selection(FP;)

9: Update G4, U after routing pg

10: for node n added to G* by p, do

11: P. + Get_Admissible_Paths(G*4,n, C)
12: if P, = Null then

13: P. <+ Get_Admissible_Paths(G, n, C)
14: end if

15: pe < Power_Aware_Path_Selection(FP,)
16: Update G4, U, A after routing p,.

17: end for

18: else

19: P, < Get_All_Paths(G, d)

20: pq < Performance_Aware_Path_Selection(P,)
21: Update U, T after routing py

22: end if

23: BL + Link with maximum load

24: F' < Demands established through BL

25: CONGESTION_AWARE_REROUTING(G#, F, BL,U)
26: end if

Then, the algorithm performs a data path selection based on
reducing the performance degradation incurred. More in detail,
the algorithm selects the data path inside this group whose con-
gested links are less used by previously established demands.
The reason is that, to allow the new traffic flow, the capacity
remaining on those links, after allocating the QoS sensitive
demands and control traffic, will be fairly divided between the
involved lower-priority demands. Rates beyond this resulting
throughput will be reduced and traffic will be handled on a
“best-effort” basis. In this way, the proposed algorithm can
efficiently handle bursty traffic and accommodate rates that
exceed the remaining available capacity without affecting the
QoS sensitive traffic if the network is not heavily loaded.
Every time a new network element is added to the active
topology, the algorithm tries to alleviate the congestion level
on the network. To accomplish this, after identifying the
bottleneck link and the group of traffic flows going through
this link, a CONGESTION_AWARE_REROUTING is performed.
This function, described in Algorithm 4, starts creating a
temporal graph G” where the most loaded link is removed.
Additionally, currently established demands sharing the most
loaded link are sorted in decreasing order of rate requirements
with the aim of reducing the congestion after rerouting the
fewer number of connections. In order to avoid frequent
reallocations of a traffic flow and mitigate related negative
implications, a time threshold can be easily included to select

Require: G4, F, BL,U
1: Current_MaxzU < U[BL]

Q" — GA

: Remove BL from G”

F’ « F sorted by decreasing order of flow rate

. for established demand f in F’ do

P + Get_Admissible_Paths(G”, f)

p < Congestion_Avoidance_Path_Selection(P)

MazxU, < Maximum link utilization in p

if p # None A MaxzU, < Current_MazU then
Reroute f and associated control traffic
Update U and Current_MaxU

end if

: end for

R A

—_ = = =
W N = O

only demands that have been allocated long enough over the
current path. Using the residual graph a new set of admissible
paths is obtained for each involved traffic flow. Then, the
function looks for a path with lower load values trying to
leave more resources available for future demands. A traffic
flow is reallocated only when a feasible path is found and the
MLU in the network is reduced. At the same time, the required
control paths are updated.

Since the proposed approach is conceived for dynamic
traffic environments, the set of established demands will
be constantly checked. For those connection requests whose
holding times have expired, the algorithm performs a demand
removal, which means that their assigned paths are released
and resources occupied by these routes become available
again. Consequently, network elements used only by com-
pleted traffic demands will be then put into sleep mode.

VI. PERFORMANCE EVALUATION

To assess the performance of the ILP model, we used the
linear programming solver Gurobi Optimizer [17]. Meanwhile,
heuristic algorithms were implemented using the programming
language Python. All computations were carried out on a
computer with 3.30 GHz Intel Core i7 and 16 GB RAM.

A. Simulation Scenario

1) Network Topology: We conducted our simulations using
real-world network topologies collected from SNDIib [18],
considering each router in the network as an SDN node or
as a controller placement. Specifically, in order to assess the
effectiveness of the proposed scheme we use three topologies
of different sizes. These networks are: Nobel-US (14 nodes,
21 links), Geant (22 nodes, 36 links) and Cost266 (37 nodes,
57 links). To allow the possibility of putting network nodes
into sleep mode, different scenarios were considered varying
T, which represents the percentage of forwarding devices that
will not generate or receive traffic. According to this value,
for each network topology we have selected as transit nodes
the devices with the highest degree centrality as in [6].
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2) Controllers Placement: Being the controller placements
out of the scope of this paper we assume as preferred lo-
cations the ones minimizing the worst-case mean latencies.
More precisely, we compute the mean propagation latency
between each pair of nodes and associate each admissible
location with the maximum average value involving it. Then,
according to the number of controllers considered for each
simulation instance, we place the controllers at node locations
with smaller associated latency values. Note that a controller
placement is admissible when the assumptions established in
this proposal to avoid the routing of additional traffic load
through network controllers can be kept (i.e. the network graph
without any controller remains being strongly connected).

3) Traffic Patterns: Apart of the real static traffic matrices
obtained from the topologies database in [18], we also consider
a dynamic scenario where connection requests arrive with
exponentially distributed inter-arrival and holding times taking
different mean values from the sets [0.2, 1, 5] and [100,
150, 200], respectively. Accordingly, a traffic flow is gener-
ated between each pair of edge nodes (i.e. network devices
which do not act as controllers or transit nodes). To evaluate
the power savings and performance degradations considering
increasing loads, for each network topology we considered
every pair of edge nodes with an initial randomly assigned
data rate and computed the associated shortest paths. We
then identified the most loaded link from which we derived
a scaling factor. Lastly, the initially assigned values were
multiplied by this scaling factor to obtain the corresponding
data rates for each incoming demand (see [19]). This was done
considering different values of the over-provisioning factor ()
to further evaluate the implications of varying traffic load. We
assume an average control traffic rate of 1.7 Mbps [20].

4) Power Values: Based on the power consumption behav-
ior of data networks explained in Section II, we characterize
the power consumption of a forwarding device using the 3:1
idle:active ratio given in [9]. This proportion, obtained from
measurements on real switches, assigns 3W of power for each
idle port of a switch and 1W extra when the port is active.
Thus, power consumption P, of a idle forwarding device n can
be computed as 3D(n) where D(n) denotes the node degree
and P, = 1W. Null power consumption is assumed when the
node is put into sleep mode.

B. Optimal vs. Heuristic Solutions

To assess the suitability of the proposed solution we start
evaluating the performance of the heuristic algorithms against
the optimal ILP model, using the Nobel-US and Geant topolo-
gies with traffic matrices provided in [18]. This comparison is
illustrated in Fig. 2 for different amount of controllers and per-
centage of transit nodes. Power savings are computed accord-
ing to the expression (Overall_Pw — Pw_X)/Owverall_Puw,
where Overall_Pw =3 .\, P, +2P, |E| and Pw_X is the
power consumption achieved by the considered approach.

In Fig. 2 power savings of up to 35% can be reached by our
optimization model in both topologies. Moreover, the heuristic
approach allows to obtain close-to-optimal power savings with
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Fig. 2. Power savings in the Nobel-US and Geant topologies as a function
of controllers amount, varying the percentage of transit nodes (7).

differences under 4% (Nobel-US) and 8% (Geant). It is also
observed in both networks that lower savings are achieved
when the percentage of transit nodes decrease from 50% to
10%. This behavior is expected given that with fewer transit
nodes a smaller number of forwarding devices can be put into
sleep mode, which yield the mayor contribution to the attained
power savings. Additionally, with fewer transit nodes a higher
number of demands are handled, thus more paths need to be
established to accommodated such traffic. On the other hand,
increasing the number of controllers implies in some cases a
reduction in the power savings.

C. Assessment of Power Saving Potential

Due to the computational complexity of the exact model
in networks similar in size or larger than Geant (see [15]
for similar running time values), in what follows we use
our heuristic algorithms. This is done taking into account
a dynamic scenario with connection requests generated fol-
lowing the procedure previously explained. Several test were
conducted and average values have been determined with a
margin error less than 5.5% in the three considered networks,
estimated by running our algorithm 10 times with different
prime number seeds on each traffic configuration instance.

In terms of average running time of the algorithms, the
off-line GrIS module requires around 39 ms (Nobel-US),
0.25 s (Geant) and 283 s (Cost266). Meanwhile, the DyPAR
algorithm takes always less than 6.4 ms (Nobel-US), 16.5 ms
(Geant) and 282.6 ms (Cost266), for all the considered traffic
patterns. These values reveal the suitability of the proposed
strategy for real-world deployments and its adequate scalabil-
ity in terms of network size and traffic load. Due to space
limitation, we may focus our attention on some specific traffic
pattern configuration, but the general conclusions derived from
performed evaluations hold for all the considered values.

In addition, in order to evaluate the benefits of our proposal
we compare the performance of the proposed algorithms with
other two existing energy-aware routing approaches presented
in related works [7] and [8], referred to here as SP and EMMA,
respectively. As we are considering an in-band SDN, required
control plane communications will be also established by these



two approaches. At the same time, shortest paths used by SP
and EMMA are computed holding restrictions established to
avoid additional traffic load through the network controller (i.e.
data traffic cannot be routed through this device). On the other
hand, we set the time threshold for demands reallocation (half
of connection expected duration) and the number of transit
nodes (T = 50%) as in [8] for the three algorithms used in
this comparison. Given the lack of support in SP and EMMA
for network environments with multiple controllers we only
consider the case of having one centralized network controller.
However, the derived conclusions are general and a similar
behavior is expected in case of having multiple controllers.

Fig. 3 shows the power consumption achieved by the
three algorithms considering different topological scenarios
and over-provisioning factor («). These results correspond
with an average arrival time of 0.2 demands/s and a mean
holding time of 100 s, but similar values have been obtained
for all the considered traffic patterns. Given the initial control
plane configuration performed by the GrIS module, in the
three considered topologies the other two methods exhibit
a better behavior at the beginning of simulations. However,
after allocating few demands more power can be saved by our
approach. As it is shown, in terms of consumed power, DyPAR
outperforms SP in all cases and it is generally better (in some
cases just slightly better) than EMMA. For instance, after rout-
ing all incoming traffic, DyPAR attains power consumption
reductions of up to 26.5% and 19.4% with respect to SP and
EMMA, respectively. The reason is that SP only uses pre-
computed shortest paths to allocate the incoming traffic, while
EMMA also performs a power-aware rerouting any time the
active topology changes in order to find better paths for already
allocated flows. On the other hand, power improvements
achieved by our proposal are consequence of the combined
GrIS/DyPAR operation where a minimum network subset is
initially activated and new network elements (nodes and links)
are only added when the incoming demand cannot be allocated
on the currently active topology.

D. Performance Degradation Avoidance

These power savings are only valid if the performance of
QoS sensitive demands is not compromised. Moreover, to
avoid overloaded networks a capacity reserve is typically set.
So far, we had not considered this capacity margin, but now
we analyze how the number of allocated demands is impacted
when facing a more demanding traffic pattern and in presence
of a MLU constraint. In this evaluation we set the average
arrival time to 5 demands/s and the mean holding time to
200 s, while keeping the over-provisioning level equal to 1,
since this represents the most demanding of the considered
traffic patterns for the heuristics and the most critical from
the performance degradation perspective.

Fig. 4 shows the percentage of demands that can be allo-
cated by DyPAR, EMMA and SP in Nobel-US and Geant us-
ing different values of MLU. As it shown, DyPAR is able to re-
duce the blocking rate with respect to the other two approaches
as a result of the CONGESTION_AWARE_REROUTING per-
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(c) Cost266 topology.

Fig. 3. Power consumption in the three topologies with one controller as a
function of traffic arrival, varying the over-provisioning factor (cv).

formed by this solution. In particular, while only negligible
blocking rates are attained by our approach (less than 1.2%),
up to 7 and 12 demands are blocked by SP and EMMA,
respectively. SP performs better than EMMA given that in
case of having more than one candidate route this algorithm
selects the one leaving more available link capacity.
Intuitively, the capacity to successfully allocate the incom-
ing traffic will not only be a result of the performed routing,
since it is also related to the considered topology. In network
topologies with more path redundancy a higher number of
requests can potentially be accommodated. This difference can
be noticed between Nobel-US and Geant, where an increase of
allocated demands of up to 26.7% and 15.6% can be reached,
respectively. Cost266 is not shown in Fig. 4, since a complete
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Fig. 4. Number of allocated demands with one controller as a function of traffic arrival, varying the MLU.

routing was always achieved in this topology by the three
compared algorithms under the considered traffic patterns and
MLU levels.

VII. CONCLUSION

In this paper we proposed a power-aware strategy that re-
duces the number of active nodes and links used to handle the
incoming traffic suitable for SDN environments with in-band
control traffic and multiple controllers. To achieve such goal,
we first provided a link-based formulation of the optimization
problem, integrating the routing requirements for data and con-
trol traffic. For large-scale topologies a heuristic approach is
conceived combining a static control plane configuration with
a dynamic power-aware routing. Besides being compatible
with SDN environments without a dedicated control network,
this strategy is able to handle demanding traffic arrival without
degrading the performance of higher priority traffic. Through
simulations using real-world topologies, we have validated
that our heuristic approach allows to obtain close-to-optimal
power savings, with differences under 8%. Furthermore, our
proposal achieves better results in terms of power consumption
and number of allocated demands than two existing related
algorithms. For instance, after routing all incoming traffic,
a reduction of power consumption of up to 26.5% and an
increase of allocated demands of up to 26.7% can be reached
by our solution. Lastly, it is important to emphasize that to
exploit the reported benefits of our approach, fast switching-on
technologies, allowing quick responses and low reconfigura-
tion times between sleeping modes, are required for practical
implementations. In the same way, additional criteria to ensure
the capability of the network to quickly react in case of
suddenly failures should be further analyzed. Therefore, the
inclusion of restoration mechanisms in order to improve the
fault tolerance capacity of our approach will be an important
future task.
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